
 
 

Delft University of Technology

DevID: Blockchain-based Portfolios for Software Developers

de Vos, Martijn; Olsthoorn, Mitchell; Pouwelse, Johan

DOI
10.1109/DAPPCON.2019.00030
Publication date
2019
Document Version
Accepted author manuscript
Published in
Proceedings - 2019 IEEE International Conference on Decentralized Applications and Infrastructures,
DAPPCON 2019

Citation (APA)
de Vos, M., Olsthoorn, M., & Pouwelse, J. (2019). DevID: Blockchain-based Portfolios for Software
Developers. In P. Ruppel, S. Schulte, J. Xu, Y. Park, & A. Kupper (Eds.), Proceedings - 2019 IEEE
International Conference on Decentralized Applications and Infrastructures, DAPPCON 2019: Blockchain
and beyond (pp. 158-163). [8783158] https://doi.org/10.1109/DAPPCON.2019.00030
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DAPPCON.2019.00030
https://doi.org/10.1109/DAPPCON.2019.00030


DevID: Blockchain-based Portfolios for Software
Developers

Martijn de Vos, Mitchell Olsthoorn, and Johan Pouwelse (j.a.pouwelse@tudelft.nl)
Distributed Systems group, Delft University of Technology, The Netherlands

Abstract—Decentralized applications, also known as dApps,
are the new paradigm for writing business-critical software.
Recruiting developers with appropriate qualifications and skills
for this activity is key, yet challenging. The main problem is that
the portfolio of developers is usually scattered across centralized
platforms like GitHub and LinkedIn, and vendor locked. This
can result in an incomplete impression of their capabilities.

We address this problem and introduce DevID, a blockchain-
based portfolio for developers. Over time, this portfolio enables
developers to build up a trustworthy collection of records that
showcase their capabilities and expertise. They can import data
assets from third parties into a unified DevID portfolio, add
projects and skills, and receive endorsements. All portfolio
records are stored on a scalable distributed ledger and owned by
developers themselves. The essential idea is to exploit the tamper-
proof property of the blockchain while providing durable storage.

To demonstrate the practical value of DevID, we build the
competition-based platform, dAppCoder, for the development of
decentralized applications. On dAppCoder clients are able to
submit their ideas and developers can find work. dAppCoder
utilizes DevID portfolios to match these clients and developers.
We fully implement our ideas and conduct a deployment trial.
Our trial demonstrates that DevID is efficient at storing portfolio
records.

Index Terms—Unified Portfolio, Decentralized Applications
Development, dApp Development Platform, Developer Reputa-
tion and Identity, Distributed Ledger Technology

I. INTRODUCTION

Decentralized applications, also known as dApps, allow for
contractual logic that runs without the need for trusted inter-
mediaries. Finding the right talent to develop these business-
critical applications is becoming a real problem [1]. Yet, many
software developers are looking for work. Matching clients and
reputable developers is at the core of profit-driven companies
such as Upwork. However, each platform only provides access
to a subset of all available work and developers.

The main problem is that centralized approaches lead to
fragmentation and lock-in effects [2]. Many software devel-
opers have their data fragmented across multiple platforms,
like GitHub and LinkedIn. Each platform only yields a partial
impression on the capabilities and background of a developer.
Moreover, data assets are usually locked to one platform and
cannot easily be reused across different services.

Another issue with centralized approaches is data authority.
It raises much discussion in our society, mainly controlled by
data-driven corporates. By agreeing to the terms of service of
a company, one essentially gives them authority over most of
the personal data being shared.

This work was funded by NWO/TKI grant 439.16.614.

There currently is no independent platform for developer
portfolios without fragmentation, lock-in, and autonomy over
all data. Availability of such a platform would increase effi-
ciency and effectiveness when matching reputable developers
looking for work and clients that are in need of talent.

We address this deficiency and present DevID, a unified
portfolio specifically made for dApp developers. An impres-
sion of such a portfolio is given in Figure 1. DevID portfolios
are powered by a scalable blockchain ledger, used for durable
storage of records. Developers can add tamper-proof records
to their portfolio. These records are fully managed and owned
by developers themselves.

