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Abstract. In this paper we determine those squares whose decimal representation consists
of k ≥ 2 digits such that k − 1 of them equal.

1 Introduction

R. Obláth [5] succeeded in almost entirely solving the problem of finding all the numbers
nm (n,m ∈ N, n ≥ 2, m ≥ 2) that have equal digits. The special case m = 2 is a very
well known result, although its proof involves no difficulty. In this connection, the following
question naturally arises: is it possible to determine all of the squares having all digits but
one equal?

The answer is given by

Theorem 1.1 The squares whose decimal representation makes use of k ≥ 2 digits, such
that k − 1 of these digits are equal, are precisely 16, 25, 36, 49, 64, 81, 121, 144, 225, 441,
484, 676, 1444, 44944, 102i, 4 · 102i and 9 · 102i with i ≥ 1.

When we are looking for the squares with k digits among which k − 1 digits equal 0, we
immediately get that the corresponding numbers are 102i, 4 · 102i and 9 · 102i with i ≥ 1.

A simple computation shows that the numbers with at most 4 digits verifying the condi-
tion in the statement are just the ones listed above.

Since every natural number can be written in the form 50000k ± r with 0 ≤ r ≤ 25000,
and (50000k ± r)2 ≡ r2 (mod 100000), we compute r2 for r ≤ 25000 and find that the last
4 digits of any square can be equal only when all of them equal 0, which solves Obláth’s
problem for squares having k ≥ 4 digits.
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We select the squares such that 4 of the last 5 digits are equal, because these point out
the possible squares with k ≥ 5 digits, k − 1 digits of them being equal. If one excludes
the numbers for which there are k − 1 digits equal to 0, then there still remain 22 types of
numbers, namely:

a1 = 1 · · · 121 a7 = 4 · · · 441 a13 = 4 · · · 4944 a18 = 7 · · · 76
a2 = 1 · · · 161 a8 = 4 · · · 449 a14 = 4 · · · 45444 a19 = 8 · · · 81
a3 = 2 · · · 224 a9 = 4 · · · 464 a15 = 4 · · · 49444 a20 = 8 · · · 89
a4 = 2 · · · 225 a10 = 4 · · · 484 a16 = 5 · · · 56 a21 = 9 · · · 929
a5 = 4 · · · 41444 a11 = 4 · · · 4544 a17 = 6 · · · 656 a22 = 9 · · · 969
a6 = 4 · · · 4144 a12 = 4 · · · 4644
One will show that, among these numbers with k ≥ 5 digits, only 44944 is a square. The

exclusion of the other numbers can be carried out fairly easily in certain cases, as we show
in §2. In the other cases we will solve equations of the type

x2 − dy2 = k (1)

(where d, k ∈ Z∗, d > 0 and
√
d 6∈ Z) in integers. The literature concerning equation (1) is

rather extensive. In this connection, we mention [1, 2, 3, 4].
We now recall the solving method (in accordance with [2]). We denote by (r, s) the

minimal positive solution to the equation

x2 − dy2 = 1 (2)

and by ε = r + s
√
d. We determine the “small” solutions to equation (1) (if any). They

generate all the solutions.

Theorem 1.2 We denote by µi = ai + bi
√
d, i = 1,m all the numbers with the property that

(ai, bi) is a solution in nonnegative integers to equation (1) with ai ≤
√

|k|ε and bi ≤
√

ε|k|/d
(if any). If x and y are solutions to (1) then there exist i, n ∈ Z such that 1 ≤ i ≤ m and
x+ y

√
d = ±µiε

n or x+ y
√
d = ±µ̄iε

n.

We will use this theorem in §3.

2 Excluding the simple cases

We assume in this section that k ≥ 5 and an is a square, hence 9an is a square as well. Make
use of simple reasonings, we shall show that this fact is impossible. To this end, we use the
symbol of Legendre in some cases.

The 16 cases which have to be excluded will be exposed in a concise form, inasmuch as
some of them are quite similar:

a3, a4, a20; a2, a15, a18; a11, a17.

