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Abstract

Two players compete in a contest where the first player to win a specified number of

points wins the game, and the first player to win a specified number of games wins the

set. This paper proves two generalized inequalities, each independent of the probability

of winning a point, concerning the better player’s chances of winning. Counterexamples

are given for two additional conjectured inequalities. A sequence of integers which plays

a significant role in this paper can be found in A033820 of the On-line Encyclopedia

of Integer Sequences.

1 Introduction

A and B play a set of games. The winner of each game is the first player to win k points,
and the winner of the set is the first player to win n games. The probabilities that A and B

win each point are p and q, respectively, with p+ q = 1. Let P (n, k, p) and Q(n, k, p) be the
probabilities that A wins and loses the set, respectively . Let P (n, p) = P (n, 1, p) = P (1, n, p)
and Q(n, p) = Q(n, 1, p) = Q(1, n, p) be the probabilities that A wins and loses an n point
game, respectively. (Note that P (n, k, p) = P (n, P (k, p)) and Q(n, k, p) = Q(n, P (k, p)).
This paper proves the following two theorems:

Theorem 1. If n ≥ 2, k ≥ 2, and .5 < p < 1, then P (n, k, p) > P (nk, p).

Theorem 2. If 2 ≤ k < n and .5 < p < 1, then P (n, k, p) > P (k, n, p).
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2 Proofs

Lemma 1. P (k, p) = 1
2
+ 1

2
(p− q)

k−1
∑

i=0

(

2i

i

)

(pq)i.

Proof. We show first that

P (k + 1, p)− P (k, p) =
1

2
(p− q)

(

2k

k

)

(pq)k, k ≥ 1. (1)

The only (k + 1)-point games in which the winner might be different than the winner of
the k-point game are those which are tied at k points each.
The increase in A’s chance of winning a k + 1-point game over his chance of winning a

k-point game is the excess of (a) the probability that there is a k-point tie, B having won
the k-point game, and A wins the next point, over (b) the probability that there is a k-point
tie, A having won the k-point game, and B wins the next point. Note that in half of those
tied games, B won the k-point game, and in the other half, A won the k-point game. Since
(

2k

k

)

(pq)k is the probability of a k-point tie, (1) holds.
Lemma 1 is true since it is true for k = 1, and its right hand side simply sums the

differences in (1).

Lemma 2. Let ak,i :=
1

2

(

2k

k

)(

2i

i

)

k

k + i
. Then P (k, p)Q(k, p) = (pq)k

k−1
∑

i=0

ak,i(pq)
i,

(Note that ak,i is equal to ak+i−1,k−1 in A033820 of the On-line Encyclopedia of Integer
Sequences.)

Proof. We see from Lemma 1, noting that −(p− q)2 = 4pq − 1, that

P (k, p)Q(k, p) =
1

4
+
1

4
(4pq − 1)

(

k−1
∑

i=0

(

2i

i

)

(pq)i

)2

. (2)

Since
(

∞
∑

i=0

(

2i

i

)

(pq)i

)2

=

(

1√
1− 4pq

)2

=
∞
∑

i=0

4i(pq)i,

we see that if 1 ≤ t ≤ k − 1, the coefficient of (pq)t in (2) equals 1
4
· 4 · 4t−1 − 1

4
· 4t = 0, and

equals 0 for t = 0 as well.

Hence, we can define ak,i such that

P (k, p)Q(k, p) = (pq)k
k−1
∑

i=0

ak,i(pq)
i. (3)

Thus, ak,t−k is the coefficient of (pq)
t in (2).
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We have, then

ak,t−k =
k−1
∑

j=t−k

(

2j

j

)(

2t− 2j − 2
t− j − 1

)

− 1
4

k−1
∑

j=t−k+1

(

2j

j

)(

2t− 2j
t− j

)

=

(

2t− 2k
t− k

)(

2k − 2
k − 1

)

+
k−1
∑

j=t−k+1

(

2j

j

)((

2t− 2j − 2
t− j − 1

)

− 1
4

(

2t− 2j
t− j

))

=

(

2t− 2k
t− k

)(

2k − 2
k − 1

)

+
1

2

k−1
∑

j=t−k+1

(

2j

j

)(

2t− 2j − 2
t− j − 1

)

1

t− j
. (4)

Let g(t, j) =
j(2t− 2j − 1)

(

2j

j

)(

2t−2j−2
t−j−1

)

(t− j)t
.