To show the practicality of DevID, we build a competition-
based platform for crowdsourcing the development of decen-
tralized applications, named dAppCoder. Crowdsourcing is a
relatively new model for software development, where an open
call is made for the documentation, design, coding, and testing
of software [3]. We believe that a single, public, and open
market is preferable compared to a centralized solution with
fragmentation and lock-in effects.

The main contributions of this work are tri-fold:
• DevID: a unified portfolio specifically for dApp develop-

ers, powered by a pairwise distributed ledger (Section III).
• dAppCoder: our application to crowdsource the develop-

ment of decentralized applications (Section IV).
• A deployment trial of DevID and dAppCoder, which

demonstrates the practicality of our work (Section V).

II. PROBLEM DESCRIPTION

The main challenge is to create a digital portfolio that gives
an accurate impression of the capabilities and expertise of
a developer. We now elaborate on two requirements for this
portfolio and clarify the problems we have to address.

Fig. 1: An impression of a DevID portfolio.



Wallet

Code Execution Environment

DAppCoder Client

Submission Validator
WalletWallets

TransactionsFraud Management

Scalable Blockchain Fabric

Distributed Storage

Tamper-proof Developer Portfolio

Trusted 
Notary 
Service 

DevID

DApp- 
Coder

Fig. 2: The architecture of DevID and dAppCoder.

First, we require that developers are able to import existing
data from other platforms into their portfolio. This streamlines
the bootstrapping process of a portfolio with relevant records.
The problem, however, is to ensure that data being imported
actually belongs to the user importing it. This is an essential
requirement to ensure trustworthy portfolios.

Second, we require our developer portfolio to be indepen-
dent of any trusted intermediary. Blockchain technology is
increasingly being used as middleware for building powerful
decentralized applications without centralized authority. For
example, platforms like Ethereum and EOS enable developers
to write and deploy smart contracts, self-executing code that
enforces agreements between two or more parties [4]. How-
ever, most blockchain fabrics are not suitable for large-scale
storage of portfolio records, or for data storage in general.

Given these two requirements, the research question of this
work is as follows: How can we provide software engineers
with a unified developer portfolio, efficient at storing tamper-
proof and accurate data records they control themselves?

III. DEVID: BLOCKCHAIN-BASED PORTFOLIOS FOR
SOFTWARE DEVELOPERS

We now present our unified portfolio, named DevID. The
architecture is given in Figure 2. This figure also includes the
architecture of dAppCoder, our platform to crowdsource the
development of decentralized applications. dAppCoder itself
is discussed in Section IV.

A. Supporting Generic Storage

We show how DevID portfolios support generic storage of
records and elaborate on different record types.

Statistics: The first record type we consider is statistics,
quantifiable and verifiable numbers that represent a specific
developer metric. For example, these records could represent
developer statistics like the number of years of programming
experience, or the total number of code reviews given. A
visualization of these records is shown in Figure 1 under the
section “Developer in Numbers”.

Projects: Developers can add projects that they worked
on to their DevID portfolio. In Figure 1, this information
is displayed under the section “Top Projects”. Optionally,
references to projects can be added to a DevID portfolio, like a
link to a GitHub repository or to the hash of a specific commit.

Skills: Developers can add skills to their DevID portfolio.
We consider the ability to highlight proficiency in specific
programming languages and familiarity with blockchain plat-
forms an essential feature of a developer portfolio. It aids
programmers in finding projects that match their expertise, and
it enables clients to find developers that fit their projects best.
For instance, applications that have access to DevID portfolios
can filter available developers on one or multiple skills.

Endorsements: The final record type we define is en-
dorsements. Developers can endorse other developers (e.g.,
by writing a letter of recommendation) or endorse specific
skills of others. Skills and endorsements can also be imported
from other platforms like LinkedIn. How we achieve this, is
discussed in the next section.

B. Unifying Developer Data

We now discuss how to import developer data from multiple
platforms and how to verify it for correctness.