We mention that each of the cases below is concluded by a contradictory assertion, thus
proving the impossibility of the corresponding case.
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1. We have 9a2 = 10k + 449 ≡ (−1)k + 9 (mod 11). But
(

8
11

)
=
(

10
11

)
= −1.

2. It follows by 9a3 = 2(10k + 8) = (4x)2 that 2k−35k = (x − 1)(x + 1). Since (x −
1, x + 1) = 2, we have 5k | x + ε with ε ∈ {−1, 1}, whence x + 1 ≥ 5k. Consequently
2k−3 · 5k = x2 − 1 ≥ 5k(5k − 2), hence 2k−3 ≥ 5k − 2.

3. By 9a4 = 2 · 10k + 25 = (5x)2, we have 2k+1 · 5k−2 = (x − 1)(x + 1), whence
2k+1 · 5k−2 ≥ 5k−2(5k−2 − 2).

4. We have 9a5 = 4 · 10k − 27004 = (2x)2, whence 10k − 6751 = x2. When k is an
odd number, we have 10k − 6751 ≡ 2 (mod 11), but

(
2
11

)
= −1. If k = 2h with h ≥ 3,

then (10h − x)(10h + x) = 6751, whence 10h − x = a, 10h + x = b, where we have either
(a, b) = (1, 6751) or (a, b) = (43, 157). Since 2·10h = a+b, it follows that either 2·10h = 6752
or 2 · 10h = 200, although h ≥ 3.

5. By 9a6 = 4 · 10k − 2704 = (4x)2 it follows that 52 · 10k−2 − 169 = x2. Since k ≥ 5, we

get that x2 = 52 · 10k−2 − 169
4≡−169 4≡ 3.

6. We have a9 = 4 · 11 · · · 16, but 11 · · · 16 does not occur among the numbers ai.

7. We have a10 = 4a1, and we shall get the contradiction after we study a1 for k ≥ 5.

8. We have 9a11 = 4 · 10k + 896 = (8x)2, hence 2k−45k + 14 = x2. It follows that x
...2.

Therefore x2...4, and k = 5. In this case we get x2 = 6264.

9. We have a12 = 4a2, but a2 6= x2.

10. By 9a15 = 4·10k+44996 = (2x)2 it follows that 10k+11249 = x2. Then 10k+11249 ≡
(−1)k + 7 (mod 11), but

(
6
11

)
=
(

8
11

)
= −1.

11. Since 4a16 = 22 · · · 2
︸ ︷︷ ︸

k

4 and a3 6= x2, it follows that a16 6= y2.

12. We have 9a17 = 6 · 10k − 96 = (4x)2, hence 3 · 2k−35k − 6 = x2. But x2...4 and

3 · 2k−35k...4 (because k ≥ 5).

13. We have 9a18 = 7 · 10k − 16 ≡ 7(−1)k − 5 (mod 11). But
(

2
11

)
=
(

10
11

)
= −1.

14. By 9a20 = 8 · 10k + 1 = x2 it follows that (x − 1)(x + 1) = 2k+35k and then
2k+35k ≥ 5k(5k − 2).

15. We have a21 ≡ 2 (mod 9).

16. We have a22 ≡ 6 (mod 9).

3 The six difficult cases

Just as in the previous cases, the numbers under consideration have k ≥ 5 digits, and k − 1
of these digits are equal.

1. For a1 = 11 · · · 121 = x2 it follows that (10k − 1)/9+ 10 = x2. We denote y = 3x and,
since k ≥ 5, we have y > 316 and

10k − y2 = −89. (3)
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For k = 2m we have (10m − y)(10m + y) = −89, whence we get both 10m − y = −1 and
10m + y = 89, which is a contradiction.

For k = 2m+ 1, we denote z = 10m and then

y2 − 10z2 = 89.

