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Abstract: The integer sequences with first term 1 comprise a group G under convolution,
namely, the Appell group, and the lower triangular infinite integer matrices with all diagonal
entries 1 comprise a group G under matrix multiplication. If A ∈ G and M ∈ G, then
MA ∈ G. The groups G and G and various subgroups are discussed. These include the
group G

(1) of matrices whose columns are identical except for initial zeros, and also the group
G

(2) of matrices in which the odd-numbered columns are identical except for initial zeros and
the same is true for even-numbered columns. Conditions are determined for the product of
two matrices in G

(m) to be in G
(1). Conditions are also determined for two matrices in G

(2)

to commute.

1 Introduction

Let G be the set of integer sequences (a1, a2, a3, . . .) for which a1 = 1. The notations A =
(a1, a2, a3, . . .), B = (b1, b2, b3, . . .), C = (c1, c2, c3, . . .) will always refer to elements of G.
The finite sequence (a1, a2, a3, . . . , an) will be denoted by An, and likewise for Bn and Cn.
Let ? denote convolution; i.e., if C = A ? B, then

cn =
n∑

k=1

akbn−k+1,

which we shall sometimes write as An ~ Bn, so that A ? B is the sequence having An ~ Bn

as nth term. Formally,

∞∑

k=1

ckx
k−1 =

(
∞∑

k=1

akx
k−1

)(
∞∑

k=1

bkx
k−1

)
.
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In particular, if c1 = 1 and ck = 0 for k ≥ 2, then the sequence B has generating function
1/(a1 + a2x+ a3x

2 + · · · ), and A and B are a pair of convolutory inverses.
Let Gn denote the group of finite sequences An under ?; the identity is In = (1, 0, 0, . . . , 0),

and A−1
n is the sequence Bn given inductively by b1 = 1 and

bn = −
n−1∑

k=1

an−k+1bk. (1)

for n ≥ 2. The algebraic system (G, ?) is a commutative group known as the Appell subgroup
of the Riordan group. Its elements, the Appell sequences, are special cases of the Sheffler
sequences, which play a leading role in the umbral calculus [2, Chapter 4]; however, the
umbral developments are not used in this paper. In G, the identity and A−1 are the limits
of In and A−1

n . (Here, limits are of the combinatorial kind: suppose j1, j2, j3, . . . is an
unbounded nondecreasing sequence of positive integers and {ai,j} is a sequence of sequences
such for each i,

(ak,1, ak,2, ak,3, . . . , ak,ji
) = (ai,1, ai,2, ai,3, . . . , ai,ji

)

for every k > i. Then
lim
i→∞

(ai,1, ai,2, ai,3, . . .)

is defined as the sequence (a1, a2, a3, . . .) such that for every n there exists i0 such that if
i > i0, then

(a1, a2, a3, . . . , an) = (ai,1, ai,2, ai,3, . . . , ai,n).)

The study of the group (G, ?), we shall soon see, is essentially that of a certain group of
matrices. However, we shall consider first a more general group of matrices.

For any positive integer n, let Gn be the set of lower triangular n × n integer matrices
with all diagonal entries 1, and let · denote matrix multiplication. Then (Gn, ·) is a non-
commutative group. Now let G denote the set of lower triangular infinite integer matrices
with all diagonal entries 1. In such a matrix, every column, excluding the zeros above the
diagonal, is an element of G, and (G, ·) is a noncommutative group. Properties of matrices
in G arise via limits of those of matrices in Gn. For example, if M = (mij) ∈ G, then the
matrix Mn := (mij), where 1 ≤ i ≤ n and 1 ≤ j ≤ n, is an element of Gn, and

M−1 = lim
n→∞

M−1
n .

It is easy to check that if A ∈ G and M ∈ G, then M · A ∈ G; here A is regarded as an
infinite column vector.

Among subgroups of G is the Riordan group (in the case that the coefficients are all
integers) introduced in [3]. Although the Riordan group will not be further discussed in
this paper, the reader may wish to consult the references listed at A053121 (the Catalan
triangle) in [4].

Suppose T = (t1, t2, t3, . . .) ∈ G. Let T be the matrix in G whose ith row is

ti, ti−1, . . . , t1, 0, 0 . . . ,
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so that the first column of T is T , and each subsequent column contains T as a subsequence.
Let G

(1) be the set of all such matrices T. If T and U in G
(1) have first columns T and U,

respectively, then the first column of T · U is the sequence T ? U, and T · U ∈ G
(1). Clearly,

(G(1), ·) is isomorphic to (G, ?). Matrices in G
(1) will be called sequential matrices.

