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Abstract

Two players compete in a contest where the first player to win a specified number of
points wins the game, and the first player to win a specified number of games wins the
set. This paper proves two generalized inequalities, each independent of the probability
of winning a point, concerning the better player’s chances of winning. Counterexamples
are given for two additional conjectured inequalities. A sequence of integers which plays
a significant role in this paper can be found in A033820 of the On-line Encyclopedia
of Integer Sequences.

1 Introduction

A and B play a set of games. The winner of each game is the first player to win k points,
and the winner of the set is the first player to win n games. The probabilities that A and B
win each point are p and ¢, respectively, with p + ¢ = 1. Let P(n, k,p) and Q(n, k, p) be the
probabilities that A wins and loses the set, respectively . Let P(n,p) = P(n,1,p) = P(1,n,p)
and Q(n,p) = Q(n,1,p) = Q(1,n,p) be the probabilities that A wins and loses an n point
game, respectively. (Note that P(n,k,p) = P(n, P(k,p)) and Q(n,k,p) = Q(n, P(k,p)).
This paper proves the following two theorems:

Theorem 1. Ifn >2, k> 2 and .5 <p <1, then P(n,k,p) > P(nk,p).

Theorem 2. I[f2 <k <n and .5 < p <1, then P(n,k,p) > P(k,n,p).
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2 Proofs

k-1 )
21 ,
Lemma 1. P(k,p) = % + %(p —q) < .)(PC])Z-

Proof. We show first that

2 k

The only (k4 1)-point games in which the winner might be different than the winner of
the k-point game are those which are tied at k points each.

The increase in A’s chance of winning a k + 1-point game over his chance of winning a
k-point game is the excess of (a) the probability that there is a k-point tie, B having won
the k-point game, and A wins the next point, over (b) the probability that there is a k-point
tie, A having won the k-point game, and B wins the next point. Note that in half of those
tied games, B won the k-point game, and in the other half, A won the k-point game. Since
(215) (pq)¥ is the probability of a k-point tie, (1) holds.

Lemma 1 is true since it is true for £ = 1, and its right hand side simply sums the
differences in (1).

P(k+17p)—P(k,p)=l(p—Q)(%)(pQ)k, k> 1. (1)

O]

Lemma 2. Let ars = + (2 ) () "= Then P(k, p)Q(k, p) = ( )k% (pg)’
e a 4. € ak,z —2 k . k’—|— en D »P) = (Pq o ak,z rq),
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(Note that a, is equal to agyi—1x-1 in A033820 of the On-line Encyclopedia of Integer
Sequences. )

Proof. We see from Lemma 1, noting that —(p — ¢)? = 4pq — 1, that

P(k,p)Q(k,p) = i + i(ﬁlpq —1) (._ (QZ) (pq)") : (2)

Since

(fj () <pq>i>2 (= - g@(pq)ﬂ

we see that if 1 <t <k — 1, the coefficient of (pg)" in (2) equals } -4-4"! — 1. 4" =0, and
equals 0 for t = 0 as well.

Hence, we can define ay; such that

k—1
P(k,p)Q(k,p) = (p0)* ) awi(pq)". (3)

=0

Thus, ay;— is the coefficient of (pg)" in (2).



We have, then
L2\ (2t —25 -2\ 1 2 /25 /2t — 25
A t—k = . F_ i _Z Z . PR
jmt—k N J jet—h1 N J
2t—2k> (21<;—2>+ § (2]') (<2t—2j—2> 1<2t—2j>)
1) =\ t—j—1 A\ t—j
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j=t—k+1
g2t =25 —1)(*) (32
Lt g(t, ) = ) ()
(t =)t
We show that
27\ (2t —2j —2\ 1 , .
<j>( f—j—1 )tfj:g(t71+1)—g(t73) (5)

by dividing both sides of the equation by ( )(21'? ]2] 12) to obtain

1 142 j@-2-1) 1
t—j ¢ (t=jt  t=J
Let S(t,k) equal the sum in (4). By summing both sides of (5) from j=¢—k+1 to
k — 1, we see that S(t, k) is equal to g(t, k) — g(t,t — k + 1), and we have

Rt =2k 1)) (557 -k Dk -3 (T ()

(t — k)t a (k—1)t

S(t k)=
We see from (4) that

2t — 2k\ [(2k — 2 1
Qg t—k = ( f g )(k—1)+§s(t’k)'

Dividing both sides by (Qkk) (Qi:ik), we have

apex  k +1 E_k(Zt—zk—i—l) _k
(2k;) (2t—2k) 4k —2 2\ 92t 2(2k — 1)t 2t

k t—k
L2k 20\ k
Wi =9\ e )\ Jk+i

Replacing t by k + i gives




Lemma 3.