The primitive solution of the Pell equation

x2 − 10y2 = 1

is (r, s) = (19, 6). Making use of Theorem 1.2 in the Introduction, we get bi ≤
√

89
10

(
19 + 6

√
10
)
,

hence bi ≤ 18. We find b1 = 8, a1 = 27, and b2 = 10, a2 = 33.
It follows that either

y + z
√
10 =

(

±27± 8
√
10
)(

19 + 6
√
10
)t

or

y + z
√
10 =

(

±33± 10
√
10
)(

19 + 6
√
10
)t

,

with t ∈ Z. Since y > 0, z > 0, we have only the solutions

y + z
√
10 =

(

27± 8
√
10
)(

19 + 6
√
10
)t

and

y + z
√
10 =

(

33± 10
√
10
)(

19 + 6
√
10
)t

,

with t ∈ Z. Since 27+8
√

10
19+6

√
10
< 2 and 33+10

√
10

19+6
√

10
< 2, it follows that t ∈ N. Let

(
19 + 6

√
10
)t

=

at + bt
√
10, at, bt ∈ N, a0 = 1, b0 = 0. For t ≥ 1, we have the following equalities:

at = 19t + C2
t 19

t−2 · 62 · 10 + · · · (4)

and
bt = C1

t 19
t−1 · 6 + C3

t 19
t−3 · 63 · 10 + · · · . (5)

We have at ≡ 1 (mod 3) and bt ≡ 0 (mod 3). Since z = 10m ≡ 1 (mod 3), we only have
one of the situations

y + z
√
10 =

(

27− 8
√
10
)(

19 + 6
√
10
)

, t ∈ N, (6)

and
y + z

√
10 =

(

33 + 10
√
10
)(

19 + 6
√
10
)

, t ∈ N. (7)

a) In the case of the relation (6), we have the identity

z = 10m = 27bt − 8at. (8)

Since k ≥ 5, it follows that m ≥ 2.
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For m = 2, the equation (3) takes the form y2 − 105 = 89, and has no integer solutions.
For m ≥ 3, it follows that 8 | bt. By (5) we have bt ≡ 6t · 19t−1 (mod 8), whence t = 4h.

It then follows by (4) and (5) that

at ≡ 64h · 102h (mod 19) and 19 | bt.

By (8) we get 10m ≡ −8 · 64h · 102h (mod 19), whence

(
10m

19

)

=

(−8 · 64t · 102h

19

)

=

(−2
19

)

= 1.

Since
(

10
19

)
=
(−9

19

)
= (−1) ·

(
32

19

)

= −1, it follows that m = 2f .

The equation (3) takes the form

104f+1 + 89 = y2. (9)

We have 104 ≡ 1 (mod 101), hence 104f+1 ≡ 10 (mod 101). In view of (9), it follows that

y2 ≡ 99 (mod 101).

But
(

99
101

)
=
( −2

101

)
=
(

2
101

)
= −1, and thus a contradiction.

b) It follows by (7) that
z = 10m = 33bt + 10at. (10)

Since m ≥ 3, it follows that bt +2at ≡ 0 (mod 8). By (4) and (5) we have at ≡ 19t (mod 8)
and bt ≡ 6t · 19t−1 (mod 8). Therefore 6t · 19t−1 +2 · 19t ≡ 0 (mod 8), which in turn implies
3t+19 ≡ 0 (mod 4) and t = 4h+3. Now (4), (5) and (10) imply that 10m ≡ 33·64h+3 ·102h+1

(mod 19), whence

(
10m

19

)

=

(
33 · 6 · 10

19

)

=

(
32 · 22 · 55

19

)

=

(
55

19

)

=

(−2
19

)

= −
(

2

19

)

= −(−1)(192−1)/8

= 1.

Consequently m = 2f , and we get (9) again, which is a contradiction.