We show that
(

2j

j

)(

2t− 2j − 2
t− j − 1

)

1

t− j
= g(t, j + 1)− g(t, j) (5)

by dividing both sides of the equation by
(

2j

j

)(

2t−2j−2
t−j−1

)

to obtain

1

t− j
=
1 + 2j

t
− j(2t− 2j − 1)

(t− j)t
=

1

t− j
.

Let S(t, k) equal the sum in (4). By summing both sides of (5) from j = t− k + 1 to
k − 1, we see that S(t, k) is equal to g(t, k)− g(t, t− k + 1), and we have

S(t, k) =
k(2t− 2k − 1)

(

2k

k

)(

2t−2k−2
t−k−1

)

(t− k)t
−
(t− k + 1)(2k − 3)

(

2t−2k+2
t−k+1

)(

2k−4
k−2

)

(k − 1)t .

We see from (4) that

ak,t−k =

(

2t− 2k
t− k

)(

2k − 2
k − 1

)

+
1

2
S(t, k).

Dividing both sides by
(

2k

k

)(

2t−2k

t−k

)

, we have

ak,t−k
(

2k

k

)(

2t−2k

t−k

) =
k

4k − 2 +
1

2

(

k

2t
− k(2t− 2k + 1)

2(2k − 1)t

)

=
k

2t
.

Replacing t by k + i gives

ak,i =
1

2

(

2k

k

)(

2i

i

)

k

k + i
.
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Lemma 3.

P ′(k, p) =
1

2
k

(

2k

k

)

(pq)k−1,where the derivative is taken with respect to p.

Proof. The probability that A wins a k-point game on the (k + i)th point played is

pk

(

k − 1 + i

i

)

(1− p)i.

Hence,

P (k, p) = pk

k−1
∑

i=0

(

k − 1 + i

i

)

(1− p)i = pk

k−1
∑

j=0

(−1)j
(

k−1
∑

i=j

(

i

j

)(

k − 1 + i

i

)

)

pj.

We have

k−1
∑

i=j

(

i

j

)(

k − 1 + i

i

)

=
k−1
∑

i=j

(

k − 1 + i

i− j

)(

k − 1 + j

j

)

=

(

k − 1 + j

j

)(

2k − 1
k + j

)

=
k

k + j

(

k + j

j

)(

2k − 1
k + j

)

=
1

2

(

2k

k

)(

k − 1
j

)

k

k + j
.

Hence,

P (k, p) =
1

2
k

(

2k

k

) k−1
∑

j=0

(−1)j
(

k − 1
j

)

1

k + j
pk+j.

Taking the derivative with respect to p, we have

P ′(k, p) =
1

2
k

(

2k

k

) k−1
∑

j=0

(−1)j
(

k − 1
j

)

pk+j−1 =
1

2
k

(

2k

k

)

(pq)k−1.

Lemma 4. The function

rn,k(p) =
P ′(n, k, p)

P ′(nk, p)

is a decreasing function of p, for .5 ≤ p < 1.
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Proof.

rn,k(p) =
P ′(n, k, p)

P ′(nk, p)
=

P ′(n, P (k, p))

P ′(nk, p)

=
1
2
n
(

2n

n

)

(P (k, p)Q(k, p))n−1 1
2
k
(

2k

k

)

(pq)k−1

1
2
nk
(

2nk

nk

)

(pq)nk−1

=
1

2

(

2n

n

)(

2k

k

)

(P (k, p)Q(k, p))n−1

(

2nk

nk

)

(pq)k(n−1)
, .5 ≤ p < 1. (6)

Substituting from Lemma 2, we have

rn,k(p) =
1

2

(

2n

n

)(

2k

k

)

(

2nk

nk

)

(

k−1
∑

i=0

ak,i(pq)
i

)n−1

,

where ak,i =
1

2

(

2k

k

)(

2i

i

)

k

k + i
.

Since ak,i > 0, and pq is a decreasing function of p, it follows that rn,k(p) is a decreasing
function of p.

Lemma 5. If 2 ≤ t ≤ m, then

4t

(

2m−2t

m−t

)

(

2m

m

)

2m− t

m
> 2 .