1
P'(k,p) = =k

2k
5 < )(pq)k_l, where the derivative is taken with respect to p.

k

Proof. The probability that A wins a k-point game on the (k +4)" point played is

p’“(k_;Jri)(l—p)i-

Hence,
k—1 k—1 k—1 . .
kE—1+1 ; ; v\ (k—1+1 :
SOUES M G TV WS (Z()( | ))w
i=0 t j=0 iy g
We have

Hence,
k—1
1. [2k (k—1 1 .
P(k,p) ==k E —1)/ S

Taking the derivative with respect to p, we have

P'(k,p) = %k(Q:) i(—l)j (k ; 1)p’“+j‘1 = %k<2:> (pg)* .

J=0

Lemma 4. The function
_ P,k p)

T = —""
)= Bk p)
1s a decreasing function of p, for .5 < p < 1.



Proof.

)~ Pk P Plkp)
wk )= Bk, p) — P'(nk,p)

5n.(3) (P(k,0)QUk, )" 5 () (p)*
sk (%) (pg)m—1

— 1 (2:) (2:) (P(k:,p)Q(k’p»n—l
. (*"") (pq)*n—1)

Substituting from Lemma 2, we have

(fz)nggsf) (Z ak,i(PC])i) )

, SH<p<l (6)

DO | —

Tn,k<p) =

12K\ (2¢\ Kk
where o =31 )i )7t

Since ay; > 0, and pq is a decreasing function of p, it follows that r, (p) is a decreasing

function of p.
O

Lemma 5. If2 <t <m, then

Gn) m

Proof. For t = 2, the left hand side of Lemma 5 reduces to

8(m—1)* 2
(2m —1)(2m —3) 2+ (2m — 1)(2m — 3)

which is clearly greater than 2 when m > 2. We show by induction that Lemma 5 holds
for all t. Suppose it is true for some ¢, and consider the left hand side of Lemma 5 with ¢

replaced by t + 1. We have,

g1 (QQ:?:Z) 2m —t—1 4| 4 (Zz:?t> 2m —t (m —1t)? o —t—1
*™) m C™y  m ) Cm—2t—1)(2m—2t) 2m—t

Am—t)2m —t—1)
(2m —2t —1)(2m —t)




The right hand side of the inequality is greater than 2 when m > t since

dm—t)2m—t—1) 2t
(2m — 2t —1)(2m — t) =2t (2m — 2t —1)(2m —t)’

4t
When m = ¢, and ¢ > 2, it is shown easily by induction that —5~ > 2.

(V)

Lemma 6. Ifn > 2 and k > 2, then r, ;(.5) > 1.

Proof. Noting that P(k,.5) = Q(k,.5) = .5, we have from (6),

1 2n\ (2k
A

nk
Lemma 6 is true for k = 2, since we have

2n
Tn,2(~5> =3 4“71 (n)

an
(Qn)
and we apply Lemma 5 with m = 2n and t = n.
We show by induction that Lemma 6 holds for all k. Suppose it is true for some k, and
consider Lemma 6 with % replaced by k + 1.

> 1,

1 27? 2k+2
Tnk+1(.D) = 5((22]5%711))4“%1)
nk+n

_ oyt (} ) ) 4(k—1)(n—1)> 2k +2)2k+1) (%))

2 () GRSV NG

2nk
> gl Bt

> 1.

The final inequality is obtained by applying Lemma 5 with m = nk +n and t = n.

Theorem 1. Ifn>2, k> 2 and .5 <p <1, then P(n,k,p) > P(nk,p).
Proof. We have P(n,k,.5) = P(nk,.5) = .5, and P(n,k,1) = P(nk,1) = 1.