One more property of the group G, with easy and omitted proof, will be useful: if
M = (mij) ∈ G and f(M) := ((−1)i+jmij), then

(f(M))−1 = f(M−1). (2)

2 The Appell group (G, ?)

The first theorem in this section concerns the convolutory inverse of a linear recurrence
sequence of order m ≥ 2.

Theorem 1. Suppose m ≥ 2, and a1 = 1, a2, . . . , am are initial values of an mth order

recurrence sequence given by

an = u1an−1 + u2an−2 + · · ·+ uman−m + rn−m (3)

for n ≥ m + 1, where u1, u2, . . . , um and r1, r2, r3, . . . are integers and um 6= 0. Then the

convolutory inverse, B, of A, is a sequence

(1, b2, . . . , bm, bm+1, bm+2, . . .)

for which the subsequence (bm+2, bm+3, . . .) satisfies

bn =
m−1∑

k=1

bn−kck −Bn−m ~Rn−m,

where

ck = −ak+1 +
k∑

j=1

ujak+1−j

for n ≥ m+ 2.

Proof: By (1), b1 = a1 = 1. Also, b2 = −a2, and

bn = −anb1 − an−1b2 − · · · − a2bn−1

for n ≥ 3. For the rest of this proof, assume that n ≥ m+ 2, and for later convenience, let

sn = −anb1 − an−1b2 − · · · − am+2bn−m−1.

For n ≥ m+ 2 (but not generally for n = m+ 1), the recurrence (1) gives

m∑

k=1

ukbn−k = −
n−m−1∑

j=1

bj

m∑

k=1

ukan−k−j+1 − U,
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where

U =
m−1∑

k=1

uk

m−k+1∑

j=2

ajbn−k−j+1.

Then

m∑

k=1

ukbn−k = −
n−m−1∑

j=1

bj(an+1−j − rn+1−j−m)− U

= sn +
n−m−1∑

j=1

bjrn+1−j−m − U

= bn +
m+1∑

j=2

ajbn+1−j +
n−m−1∑

j=1

bjrn+1−j−m − U,

so that

bn =
m∑

k=1

ukbn−k −
m+1∑

j=2

ajbn+1−j −
n−m−1∑

j=1

bjrn+1−j−m + U. (4)

Now put n = m+1 into (3) and substitute in (4) for am+1. The resulting coefficient of bn−m

is −r1, and (4) simplifies to

bn =
m−1∑

k=1

ukbn−k −
m∑

j=2

ajbn+1−j +
m−2∑

k=1

uk

m−k∑

j=2

ajbn−k−j+1 −
n−m∑

j=1

bjrn+1−j−m

=
m−1∑

k=1

bn−k(−ak+1 +
k∑

j=1

ujak+1−j)−
n−m∑

j=1

bjrn+1−j−m. ¥

Corollary 1. If the recurrence for A in (3) is homogeneous of order m ≥ 2, then the
recurrence for the sequence (b4, b5, b6, . . .) is of order m− 1. If m = 2, then the convolutory
inverse of A is the sequence

(b1, b2, b3, . . .) = (1, − a2, f, (u1 − a2)f, (u1 − a2)
2f, (u1 − a2)

3f, . . .),

where f = a2
2 − a3.

Proof: Homogeneity of a means that rn = 0 for n ≥ 1, so that bn =
∑m−1

k=1 ckbn−k for
n ≥ m+ 2. ¥

Example 1. The Fibonacci sequence, A = (1, 1, 2, 3, 5, 8, . . .), has inverse (1,−1,−1, 0, 0, 0, 0, 0, . . .).

Example 2. The Lucas sequence, A = (1, 3, 4, 7, 11, 18, . . .), has inverse, (1,−3, 5,−10, 20,−40, 80, . . .),
recurrent with order 1 beginning at the third term.
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Example 3. Let A be the 2nd-order nonhomogeneous sequence given by a1 = 1, a2 =
1, and an = an−1 + an−2 + n − 2 for n ≥ 3. The inverse of A is the sequence B =
(1,−1,−2,−1, 1, 4, 6, 4,−4,−11, . . .) given for n ≥ 4 by

bn = −Bn−2 ~Rn−2 = −(b1, b2, · · · , bn−2) ? (1, 2, 3, . . . , n− 2).

Example 4. Suppose that A and C are sequences in G. Since G is a group, there exists B
in G such that A = B ? C. For example, if A and C are the Fibonacci and Lucas sequences
of Examples 1 and 2, then

B = A ? C−1 = (1,−2, 4,−8, 16, . . .),

a 1st-order sequence.