Importing developer data: DevID allows developers to
import relevant information from different platforms into their
portfolio. For example, they can import data from LinkedIn
(e.g., skills or past projects) or from GitHub (e.g., the number
of followers and code contributions). Importing can be done by
querying their public interfaces (APIs) and request the relevant
data. To store the data in the portfolio, one can either add a
reference to the (external) data or copy the data assets into
the portfolio. To reduce dependency on third-party services,
we choose to copy the data and store it within a portfolio
record.

Verifying developer data: As discussed in Section II, it is
essential to ensure that imported data actually belongs to the
developer importing it. We propose two solutions to achieve
trustworthy importation of data: challenges and TLS auditing.

The first solution is to pose a challenge where the developer
importing the data, proves that they have control over this
data. For example, when importing data from GitHub, we can
require a public identifier (e.g., a public key) of the developer
to be part of the “bio” profile field. This information can then
be verified for correctness by other users who query the public
GitHub API. We call users who verify data witnesses. While
this is a basic mechanism to ensure the accuracy of imported
data, it heavily depends on the availability of a public API.

The second solution is TLS auditing [5]. The key idea is to
proxy a TLS connection through a random witness, which then
verifies and signs the data after the TLS connection terminates.
When the TLS session finishes, the client gives the witness the
private key used to decrypt HTTPS responses from the web
service. Note that this way the witness is not able to decrypt
the request made to the web service, which likely includes
credentials or access tokens. The role of a witness can either
be fulfilled by other entities in the network, or by a trusted



(a) Linear ledger (Ethereum). (b) DAG ledger (IOTA). (c) Pairwise ledger (Nano).

Fig. 3: Three different structures of distributed blockchain ledgers. Each arrow points to the subsequent block in the chain.

notary service. Depending on the significance of data being
imported, multiple witnesses can be used for this. Compared
to challenges, TLS auditing works when access to a public API
is absent but is more advanced. Our lab has implemented an
advanced TLS auditing mechanism, which is currently under
a security audit.

C. Verified Identities

To further improve trustworthiness of DevID portfolios, de-
velopers can optionally verify their digital identity. A verified
identity is uniquely linked to a real-world entity. Software built
on DevID can give preferential treatment to developers that
have verified their identity. For example, an application can
ignore endorsements that are given by unverified developers.

Identity verification can be done with an attestation given
by a trusted third party like the government or a notary.
Enforcing strong, long-lived identities in DevID is comparable
with account validation that many centralized platforms use
(e.g., the verification of a phone number). The requirement
for verified identities addresses the Sybil Attack, where an
adversary assumes multiple fake identities to influence or
subvert the network [6].

D. Efficient Blockchain Storage

DevID requires a blockchain fabric that can store tamper-
proof and accurate data records. We now explore three com-
mon blockchain structures, displayed in Figure 3.

Linear ledger: Figure 3a shows the linear blockchain
ledger used by Ethereum. The fundamental property of this
ledger is that at least a majority of users agree on the exact
sequence of transactions. A global consensus mechanism like
Proof-of-Work or Proof-of-Stake prevents the double-spend
attack where a malicious user intentionally creates a fork
of their chain [7]. While providing a high level of consis-
tency, the transaction throughput of these ledgers is often
not high enough to facilitate record creation and modification
by millions of users. This motivates us to consider different
blockchain structures for portfolio storage.

DAG ledger: Another blockchain structure is the Directed
Acyclic Graph (DAG) ledger, where each block can be refer-
enced by multiple other blocks. This ledger structure, shown in
Figure 3b, is adopted by blockchain platforms like IOTA and
Dagcoin [8] [9]. IOTA is optimized for micro-payments within

Internet-of-Things, and Dagcoin advertises itself as data stor-
age for arbitrary data (e.g., documents or ownership records).
Since these ledgers allow for different consensus mechanisms,
transaction throughput is often superior compared to that of
linear ledgers. However, they usually do not have the same
consistency guarantees. While these ledger structures are more
suitable for data storage, we consider current implementations
unfit for developer portfolios. The reason is that they either
rely on a centralized coordinator (IOTA) or a fixed group
of witness nodes (Dagcoin). Instead, our goal is to devise a
portfolio infrastructure without any authority with leveraged
permission.