Proof. For t = 2, the left hand side of Lemma 5 reduces to

8(m− 1)2
(2m− 1)(2m− 3) = 2 +

2

(2m− 1)(2m− 3)

which is clearly greater than 2 when m ≥ 2. We show by induction that Lemma 5 holds
for all t. Suppose it is true for some t, and consider the left hand side of Lemma 5 with t

replaced by t+ 1. We have,

4t+1

(

2m−2t−2
m−t−1

)

(

2m

m

)

2m− t− 1
m

= 4

(

4t

(

2m−2t

m−t

)

(

2m

m

)

2m− t

m

)

(m− t)2

(2m− 2t− 1)(2m− 2t)
2m− t− 1
2m− t

>
4(m− t)(2m− t− 1)
(2m− 2t− 1)(2m− t)

.
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The right hand side of the inequality is greater than 2 when m > t since

4(m− t)(2m− t− 1)
(2m− 2t− 1)(2m− t)

= 2 +
2t

(2m− 2t− 1)(2m− t)
.

When m = t, and t ≥ 2, it is shown easily by induction that 4
t

(

2t

t

) > 2.

Lemma 6. If n ≥ 2 and k ≥ 2, then rn,k(.5) > 1.

Proof. Noting that P (k, .5) = Q(k, .5) = .5, we have from (6),

rn,k(.5) =
1

2

(

2n

n

)(

2k

k

)

(

2nk

nk

) 4(k−1)(n−1).

Lemma 6 is true for k = 2, since we have

rn,2(.5) = 3 4
n−1

(

2n

n

)

(

4n

2n

) > 1,

and we apply Lemma 5 with m = 2n and t = n.
We show by induction that Lemma 6 holds for all k. Suppose it is true for some k, and

consider Lemma 6 with k replaced by k + 1.

rn,k+1(.5) =
1

2

(

2n

n

)(

2k+2
k+1

)

(

2nk+2n

nk+n

) 4k(n−1)

= 4n−1

(

1

2

(

2n

n

)(

2k

k

)

(

2nk

nk

) 4(k−1)(n−1)

)

(2k + 2)(2k + 1)

(k + 1)2

(

2nk

nk

)

(

2nk+2n

nk+n

)

>
1

2
4n

(

2nk

nk

)

(

2nk+2n

nk+n

)

2k + 1

k + 1
> 1.

The final inequality is obtained by applying Lemma 5 with m = nk + n and t = n.

Theorem 1. If n ≥ 2, k ≥ 2, and .5 < p < 1, then P (n, k, p) > P (nk, p).

Proof. We have P (n, k, .5) = P (nk, .5) = .5, and P (n, k, 1) = P (nk, 1) = 1.

If there existed a point p1, .5 < p1 < 1, such that P (n, k, p1) = P (nk, p1), then rn,k(p) =
P ′(n, k, p)

P ′(nk, p)
would need to be 1 at least twice, once on the interval .5 < p < p1 and once

on the interval p1 < p < 1 (since rn,k(p) cannot be greater than 1 (or less than 1) over the
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full extent of either interval). But rn,k(p) cannot be 1 at least twice because we know from
Lemma 4 that rn,k(p) is a decreasing function of p. Hence, either P (n, k, p) > P (nk, p),
or P (nk, p) > P (n, k, p), on the interval .5 < p < 1. Since we know from Lemma 6 that
rn,k(.5) > 1, we must have P (n, k, p) > P (nk, p) over that same range.

Lemma 7. Let

f(n, x) =
n−1
∑

i=0

an,ix
i.

If the function

h(n, k, x) = (n− 1)f(n, x)f ′(k, x)− (k − 1)f(k, x)f ′(n, x)

has at most one positive zero, then the functions P (n, k, p) and P (k, n, p) cannot intersect
on the interval .5 < p < 1.

Proof. Let

Rn,k(p) =
P ′(n, k, p)

P ′(k, n, p)
.

Looking at the proof of Lemma 4 we see that

Rn,k(p) =
1
2
n
(

2n

n

)

(P (k, p)Q(k, p))n−1 1
2
k
(

2k

k

)

(pq)k−1

1
2
k
(

2k

k

)

(P (n, p)Q(n, p))k−1 1
2
n
(

2n

n

)

(pq)n−1
.

Substituting from Lemma 2, and simplifying, we have

Rn,k(p) =
f(k, pq)n−1

f(n, pq)k−1
, .5 ≤ p < 1.