Theorem 2. Let B = (1, b2, b3, . . .) be the convolutory inverse of A = (1, a2, a3, . . .), and

let Â = (1,−a2, a3,−a4, a5,−a6, . . .). Then the convolutory inverse of Â is the sequence

B̂ = (1,−b2, b3,−b4, b5,−b6, . . .).

Proof: Apply (2) to the subgroup G
(1) of sequential matrices. ¥

Example 5. Let A be the sequence given by an = bnτc, where τ = (1 +
√
5)/2. Then

A = (1, 3, 4, 6, 8, 9, 11, 12, . . .) and A−1 = (1,−3, 5,−9, 17,−30, 52,−90, . . .).

Let A be the sequence given by an = (−1)n−1bnτc. Then

A = (1,−3, 4,−6, 8,−9, 11,−12, . . .) and A−1 = (1, 3, 5, 9, 17, 30, 52, 90, . . .).

Example 6. Let A be the Catalan sequence, given by an = 1
n

(
2n− 2
n− 1

)
. Then

A = (1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .)

A−1 = (1,−1,−1,−2,−5,−14,−42,−132, . . .).

Example 7. Let A be the sequence of central binomial coefficients, given by an =(
2n− 2
n− 1

)
, Then

A = (1, 2, 6, 20, 70, 252, 924, . . .) and A−1 = (1,−2,−2,−4,−10,−28,−84,−264, . . .),

with obvious connections to the Catalan sequence.

Certain operations on sequences in G are easily expressed in terms of convolution. Two
of these operations are given as follows. Suppose x is an integer, and A = (1, a2, a3, . . .) is
a sequence in G, with inverse B = (1, b2, b3, . . .). Then

(1, xa2, xa3, xa4, . . .) = (1, (1− x)b2, (1− x)b3, (1− x)b4, . . .) ? A
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and
(1, x, a2, a3, . . .) = (1, x+ b2, (x− 1)b2 + b3, (x− 1)b3 + b4, . . .) ? A.

Stated in terms of power series

a(t) = 1 + a2t+ a3t
2 + · · · and 1/a(t) = b(t) = 1 + b2t+ b3t

2 + · · · ,

the two operations correspond to the identities

xa(t) + 1− x = [(1− x)b(t) + x]a(t);

ta(t) + 1 + (x− 1)t = {b(t) + [(x− 1)b(t) + 1]t}a(t).

3 The group (G(m), ·)
Recall that the set G consists of the lower triangular infinite integer matrices with all diagonal
entries 1. Define ′ on G as follows: if A ∈ G, then A′ is the matrix that remains when row
1 and column 1 of A are removed. Clearly A′ ∈ G. Define

A(0) = A, A(n) = (A(n−1))′

for n ≥ 1. Let
G

(m) = {A ∈ G : A(m) = A}
for m ≥ 0. Note that (G(1), ·) is the group of sequential matrices introduced in Section 1,
and G

(m) ⊂ G
(d) if and only if d|m.

Theorem 3. (G(m), ·) is a group for m ≥ 0.

Proof: (G(0), ·) is the group (G, ·). For m ≥ 1, first note that (AB)′ = A′B′, so that,
inductively, (AB)(q) = A(q)B(q) for all q ≥ 1. In particular, if A and B are in G

(m), then

(AB)(m) = A(m)B(m) = AB,

so that AB ∈ G
(m). Moreover,

(A−1)(m) = (A(m))−1 = A−1,

so that A−1 ∈ G
(m). ¥

4 The group (G(2), ·)
Suppose that A,B,C,D are sequences in G. Let 〈A;B〉 denote the matrix in G

(2) whose first
column is A = (a1, a2, . . .) and whose second column is (0, b1, b2, . . .), where a1 = b1 = 1. We
shall see that the product 〈A;B〉 · 〈C;D〉 is given by certain “mixed convolutions.” Write
〈A;B〉 · 〈C;D〉 as 〈U ;V 〉 . Then

un =

{
(a1, b2, a3, . . . , bn−1, an) ? (c1, c2, . . . , cn), if n is odd;
(b1, a2, b3, . . . , bn−1, an) ? (c1, c2, . . . , cn), if n is even;
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vn =

{
(b1, a2, b3, . . . , an−1, bn) ? (d1, d2, . . . , dn), if n is odd;
(a1, b2, a3, . . . , an−1, bn) ? (d1, d2, . . . , dn), if n is even.