Pairwise Ledger: A third blockchain structure we con-
sider is the pairwise distributed ledger. The key property of
this ledger, given in Figure 3c, is that each user maintains
and grows their individual chain with transactions. Each
block holds exactly one transaction and optionally contains
a (hash) pointer to a transaction in the individual chain of
another user. Blockchain fabrics like R3 Corda, Nano, and
TrustChain, use pairwise ledgers as their underlying data
structure [10] [11] [12]. These platforms address the double-
spending attack either by a trusted notary (Corda), a weighted
voting system (Nano) or by guaranteed eventual consistency
(TrustChain). In general, they provide superior scalability
compared to linear ledgers as used by Bitcoin and Ethereum
but lack global consensus.

We strongly believe that the pairwise distributed ledger is a
suitable data structure to store portfolio records as transactions.
Compared to linear and DAG ledgers, all data of a portfolio
owner is local to their own individual ledger and maintained
by themselves. Pairwise distributed ledgers enable selective
queries of data stored on the chains of other members, without
the need for full data replication across the network. In
DevID, each individual ledger stores all data associated with a
single portfolio, in a tamper-proof manner, and without global
agreement.

E. Storing Large Data Assets

While pairwise distributed ledgers are suitable for storing
small portfolio records, they are not suitable for storing
arbitrary large data assets. Such data assets can include source
code, documentation, and reviews. To overcome this, we intro-
duce an off-chain distributed storage solution that offers data



Fig. 4: The user interface of DAppCoder, our application to crowdsource the development of decentralized applications.

immutability and scalability. Figure 2 shows the distributed
storage, which comprises the lowest layer in our architecture.

Suitable distributed storage solutions for our work are a
Distributed Hash Table (DHT) like Kademlia, a BitTorrent
swarm or the InterPlanetary File System (IPFS) [13] [14] [15].
These solutions enable users to store large data assets, without
involvement of a trusted third party. Large data is inserted in
the distributed storage back-end, and a reference to the data
(i.e., a content hash) is included in the on-chain transaction.

IV. DAPPCODER: CROWDSOURCING DEVELOPMENT OF
DECENTRALIZED APPLICATIONS

By extending the DevID portfolio architecture and record
types, we create a competition-based crowdsourcing platform
for the development of decentralized applications. Running
completely without servers, our platform named dAppCoder
matches clients and dApp developers. The architecture of
dAppCoder is presented in the upper layer of Figure 2 and
the user interface is shown in Figure 4. We now elaborate on
the main functionalities of dAppCoder.

A. Creating Projects

Clients that want their idea realized (e.g., the implemen-
tation of a specific smart contract) can create a new project
in dAppCoder. Creating a new project requires the client to
specify a project title, requirements, a submission deadline,
the number of testers needed for each submission, and a list
of skills needed to work on the project. When creating a new
project, a single portfolio record with all project information
is constructed, appended to the individual ledger, and dissem-
inated in the network. Since the project requirements might
be of arbitrary length, we store it in the distributed storage
back-end and embed a pointer to it in the portfolio record.
For each new project, the client generates a project keypair,
which consists of a public and private key. These keys are
used when releasing the submissions for a project, which is
discussed in Section IV-B.

To incentivize developers to work on a particular project,
each project has a fixed monetary reward which is disbursed

by the client to the developer with the best submission. Prior
to posting a new project, the client determines the height
of the reward and transfers it to a Trusted Notary Service
(shown in Figure 2). This compensation, put into escrow,
directly addresses an attack where clients flood the system with
invalid or irrelevant projects. The trusted notary can either be
a centralized authority or an (Ethereum) smart contract that
interacts with the dAppCoder application through oracles.

Each project goes through two phases during its lifetime:
a submission and a testing phase. During the submission
phase, developers can create submissions for a project until
the submission deadline (which is determined by the client).
The duration of the testing phase depends on the time it takes
for the project to accumulate the required number of testers.