2. For a7 = 44 · · · 41 = x2 it follows that 4 · 10k−1
9
− 3 = x2, hence

4 · 10k − y2 = 31, (11)

where y = 3x.
If k = 2m, then (2 · 10m − y)(2 · 10m + y) = 31. Hence

2 · 10m − y = 1 and 2 · 10m + y = 31,

which is a contradiction. If k = 2m+ 1 then, denoting z = 2 · 10m, we get the equation

y2 − 10z2 = −31.
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Just as in the previous case, we make use of Theorem 1.2 and, for y > 0, z > 0, we get that
either

y + z
√
10 =

(

3 + 2
√
10
)(

19 + 6
√
10
)t

(12)

or

y + z
√
10 =

(

−3 + 2
√
10
)(

19 + 6
√
10
)t

, (13)

with t ∈ N.
a) By (12) we obtain the equation:

2 · 10m = 3bt + 2at. (14)

Since m ≥ 2, it follows by (5), (6) and (14) that 3 · 6t · 19t−1 + 2 · 19t ≡ 0 (mod 8), that is,
9t + 19 ≡ 0 (mod 4), whence t = 4h + 1. By (4) and (5) we get that z ≡ 3 · 64h+1 · 102h

(mod 19), that is, 10m ≡ 32 · 64h · 102h (mod 19), whence
(

10m

19

)
= 1. Consequently m is an

even number.
On the other hand, it follows by (14) that 3bt + 2at ≡ 0 (mod 5), that is, at ≡ bt

(mod 5). By (4) and (5) it follows that at ≡ (−1)t (mod 5) and bt ≡ (−1)t−1t (mod 5),
whence t ≡ 4 (mod 5). We have (3 +

√
10)5 = 4443 + 1405

√
10 ≡ −53 (mod 281), hence

(19 + 6
√
10)5 =

(
(3 +

√
10)5

)2 ≡ 532 ≡ −1 (mod 281). Consequently

y + 2 · 10m
√
10 =

(

3 + 2
√
10
)(

19 + 6
√
10
)t+1 (

19− 6
√
10
)

=
(

−63 + 20
√
10
)[(

19 + 6
√
10
)5

](t+1)/5

≡ −63 + 20
√
10 (mod 281).

We have taken into account that t ≡ 4 (mod 5) and t is an odd number.
We have 2 · 10m ≡ 20 (mod 281), that is, 10m−1 ≡ 1 (mod 281). Since 107 ≡ 53

(mod 281), it follows that 1014 ≡ −1 (mod 281) and 1028 ≡ 1 (mod 281). Thus we have
ord 10 = 28 in Z281, whence 28 | m− 1, which is a contradiction since m is even.

b) It follows by (13) that
2 · 10m = −3bt + 2at. (15)

Since m ≥ 2, it follows that −3bt + 2at ≡ 0 (mod 8). We get by (4) and (5) that t = 4h+ 3
and then 2 · 10m ≡ −3 · 64h+3 · 102h+1 (mod 19). Therefore

(
10m

19

)
= 1, and m is even. Also

by (15) we get at + bt ≡ 0 (mod 5), and in view of (4) and (5) we have t ≡ 1 (mod 5). The
relation (13) can be written as:

y + 2 · 10m
√
10 =

(

−3 + 2
√
10
)(

19 + 6
√
10
)t−1 (

19 + 6
√
10
)

=
(

63 + 20
√
10
)((

19 + 6
√
10
)5

)(t−1)/5

≡ 63 + 20
√
10 (mod 281).

Just as in the case a), it follows that 2 · 10m ≡ 20 (mod 281). The relation 10m−1 ≡ 1
(mod 281) contradicts the fact that m is even.
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3. For a8 = 44 · · · 49 = x2 we have 4 · 10k−1
9

+ 5 = x2. We denote 3x = y and then

4 · 10k + 41 = y2.

For k = 2m, we get the equalities y−2 ·10m = 1 and y+2 ·10m = 41, which is a contradiction
because m ≥ 2.