If there existed a point py, .5 < p; < 1, such that P(n, k,p;) = P(nk,p1), then r, x(p) =
P'(n,k,p)
P'(nk,p)
on the interval p; < p < 1 (since 7, (p) cannot be greater than 1 (or less than 1) over the

would need to be 1 at least twice, once on the interval .5 < p < p; and once
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full extent of either interval). But r, x(p) cannot be 1 at least twice because we know from
Lemma 4 that r,(p) is a decreasing function of p. Hence, either P(n,k,p) > P(nk,p),
or P(nk,p) > P(n,k,p), on the interval .5 < p < 1. Since we know from Lemma 6 that

Tnk(.5) > 1, we must have P(n, k,p) > P(nk,p) over that same range.
[

Lemma 7. Let

n—1

fln,z) = Z i7"

i=0
If the function

h‘<n7 ]{Z,Q?) = (TL - 1)f(n7 x)f/(kv LC) - (k - 1)f(k:,:1:)f’(n,:1:)
has at most one positive zero, then the functions P(n,k,p) and P(k,n,p) cannot intersect
on the interval .5 < p < 1.

Proof. Let

P'(n,k,p)
R k(p) = W

Looking at the proof of Lemma 4 we see that

() (P(k, )Qk,p))" " |
(Qk) (P(n,p)@(njp))k_l %n(zg) (pq)”—l

Substituting from Lemma 2, and simplifying, we have

f(k,pg)" !
fn,pg)k=t’

Following the simple argument made in the the proof of Theorem 1, if P(n,k,p) and
P(k,n,p) intersected on .5 < p < 1, R, x(p) would equal 1 at least twice on that interval.
Furthermore, since f(n,.25) = 4" 1 and f(k,.25) = 4571 (see Lemma 2 with p = .5 and
pq = .25), R, 1(.25) = 1. Hence, there would be at least three different values of pg for which
Ry x(p) = 1.

Therefore, the logarithm of R, ;(p) would equal 0 at least three times, and the derivative
of that logarithm with respect to pq would equal 0 at least twice. The derivative of the
logarithm of R, x(p) with respect to pq is equal to

h(n, k,pq)
f(n,pq) f(k,pq)’

—_

1

=n
Rn,k<p) = 2

sk

proving the Lemma.

n
Lemma 8. Let {a;}} be a sequence such that a; <0, Zai < 0 and such that either
i=1



Case 1: a; <0 if 2<i<mn, or
Case 2: there exists a t < mn such that a; <0 if 2<i<t, anda; >0 if i >t.
holds.

Let {r;}1 be a sequence such that for all i, r; > 0 and ri1 <1;.

Then i ria; < 0.

i=1

Proof. The Lemma is obvious for Case 1.

n n
For Case 2, g ria; — g ria; < 0, since (1 — r¢)aq is negative, and if i > 1, r; — r; is
i=1 i=1
positive when a; is negative or zero, and zero or negative when a; is positive. Hence,

n

Znai < zn:rtai <0.

i=1 =1

O
Lemma 9. Fach of the ratios Int  gpg Sotit decreases as t decreases.
Apt—1 Qp t—1
Proof.
g Gng1 2(14+n*+2n(t = 1) +1(3t = 5))
Uni-1  Qni2 tt—Dn+t—1Dn+t)
which is positive for t > 2 and n > 3.
i1t Gnyig—1 _ A@2n+1) (n(n —1) 4+ 2nt + (5t — 7))
i1 Angi2 (t—Ditn(n+t)(n+1+1) ’
which is positive for t > 2 and n > 3.
O

We note that, as defined, the quantity R, (1) is indeterminate. We take R, (1) to mean
lirr% R, k(p).
p—)

Lemma 10. If1 < k < n then R, (1) < 1.

Proof. Noting that pg = 0 when p =1,

Ru1i(1) n+1\""1 /2
Let w,y = —tti) - , and
ik ="p 1) \dnxz) 2\k) ™
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n 1 k+1
Let Ve = Unk+1 = T + / +

Upp  An+2 /) 4k +2
It is assumed in the following that 1 < k& < n.

r+1
4r+4-2

Since v, i < 1, Uy is a decreasing function of k, and since u,, 1 = 1, Uy < 1;

Unk < 1, since n > k, and the function is a decreasing function of r ;

Since u,, < 1, R, x(1) is a decreasing function of n, and since Ry x(1) =1, R, x(1) < 1.
O]

Theorem 2. If2 <k <nand .5 <p<1, then P(n,k,p) > P(k,n,p).

Proof. The h(n, k,x) of Lemma 7 can be written as

n+k—3

n—1 k—1 k—1 n—1
h(n,k,x) = (n—1) E A i E iagr — (k—1) E ay ;' E i = E CrkrX"
=0 =0 =0 i=0 r=0

We show that h(n,k,z) has at most one positive zero by showing that the sequence
{Cnhr}"2573 has exactly one change in sign, and applying Descartes’ Rule of Signs.