Following the simple argument made in the the proof of Theorem 1, if P (n, k, p) and
P (k, n, p) intersected on .5 < p < 1, Rn,k(p) would equal 1 at least twice on that interval.
Furthermore, since f(n, .25) = 4n−1 and f(k, .25) = 4k−1 (see Lemma 2 with p = .5 and
pq = .25), Rn,k(.25) = 1. Hence, there would be at least three different values of pq for which
Rn,k(p) = 1.
Therefore, the logarithm of Rn,k(p) would equal 0 at least three times, and the derivative

of that logarithm with respect to pq would equal 0 at least twice. The derivative of the
logarithm of Rn,k(p) with respect to pq is equal to

h(n, k, pq)

f(n, pq)f(k, pq)
,

proving the Lemma.

Lemma 8. Let {ai}n
1 be a sequence such that a1 < 0,

n
∑

i=1

ai ≤ 0 and such that either
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Case 1: ai ≤ 0 if 2 ≤ i ≤ n, or

Case 2: there exists a t ≤ n such that ai ≤ 0 if 2 ≤ i < t, and ai > 0 if i ≥ t.

holds.

Let {ri}n
1 be a sequence such that for all i, ri > 0 and ri+1 < ri.

Then

n
∑

i=1

riai < 0.

Proof. The Lemma is obvious for Case 1.

For Case 2,
n
∑

i=1

riai −
n
∑

i=1

rtai < 0, since (r1 − rt)a1 is negative, and if i > 1, ri − rt is

positive when ai is negative or zero, and zero or negative when ai is positive. Hence,

n
∑

i=1

riai <

n
∑

i=1

rtai ≤ 0.

Lemma 9. Each of the ratios
an,t

an,t−1

and
an+1,t

an,t−1

decreases as t decreases.

Proof.
an,t

an,t−1

− an,t−1

an,t−2

=
2 (1 + n2 + 2n(t− 1) + t(3t− 5))

t(t− 1)(n+ t− 1)(n+ t)
,

which is positive for t ≥ 2 and n ≥ 3.

an+1,t

an,t−1

− an+1,t−1

an,t−2

=
4(2n+ 1) (n(n− 1) + 2nt+ t(5t− 7))

(t− 1)tn(n+ t)(n+ 1 + t)
,

which is positive for t ≥ 2 and n ≥ 3.

We note that, as defined, the quantity Rn,k(1) is indeterminate. We take Rn,k(1) to mean
lim
p→1

Rn,k(p).

Lemma 10. If 1 < k < n then Rn,k(1) < 1.

Proof. Noting that pq = 0 when p = 1,

Rn,k(1) =
f(k, 0)n−1

f(n, 0)k−1
=

an−1
k,0

ak−1
n,0

=

(

1
2

(

2k

k

))n−1

(

1
2

(

2n

n

))k−1
,

Let un,k =
Rn+1,k(1)

Rn,k(1)
=

(

n+ 1

4n+ 2

)k−1
1

2

(

2k

k

)

, and
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Let vn,k =
un,k+1

un,k

=
n+ 1

4n+ 2

/

k + 1

4k + 2

It is assumed in the following that 1 < k < n.

vn,k < 1, since n > k, and the function r+1
4r+2

is a decreasing function of r ;

Since vn,k < 1, un,k is a decreasing function of k, and since un,1 = 1, un,k < 1;

Since un,k < 1 , Rn,k(1) is a decreasing function of n, and since Rk,k(1) = 1, Rn,k(1) < 1.

Theorem 2. If 2 ≤ k ≤ n and .5 < p < 1, then P (n, k, p) > P (k, n, p).

Proof. The h(n, k, x) of Lemma 7 can be written as

h(n, k, x) = (n− 1)
n−1
∑

i=0

an,ix
i

k−1
∑

i=0

iak,ix
i−1 − (k − 1)

k−1
∑

i=0

ak,ix
i

n−1
∑

i=0

ian,ix
i−1 =

n+k−3
∑

r=0

cn,k,rx
r.

We show that h(n, k, x) has at most one positive zero by showing that the sequence
{cn,k,r}n+k−3

r=0 has exactly one change in sign, and applying Descartes’ Rule of Signs.
We do this by considering four cases,

Case 1: 0 ≤ r ≤ k − 2. We show that cn,k,r > 0.
Case 2: k − 1 ≤ r ≤ n− 2. We show that if cn,k,r ≤ 0, then cn,k,r+1 < 0.
Case 3: n− 1 ≤ r ≤ n+ k − 4. We show that cn,k,r < 0.
Case 4: r = n+ k − 3. We show that cn,k,r = 0.

Case 1: 0 ≤ r ≤ k − 2.

cn,k,r =
r+1
∑

j=0

((n− 1)j − (k − 1)(r + 1− j)) ak,jan,r+1−j .