For k = 2m+1 we set z = 2 · 10m, and then y2− 10z2 = 41. Whence for y > 0 and z > 0
we get either

y + 2 · 10m
√
10 =

(

9− 2
√
10
)(

19 + 6
√
10
)t

, (16)

or

y + 2 · 10m
√
10 =

(

9 + 2
√
10
)(

19 + 6
√
10
)t

, (17)

where t is a natural number.
a) It follows by (16) that

2 · 10m = 9bt − 2at.

Since 2 · 10m ≡ 2 (mod 3), and on the other hand we have by (4) that at ≡ 1 (mod 3), we
get the contradiction 2 ≡ −2 (mod 3).

b) It follows by (17) that
2 · 10m = 2at + 9bt. (18)

Then bt ≡ 2at (mod 5), whence t ≡ 3 (mod 5). We also have bt + 2at ≡ 0 (mod 4), hence t
is odd.

The equality (17) takes the form

y + 2 · 10m
√
10 =

(

9 + 2
√
10
)(

19 + 6
√
10
)t+2 (

19− 6
√
10
)2

=
(

1929− 610
√
10
)[(

19 + 6
√
10
)5

](t+2)/5

≡ 38 + 48
√
10 (mod 281),

since (t+ 2)/5 is odd and
(
19 + 6

√
10
)5 ≡ −1 (mod 281).

Thus 2 · 10m ≡ 48 (mod 281), hence
(

2·10m

281

)
=
(

48
281

)
. Therefore,

(−1) 281
2
−1

8
(m+1)

(
5m

281

)

=

(
3

281

)

.

We have
(

5
281

)
=
(

281
5

)
=
(

1
5

)
= 1 and

(
3

281

)
=
(

281
3

)
=
(

2
3

)
= −1, hence a contradiction.

4. For a13 = 44 · · · 4944 = x2, we have 4 · 10k−1
9

+500 = x2, that is, y2− 25 · 10k−2 = 281,
where y = 3

4
x.

If k = 2m + 2, then (y − 5 · 10m)(y + 5 · 10m) = 281, whence y − 5 · 10m = 1 and
y + 5 · 10m = 281. One gets the contradiction 10m+1 = 280.

If k = 2m+ 3, we denote z = 5 · 10m. We have m ≥ 1 and

y2 − 10z2 = 281 (19)
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whence either

y + z
√
10 =

(

21 + 4
√
10
)(

19 + 6
√
10
)t

, t ∈ N, (20)

or

y + z
√
10 =

(

21− 4
√
10
)(

19 + 6
√
10
)t

, t ∈ N∗. (21)

a) By (20) it follows that
5 · 10m = 21bt + 4at,

hence 5 ·10m ≡ 4at (mod 3). Since at ≡ 1 (mod 3), we get the contradiction 5 ≡ 4 (mod 3).
b) By (21), if t = 1 then y = 159 and z = 50, whence m = 1 and then k = 5. One thus

get the number
44944 = 2122.

For t ≥ 2, it follows that y +
√
10 · 5 · 10m =

(
159 + 50

√
10
) (

19 + 6
√
10
)s
, s ≥ 1, hence

5 · 10m = 159bs + 50as. (22)

For m = 0 and m = 2, equation (19) has no integer solutions, hence we may consider
m ≥ 3. We have by (22) that bs ≡ 2as (mod 8). Hence it follows by (4) and (5) that
6s · 19s−1 ≡ 2 · 19s (mod 8). Therefore 3s ≡ 19 (mod 4) and s = 4h + 1. Also by (22) we
have 5 · 10m ≡ 159 · 6s · 102h (mod 19), hence

(
5·10m

19

)
=
(

159
19

) (
6s

19

)
=
(

7
19

)
, because

(
6
19

)
= 1.

Since (
5

19

)

=

(−14
19

)

= (−1) 19−1

2 (−1) 19
2
−1

8

(
7

19

)

=

(
7

19

)

,

we have
(

10m

19

)
= 1, that is,

(
10
19

)m
= 1, whence (−1)m = 1. Thus m = 2n.