B. Creating Submissions

Developers looking for work can browse through the list
of open projects, or filter them based on the skills they have
added to their DevID portfolio. When a developer has found
an interesting project, they work towards a submission. A
submission must consist of source code and documentation,
which are inserted in the distributed storage back-end. For each
submission, a new portfolio record is created with a pointer to
the project and submission files. Incoming submissions after
the submission deadline has passed, will not be considered for
testing.

To prevent a free-riding attack where a developer copies the
solution of another participant, the content of each submission
is encrypted with the (public) project key [16]. To ensure that
testers can decrypt submissions, the client sends the private
project key to them after the submission deadline has passed.

C. Testing Submissions

After the submission deadline passed, all submissions
should be tested by other developers. For simplicity, we as-
sume that the client selects appropriate testers for submissions,
based on their expertise (indicated by their DevID portfolio)
and the total number of submissions tested in the past. To
incentivize developers to test submissions, testing activities



will be prominently displayed on their DevID portfolio. The
testing phase consists of two phases, where tests are written
and verified. To avoid collusion between developers, we re-
quire that individuals who have created a submission, written
tests, and verified these tests, are not affiliated.

Writing tests: First, testers write tests to verify the correct-
ness of a submission. These tests can be used to expose critical
vulnerabilities or programming errors in business-critical code.
If a tester found such an error, they can mark the submission
for exclusion and should provide a test that highlights it.

Besides writing tests, each tester grades the submission
based on compliance to the specifications. The given score
can range from "very low" (-2), "low" (-1), "neutral" (0),
"sufficient" (1) or "high" (2).

Verifying tests: Second, developers inspect the tests, written
by testers in the previous phase. In particular, thoroughness
and completeness of the tests written by a specific tester will
be graded by giving a similar score as in the previous phase.

D. Paying Out Developers

When the testing phase of a project ends, the best submis-
sion is determined by having the highest average score rating.
The developer with the best submission is compensated for the
effort. Since all reviews are public, the trusted notary service
is able to transfer the reward to the eligible developer. This
reward is transferred to cryptocurrency wallets, which can be
added to dAppCoder.

V. IMPLEMENTATION AND DEPLOYMENT TRIAL

Next, we elaborate on the implementation of both the DevID
portfolio and the dAppCoder application. We also discuss our
deployment trial and present the results.

A. Our Implementation

We have implemented both DevID and dAppCoder in the
Python programming language. Our implementation consists
of all components shown in Figure 2, except for the trusted
notary service. The graphical user interface of dAppCoder is
implemented with the Qt5 library and communicates with the
back-end over a RESTful API. The open source implementa-
tions of both DevID and dAppCoder are available online.1

We build DevID, and by extension dAppCoder, on the
TrustChain ledger introduced by Otte et al [10]. We identified
two advantages of TrustChain over other pairwise distributed
ledgers like R3 Corda and Nano. First, TrustChain focuses
on fraud detection instead of prevention and as a result does
not require network-wide consensus. This makes TrustChain
a lightweight and simple data structure. Second, TrustChain is
already used as transaction fabric within a self-sovereign, de-
centralized identity system, described in the work of Stokkink
et al [17]. Availability of a self-sovereign identity system
aligns with our requirement for strong, long-lived identities
(see Section III-C). We use the InterPlanetary File System
(IPFS) to store large data assets like project specifications,
submissions and code reviews. Users can import statistics from

1https://github.com/tribler/dappcoder

0

30

60

90

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trial Participants

T
ra

n
s
a
c
ti
o
n
 C

o
u
n
t

Transaction

Import records

Add skill

Endorse skill

Create project

Review submission

Create submission

Fig. 5: Results from our deployment trial.

their GitHub profile using the challenge mechanism described
in Section III-B.

B. Deployment Trial

To assess the feasibility of dAppCoder and to get insight
into the efficiency of the TrustChain ledger, we conduct a
deployment trial. We present the trial setup and results.