We do this by considering four cases,

Case 1: 0 <r <k — 2. We show that ¢, > 0.

Case 2: k —1 <r <n—2. We show that if ¢, ., <0, then ¢, ;,+1 <0.
Case 3: n —1 <r <n+k —4. We show that ¢, ;, <0.

Case 4: r =n + k — 3. We show that ¢, ., = 0.

Case 1: 0<r<k-—2.

r+1
Cogr = Y _((n=1)j = (k= 1)(r + 1 = j)) arjtnr1-;.
§=0
We see that ¢, i, is an increasing function of n, since the bracketed term in ¢,y is an
increasing funtion of n, and

Qntre _q 3n? 4+ n + 2t + 3nt
Ut n(n+t+1)

)

Since cg i, =0, i, > 0.

Case 2: k—-1<r<n-—2.

k—1

Cugr = (0 =1)j = (k= D)(r +1 =) anjanrs1-
j=0

Let
b(n,k,r,j) = ((n—1)j — (k= 1)(r +2 —j)) @k janr11-



so that

We see that b(n, k,r,0) < 0, the bracketed term in b(n, k,r, j) increases as j increases,
k-1

and if ¢, < 0, then Zb(n,k,r,j) < O(since the bracketed term in b(n,k,r,j) is less
§=0
than the bracketed term in ¢, ,). Furthermore, we know from Lemma 9 that the sequence

Qpr42—5 . . ..
{7] 1S decreasmg as j 1mncreases.
Ap r41—j

Hence the conditions set forth in Lemma 8 are met, and we have ¢, ;,4+1 < 0.
Case 3: n—1<r<n+k-—4.

Letr=n—-1+t 0<t<k-3.

k-1
Cnkn—1+4t = Z (n—=1)j—(k=1n+t—7j)) arjannti;.
j=t+1

Let b(n,k,t,7) = (nj — (k—1)(n+ 14+t —j)) @ jGnnti—j, SO that

Ap+t1n+1+t— j
Cn41,kn+t = § b ’fl k t
j=t+1 Apntt—j

We see that b(n, k. t,t + 1) = (n(t — (k—2))) agjann—1 < 0, the bracketed term in
k-1

b(n,k,t,7) increases as j increases, and if ¢, n-14¢ < 0, then Z b(n,k,t,j) <0 (since
j=t+1

the bracketed term in b(n, k,t,j) is less than or equal to the bracketed term in ¢, jn—14¢)-

a i
Furthermore, from Lemma 9 we know that the sequence {m} is decreasing as j

Ap n4t—j
1mcreases.

Hence the conditions set forth in Lemma 8 are met, and we have ¢,41 5,4+ < 0. Since
¢k kk—1+4t = 0, we have for all n >k, ¢;, pn—14¢ < 0.

Case 4: r=n+k — 3.
Cngkr=((n=1)(k—=1)—=(k—=1)(n—1)) apn-1ak-1 = 0.

We have proved that h(n,k,x) has at most one positive zero. Hence we know from
Lemma 7 that on the interval .5 < p < 1, P(n,k,p) and P(k,n,p)

10



P(n,k
cannot intersect. From Lemma 10, we know that lim (n, k. p)

——————= < 1. Hence, we must have
r—1 P'(k,n,p)

P(n,k,p) > P(k,n,p) on .5b <p < 1.
[

3 Counterexamples for two conjectured inequalities

Define Maxpoints(m,n) := (2m —1)(2n — 1), the maximum number of points possible where
the winner is the first player to win m n-point games.

Initial examination of numerical values of P(n,k,p) for a wide range of values of n, k
and p suggested that the following conjectured inequalities might be universally true and
provable (.5 <p < 1):

Conjecture 1. If Maxpoints(a, b) > Maxpoints(c, d), then P(a,b,p) > P(c,d,p).
Conjecture 2. If ab = cd and min(a,b) > min(c, d), then P(a,b) > P(c,d).
The following computations show that neither of these conjectures is universally true:

Maxpoints(
Maxpoints(

_ W
~—
Il

min (4,3) =3 P

( 4,3,.99) = .999999999999999999670 - - -
min (6,2) =2 P

6,2,.99) = .999999999999999999676 - - -

—~

4 Remark

The integers ay;, which play a significant role in this paper, are the same as the integers
apti—1k—1 in A033820 of the On-line Encyclopedia of Integer Sequences. They appear in
quite different contexts in [[[, f.
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(Concerned with sequence [A033820].)
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