We see that cn,k,r is an increasing function of n, since the bracketed term in cn,k,r is an
increasing funtion of n, and

an+1,t

an,t

= 1 +
3n2 + n+ 2t+ 3nt

n(n+ t+ 1)
> 1.

Since ck,k,r = 0, cn,k,r > 0.

Case 2: k − 1 ≤ r ≤ n− 2.

cn,k,r =
k−1
∑

j=0

((n− 1)j − (k − 1)(r + 1− j)) ak,jan,r+1−j

Let
b(n, k, r, j) = ((n− 1)j − (k − 1)(r + 2− j)) ak,jan,r+1−j ,

9



so that

cn,k,r+1 =
k−1
∑

j=0

b(n, k, r, j)
an,r+2−j

an,r+1−j

.

We see that b(n, k, r, 0) < 0, the bracketed term in b(n, k, r, j) increases as j increases,

and if cn,k,r ≤ 0, then
k−1
∑

j=0

b(n, k, r, j) < 0(since the bracketed term in b(n, k, r, j) is less

than the bracketed term in cn,k,r). Furthermore, we know from Lemma 9 that the sequence
{

an,r+2−j

an,r+1−j

}

is decreasing as j increases.

Hence the conditions set forth in Lemma 8 are met, and we have cn,k,r+1 < 0.

Case 3: n− 1 ≤ r ≤ n+ k − 4.

Let r = n− 1 + t, 0 ≤ t ≤ k − 3.

cn,k,n−1+t =
k−1
∑

j=t+1

((n− 1)j − (k − 1)(n+ t− j)) ak,jan,n+t−j .

Let b(n, k, t, j) = (nj − (k − 1)(n+ 1 + t− j)) ak,jan,n+t−j , so that

cn+1,k,n+t =
k−1
∑

j=t+1

b(n, k, t, j)
an+1,n+1+t−j

an,n+t−j

.

We see that b(n, k, t, t + 1) = (n(t− (k − 2))) ak,jan,n−1 < 0, the bracketed term in

b(n, k, t, j) increases as j increases, and if cn,k,n−1+t < 0, then
k−1
∑

j=t+1

b(n, k, t, j) < 0 (since

the bracketed term in b(n, k, t, j) is less than or equal to the bracketed term in cn,k,n−1+t).

Furthermore, from Lemma 9 we know that the sequence

{

an+1,n+1+t−j

an,n+t−j

}

is decreasing as j

increases.

Hence the conditions set forth in Lemma 8 are met, and we have cn+1,k,n+t < 0. Since
ck,k,k−1+t = 0, we have for all n > k, cn,k,n−1+t < 0.

Case 4: r = n+ k − 3.
cn,k,r = ((n− 1)(k − 1)− (k − 1)(n− 1)) an,n−1ak,k−1 = 0.

We have proved that h(n, k, x) has at most one positive zero. Hence we know from
Lemma 7 that on the interval .5 < p < 1, P (n, k, p) and P (k, n, p)

10



cannot intersect. From Lemma 10, we know that lim
p→1

P ′(n, k, p)

P ′(k, n, p)
< 1. Hence, we must have

P (n, k, p) > P (k, n, p) on .5 < p < 1.

3 Counterexamples for two conjectured inequalities

Define Maxpoints(m,n) := (2m−1)(2n−1), the maximum number of points possible where
the winner is the first player to win m n-point games.
Initial examination of numerical values of P (n, k, p) for a wide range of values of n, k

and p suggested that the following conjectured inequalities might be universally true and
provable (.5 < p < 1):

Conjecture 1. If Maxpoints(a, b) > Maxpoints(c, d), then P (a, b, p) > P (c, d, p).

Conjecture 2. If ab = cd and min(a, b) > min(c, d), then P (a, b) > P (c, d).

The following computations show that neither of these conjectures is universally true:

Maxpoints(3, 2) = 15 P (3, 2, .6) = .7617 · · ·
Maxpoints(1, 7) = 13 P (7, .6) = .7711 · · ·

min (4, 3) = 3 P (4, 3, .99) = .999999999999999999670 · · ·
min (6, 2) = 2 P (6, 2, .99) = .999999999999999999676 · · ·

4 Remark

The integers ak,i, which play a significant role in this paper, are the same as the integers
ak+i−1,k−1 in A033820 of the On-line Encyclopedia of Integer Sequences. They appear in
quite different contexts in [1, 2].
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