Setup: For our trial, we recruited 15 participants among
local staff and students of our faculty. To bootstrap the appli-
cation, we initiated dAppCoder with five projects ourselves.
Two of these projects asked developers to resolve one or
more bugs in a piece of Python code. The other three projects
asked the developer to implement a small application. Since
only a fraction of our users is familiar with the development
of decentralized applications, we accepted submissions in
other programming languages during our trial, like Java. We
collected data and observed the growth of the distributed
ledger over a period of five working days. During this time,
developers were free to use the application as they see fit.

Results: Figure 5 shows the growth of the TrustChain
ledger when more participants join the trial. Each entry on
the horizontal axis represents the state of the ledger after a
participant was introduced, and the vertical axis shows the
transaction count for the six different types of transactions.
When more participants join, the distribution of transaction
types on the ledger changes slightly. We observe that the
growth of projects over time decreases, and users focus more
on creating submissions and reviews. Another observation is
that the number of skills added by each developer grows
rapidly, but the growth of endorsements stays behind.

At the end of our deployment trial, the average transaction
size in serialized form is 0.6 kB. The total size of all
transactions stored on the distributed ledger is 65.4 kB. Each
individual ledger stores on average 7.2 transactions, with an
average size of 4.1 kB. In comparison, when using a linear
ledger like Bitcoin, each user is required to store the entire
global ledger or parts of it. The time required to append
new transactions to the TrustChain ledger is in the range of
milliseconds and not of influence on the user experience. The



initial results of the trial look promising, and we are ready for
further evaluation of dAppCoder and DevID portfolios.

VI. RELATED WORK

We are the first to build a tamper-proof and unified devel-
oper portfolio, to the best of our knowledge. Already in 1995,
research has been conducted, that explores the advantages of
online electronic portfolios over traditional resumes, particu-
larly within an educational environment [18] [19]. The emer-
gence of the open source software paradigm enabled develop-
ers to use code contributions as proof of verifiable technical
expertise and to build an online reputation [20]. The work of
Cai et al. explores how this data can be used to construct a
theoretical reputation model, and what metrics would be best
suited for this [21]. Other work is focused on visualization
tools to highlight contributions of the individual developer on
platforms like GitHub or StackOverflow [22] [23] [24]. Their
research is primarily focused on the design and evaluation of
models to represent the technical skills, based on data from
open source projects. The focus of this work is on combining
records from different platforms and presenting them in a
unified portfolio.

The evolution of crowdsourcing and the benefits are well-
studied topics with an extensive literature corpus [3]. Top-
Coder Inc. is an example of a crowdsourcing platform where
clients can outsource software contributions to developers in a
competition-based environment [25]. In 2017, Li et al. intro-
duced CrowdBC, a decentralized blockchain-based framework
for crowdsourcing [26]. CrowdBC is a platform to crowd-
source generic micro-tasks and is not suitable to crowdsource
development of decentralized applications. Lu et al. devised
a privacy-preserving crowdsourcing mechanism on top of an
open blockchain [27]. Buccafurri et al. introduce TweetChain
and show how to build a crowdsourcing application which
stores all information on Twitter timelines [28]. TweetChain is
comparable with individual ledgers in TrustChain but depends
on a central authority for dissemination and storage of data
(Twitter). In comparison to most of the research performed
on blockchain-based crowdsourcing, this work focuses on a
specific use-case, namely crowdsourcing the development of
business-critical applications.

VII. CONCLUSION

We have presented DevID, a blockchain-based portfolio for
developers. DevID addresses the fragmentation and lock-in of
developer data across different platforms with a mechanism
to import data from third-party services. By building upon
a pairwise distributed ledger, DevID is capable of storing
tamper-proof records and does not depend on any trusted party.
Portfolio records are fully managed by developers themselves.

We have proven the potential of DevID by building a
crowdsourcing application for the development of decentral-
ized applications. Our application, dAppCoder, matches clients
and reputable developers. With a deployment trial, we have
demonstrated that dAppCoder is feasible.