Equality (19) takes the form

y2 = 25 · 102m+1 + 281 = 25 · 104n+1 + 281.

Since 104 ≡ 1 (mod 101), it follows that y2 ≡ 250 + 281 (mod 101). Hence y2 ≡ 26
(mod 101), whence

(
26
101

)
= 1. But

(
26
101

)
=

(−75
101

)
=

(
3

101

)
=

(
101
3

)
=

(
2
3

)
= −1, which

is a contradiction.
5. For a14 = 44 · · · 45444 = x2 and y = 3x/2 we have the equation:

y2 − 10k = 2249.

If k = 2m, m ≥ 3, we have either

y − 10m = 1 and y + 10m = 2249

or
y − 10m = 13 and y + 10m = 173,

and none of these systems has solutions.
If k = 2m+ 1, then m ≥ 2. With z = 10m we have the equation:

y2 − 10z2 = 2249. (23)
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The initial solutions (a, b) of the equation are (57, 10), (147, 44), (153, 46), hence the solutions
with y > 0, z > 0 are given by the identities:

y + 10m
√
10 =

(

57− 10
√
10
)(

19 + 6
√
10
)t

, (24)

y + 10m
√
10 =

(

57 + 10
√
10
)(

19 + 6
√
10
)t

, (25)

y + 10m
√
10 =

(

147− 44
√
10
)(

19 + 6
√
10
)t

, (26)

y + 10m
√
10 =

(

147 + 44
√
10
)(

19 + 6
√
10
)t

, (27)

y + 10m
√
10 =

(

153− 46
√
10
)(

19 + 6
√
10
)t

, (28)

y + 10m
√
10 =

(

153 + 46
√
10
)(

19 + 6
√
10
)t

, (29)

where t ∈ N. We get by (24) that 10m = 57bt − 10at, hence 10m ≡ −at (mod 3), which
yields the contradiction 1 ≡ −1 (mod 3).

If (27) was true, then 10m = 147bt + 44at. Since at ≡ 1 (mod 3) and 10m ≡ 1 (mod 3),
the contradiction 1 ≡ 44 (mod 3) follows.

In the case when (28) holds, we get 10m = 153bt−46at, whence the contradiction 1 ≡ −46
(mod 3).

We still have to study three situations.
a) We have by (25) that

10m = 57bt + 10at. (30)

Since m ≥ 2, it follows that bt + 2at ≡ 0 (mod 4). By (4) and (5) we have 6t(−1)t−1 +
2(−1)t ≡ 0 (mod 4). Therefore 3t−1 ≡ 0 (mod 2), and we get that t is odd. It then follows
that 19 | at, and by (30) we deduce the contradiction 19 | 10m.

b) It follows by (26) that
10m = 147bt − 44at. (31)

Just as in the case a), by considering congruences (mod 4), we get that t is even.
Also by (31) we have 2bt + at ≡ 0 (mod 5), whence by (4) and (5) we get t ≡ 3 (mod 5).

Then (t+ 2)/5 is an even natural number. The relation (26) takes the form

y + 10m
√
10 =

(

147− 44
√
10
)(

19 + 6
√
10
)t+2 (

19− 6
√
10
)2

≡
(

147− 44
√
10
)(

721− 228
√
10
)

(mod 281)

≡
(

147− 44
√
10
)(

−122 + 53
√
10
)

(mod 281).

It then follows that 10m ≡ 13159 (mod 281) ≡ −48 (mod 281), hence
(

10m

281

)
=

(−48
281

)
. One

directly gets a contradiction, observing that
(

10
281

)
=
( −1

281

)
=
(

16
281

)
= 1 and

(
3

281

)
= −1.

c) By (29) we have the equation:

10m = 153bt + 46at. (32)
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For m = 2, we get the number 102249 which is not a square. Hence m ≥ 3.
For m ≥ 3, we have bt − 2at ≡ 0 (mod 8), and then t = 4h + 1. Also by (32) we

have 3bt + at ≡ 0 (mod 5), whence t ≡ 2 (mod 5). Therefore (t − 2)/5 is an odd natural

number, which in turn implies that
(
19 + 6

√
10
)(t−2)/5 ≡ −1 (mod 281). By (29) we have

the following relations:

y + 10m
√
10 =

(

153 + 46
√
10
)(

19 + 6
√
10
)t−2 (

19 + 6
√
10
)2

≡ −
(

153 + 46
√
10
)(

−122− 53
√
10
)

(mod 281).