In particular 〈A;B〉 · 〈B;A〉 is the sequential matrix of the sequence A ? B.
Recursive formulas for columns of 〈A;B〉−1 can also be given: write 〈A;B〉−1 as 〈X;Y 〉 ,

so that 〈A;B〉 · 〈X;Y 〉 is the identity matrix. Each nondiagonal entry of 〈A;B〉 · 〈X;Y 〉 is
zero, so that, solving inductively for x1, x2, x3, . . . and y1, y2, y3, . . . gives

xn =

{
−an − bn−1x2 − an−2x3 − · · · − b2xn−1, if n is odd;
−an − bn−1x2 − an−2x3 − · · · − a2xn−1, if n is even;

(5)

yn =

{
−bn − an−1y2 − bn−2y3 − · · · − a2yn−1, if n is odd;
−bn − an−1y2 − bn−2y3 − · · · − b2yn−1, if n is even.

(6)

Example 8. Example 6 shows that the Catalan sequence satisfies the equation

(1, a2, a3, . . .)
−1 = (1,−1,−a2,−a3, . . .),

which we abbreviate as A−1 = (1,−A). It is natural to ask whether there are sequences A
and B for which

〈A;B〉−1 = 〈1,−A;B〉 . (7)

This problem is solved as follows. Write the first and second columns of 〈1,−A;B〉 as
(1, x2, x3, . . .) and (0, 1, y2, y3, . . .), respectively. Equation (7) implies xn = −an−1 and
yn = bn for n ≥ 2. Thus, b2 = y2, but also, by (6), y2 = −b2, so that b2 = 0. Inductively,
(6) and (7) imply bn = 0 for all n ≥ 3, so that B is the convolutory identity sequence:
B = (1, 0, 0, 0, . . .). Using this fact together with (5) gives

xn =

{
−an − an−2x3 − an−4x5 − · · · − a2xn−1, if n is even;
−an − an−2x3 − an−4x5 − · · · − a3xn−2, if n is odd;

so that, substituting xk = −ak−1, we have a recurrence for A:

an =

{
an−1 + an−2a2 + an−4a4 + · · ·+ a2an−2 if n is even;
an−1 + an−2a2 + an−4a4 + · · ·+ a3an−3 if n is odd;

with intial values a1 = 1, a2 = 1. This sequence, listed as A047749 in [4], is given by

an =





1
2m+1

(
3m
m

)
, if n = 2m;

1
2m+1

(
3m+ 1
m+ 1

)
, if n = 2m+ 1.

Example 9. Let an = 1 and bn = Fn for n ≥ 1, where Fn denotes the Fibonacci sequence
in Example 1. Let C be the sequence given by c1 = 1, c2 = −1, c3 = 0, c4 = 1, and
cn = 2b(n−5)/2c for n ≥ 5. Let D be the sequence given by d1 = 1, d2 = −1, d3 = −1, and
dn = −cn+1 for n ≥ d4. Then 〈A;B〉−1 = 〈C;D〉 .

7



Theorem 4. If any three of four sequences A,B,C,D in G are given, then the fourth

sequence is uniquely determined by the condition that 〈A;B〉 · 〈C;D〉 be a sequential matrix.

Proof: The requirement that 〈A;B〉 · 〈C;D〉 be a sequential matrix is equivalent to an
infinite system of equations, beginning with

d1 = 1

b2 + d2 = a2 + c2

b3 + a2d2 + d3 = a3 + b2c2 + c3.

For n ≥ 3, the system can be expressed as follows:

bn + an−1d2 + bn−2d3 + · · ·+ h2dn−1 + dn

= an + bn−1c2 + an−2c3 + · · ·+ h′2cn−1 + cn, (8)

where h2 = a2 if n is odd, h2 = b2 if n is even; and h′2 = b2 if n is odd, h′2 = a2 if n is even.
Equations (8) show that each of the four sequences is determined by the other three.

¥

Example 10. By (8), D is determined by A,B,C in accord with the recurrence

dn = an + c2bn−1 + c3an−2 + c4bn−3 + · · ·+ cn−1h
′
2 + cn

−bn − d2an−1 − d3bn−2 − d4an−3 · · · − dn−1h2. (9)

Suppose an = bn = cn−2 = 0 for n ≥ 3. Then by (9),

dn =

{
−b2dn−1 − a3dn−2, if n is even;
−a2dn−1 − b3dn−2, if n is odd;

for n ≥ 4, with d1 = 1, d2 = a2 − b2, d3 = a3 − a2d2 − b3d1. If (a1, a2, a3) = (1,−1,−1) and
(b1, b2, b3) = (1,−2,−1) and c1 = 1, then

D = (1, 1, 1, 3, 4, 11, 15, 41, 56, 153, . . .),

which, except for the initial 1, is the sequence of denominators of the convergents to
√
3,

indexed in [4] as A002530. In this example, 〈A;B〉 · 〈C;D〉 is the sequential matrix with
first three terms 1,−1,−1 and all others zero.