Future work is focused on a large-scale deployment of
dAppCoder and better support for specific bug bounties. We
schedule to release in the first quarter of 2019. Using our
TLS auditing mechanism, we plan to expand DevID with ad-
ditional record importation from other platforms, in particular,
LinkedIn and StackOverflow. Finally, we aim to explore the
use of DevID within other domains besides crowdsourcing.

REFERENCES

[1] Nasdaq, “The blockchain developer shortage: Emerging trends
and perspectives,” URL https://www.nasdaq.com/article/the-blockchain-
developer-shortage-emerging-trends-and-perspectives-cm701294, 2016.

[2] J. Pouwelse, A. de Kok, J. Fleuren, P. Hoogendoorn, R. Vliegendhart,
and M. de Vos, “Laws for creating trust in the blockchain age,” European
Property Law Journal, vol. 6, no. 3, pp. 321–356, 2017.

[3] T. D. LaToza and A. van der Hoek, “Crowdsourcing in software engi-
neering: Models, motivations, and challenges,” IEEE software, vol. 33,
no. 1, pp. 74–80, 2016.

[4] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[5] “Tlsnotary - a mechanism for independently audited https sessions,” URL
https://tlsnotary.org/TLSNotary.pdf, 2014.

[6] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems. Springer, 2002, pp. 251–260.

[7] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in iNetSec. Springer, 2015, pp. 112–125.

[8] S. Popov, “The tangle, iota whitepaper,” 2018.
[9] S. D. Lerner, “Dagcoin: a cryptocurrency without blocks,” 2015.

[10] P. Otte, M. de Vos, and J. Pouwelse, “Trustchain: A sybil-resistant
scalable blockchain,” Future Generation Computer Systems, 2017.

[11] C. LeMahieu, “Nano: A feeless distributed cryptocurrency network,”
URL https://nano.org/en/whitepaper, 2017.

[12] R. G. Brown, “Introducing r3 corda: A distributed ledger designed for
finanial services, 2016,” 2017.

[13] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[14] B. Cohen, “The bittorrent protocol specification,” 2008.
[15] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv

preprint arXiv:1407.3561, 2014.
[16] X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, “Keep your promise:

Mechanism design against free-riding and false-reporting in crowdsourc-
ing,” IEEE Internet of Things Journal, vol. 2, no. 6, pp. 562–572, 2015.

[17] Q. Stokkink and J. Pouwelse, Deployment of a Blockchain-Based Self-
Sovereign Identity, 1st ed. United States: IEEE, 8 2018, pp. 1336–1342.

[18] D. Riggsby et al., “Electronic portfolio: Assessment, resume, or mar-
keting tool?.” 1995.

[19] H. Barrett, “Electronic teaching portfolios.” 1999.
[20] D. Riehle, “How open source is changing the software developer’s

career.” IEEE Computer, vol. 48, no. 5, pp. 51–57, 2015.
[21] Y. Cai and D. Zhu, “Reputation in an open source software community:

Antecedents and impacts,” Decision Support Systems, vol. 91, pp. 103–
112, 2016.

[22] T. Jaruchotrattanasakul et al., “Open source resume (osr): A visualization
tool for presenting oss biographies of developers,” in IWESEP. IEEE,
2016, pp. 57–62.

[23] R. Saxena and N. Pedanekar, “I know what you coded last summer:
Mining candidate expertise from github repositories,” in CSCW. ACM,
2017, pp. 299–302.

[24] X. Chen and A. Sarma, “Supporting comparison of developer profiles
across online communities,” 2016.

[25] K. Lakhani, D. Garvin, and E. Lonstein, “Topcoder (a): Developing
software through crowdsourcing,” 2010.

[26] M. Li et al., “Crowdbc: A blockchain-based decentralized framework
for crowdsourcing,” IACR Archive, vol. 444, p. 2017, 2017.

[27] Y. Lu et al., “Zebralancer: Private and anonymous crowdsourcing system
atop open blockchain,” arXiv preprint arXiv:1803.01256, 2018.

[28] F. Buccafurri et al., “Tweetchain: an alternative to blockchain for crowd-
based applications,” in ICWE. Springer, 2017, pp. 386–393.