Then 10m ≡ 13721 ≡ −48 (mod 281), that is, the contradiction from b).
6. For a19 = 88 · · · 81 = x2, denoting y = 3x we get the equation:

y2 = 8 · 10k − 71.

If k = 2m, then m ≥ 3. We denote z = 2 · 10m and get the identity:

y2 − 2z2 = −71.

It then follows for y, z > 0 that either

y + z
√
2 =

(

1 + 6
√
2
)(

3 + 2
√
2
)t

, (33)

or

y + z
√
2 =

(

−1 + 6
√
2
)(

3 + 2
√
2
)t

. (34)

We set
(
3 + 2

√
2
)t

= ct + dt

√
2. For t ≥ 1 we then have the equalities:

ct = 3t + C2
t · 3t−2 · 22 · 2 + · · · , (35)

dt = 2t · 3t−1 + C3
t · 3t−3 · 24 + · · · (36)

a)We have by (33) that dt+6ct ≡ 0 (mod 8). Then 2t+18 ≡ 0 (mod 8), hence t = 4h+3,
whence dt ≡ 2t+(t−1)/2 (mod 3). We have z = dt + 6ct. It follows that 2 · 10m ≡ dt (mod 3),
hence 2 · 10m ≡ 26h+4 (mod 3), whence 10m ≡ 26h+3 (mod 3), consequently,

(
10m

3

)

=

(
26h+3

3

)

=

(
23k+1

3

)2

·
(
2

3

)

= −1.

Since
(

10m

3

)
=
(

1
3

)
, a contradiction follows.

b) For k = 2m, we consider the equality (34) and we have 2 · 10m = −dt + 6ct, hence
dt ≡ 6ct (mod 8). It follows that 2t ≡ 18 (mod 8), that is, t = 4h + 1. We then have
2 · 10m ≡ −dt ≡ −24h+1 · 22h (mod 3). Hence 10m ≡ −(23h)2 (mod 3) and

(
10m

3

)
=

(−1
3

)
=

−1 6= 1 =
(

10m

3

)
.

For k = 2m+ 1 we have m ≥ 2. Denoting z = 4 · 10m, we get the equation:

y2 − 5z2 = −71.
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For y, z > 0 we have either

y + z
√
5 =

(

3 + 4
√
5
)(

9 + 4
√
5
)t

, (37)

or

y + z
√
5 =

(

−3 + 4
√
5
)(

9 + 4
√
5
)t

, (38)

where t is a natural number.
We put

(
9 + 4

√
5
)t

= et + ft

√
5 and then

et = 9t + C2
t · 9t−2 · 42 · 5 + · · · , (39)

ft = 4t · 9t−1 + C3
t · 9t−3 · 43 · 5 + · · · (40)

It follows by (37) and (38) that z = 4 · 10m = 4et ± 3ft, hence 4et ± 3ft ≡ 0 (mod 8). By
(39) and (40) we get 4± 4t ≡ 0 (mod 8), whence t = 2h+ 1.

By 4 · 10m = 4et ± 3ft we infer 4 · 10m ≡ et (mod 3). Since t is odd, we have et ≡ 0
(mod 3), and the contradiction 4 · 10m ≡ 0 (mod 3).

Remarks. It would be interesting to solve the similar problem involving numbers written
with respect to some basis b ≥ 2.

It might be more difficult to consider the same problem imposing the condition all-but-
one-equal-digits to higher powers, instead of squares.
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