Theorem 5. If A,B,C in G are given and |a2| = 1, then there exists a unique sequence

D in G such that 〈A;B〉 · 〈C;D〉 = 〈C;D〉 · 〈A;B〉.

Proof: Write 〈A;B〉 · 〈C;D〉 as (sij) and 〈C;D〉 · 〈A;B〉 as (tij). Equating sn+1,1 and tn+1,1

and solving for dn give

dn =
1

a2

(un − vn) (10)

8



for n ≥ 3, where

un =

{
c2bn + c3an−1 + c4bn−2 + · · ·+ cna2, if n is odd;
c2bn + c3an−1 + c4bn−2 + · · ·+ cnb2, if n is even;

vn =

{
a3cn−1 + a4dn−2 + · · ·+ anc2, if n is odd;
a3cn−1 + a4dn−2 + · · ·+ and2, if n is even;

with d1 = 1, d2 = b2c2/a2. A sequence D is now determined by (10); we shall refer to the
foregoing as part 1.

It is necessary to check that the equations sn+1,2 = tn+1,2 implied by

〈A;B〉 · 〈C;D〉 = 〈C;D〉 · 〈A;B〉

do not impose requirements on the sequence D that are not implied by those already shown
to determine D. In fact, the equations sn+1,2 = tn+1,2 with initial value d1 = 1 determine
exactly the same sequence D. To see that this is so, consider the mapping 〈A;B〉′ = 〈B;A〉 .
It is easy to prove the following lemma:

(〈A;B〉 · 〈C;D〉)′ = 〈B;A〉 · 〈D;C〉 .

By part 1 applied to 〈B;A〉 · 〈D;C〉 and 〈D;C〉 · 〈B;A〉 , the first column of 〈B;A〉 · 〈D;C〉
equals the first column of 〈D;C〉 · 〈B;A〉 . Therefore, by the lemma, the second column of
〈A;B〉·〈C;D〉 equals the second column of 〈C;D〉·〈A;B〉 , which is to say that the equations
sn+1,2 = tn+1,2 hold. ¥

Example 11. Let a1 = 1, a2 = 1, and an = 0 for n ≥ 3. Let B be the Fibonacci
sequence. Let C = (1, 1, 0, 1, 0, 0, . . .), with cn = 0 for n ≥ 5. Then D is given by
d1 = 1, d2 = 1, d3 = 2, and dn = Ln−1 for n ≥ 4, where (Ln) is the Lucas sequence, as
in Example 1. Writing 〈A;B〉 · 〈C;D〉 as 〈U, V 〉 , we have 〈U, V 〉 = 〈C;D〉 · 〈A;B〉, where
U = (1, 2, 1, 3, 4, 7, 11, 18, . . .) and V = (1, 2, 5, 9, 20, 32, 66, 105, 207, . . .).

5 Generalization of Theorem 4

It is natural to ask what sort of generalization Theorem 4 has for m ≥ 3. The notation
〈A;B〉 used for matrices in G

(2) is now generalized in the obvious manner to 〈A1, A2, . . . , Am〉
in G

(m), where Ai is a sequence (ai1, ai2, . . .) having ai1 = 1, for i = 1, 2, . . . ,m.

Theorem 4A. Suppose A1, A2, . . . , Am and Bi for some i satisfying 1 ≤ i ≤ m are given.

Then sequences Bj for j 6= i are uniquely determined by the condition that 〈A1, A2, . . . , Am〉·
〈B1, B2, . . . , Bm〉 be a sequential matrix. Conversely, suppose B1, B2, . . . , Bm and Ai for

some i satisfying 1 ≤ i ≤ m are given. Then sequences Aj for j 6= i are uniquely determined
by the condition that 〈A1, A2, . . . , Am〉 · 〈B1, B2, . . . , Bm〉 be a sequential matrix.

Proof: Let U = AB. For given A, each column of B uniquely determines the corresponding
column of U , and each column of U determines the corresponding column of B. Thus, under
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the hypothesis that a particular column Bi of B is given, the equation U = AB determines
the corresponding column of U . Consequently, as U is a sequential matrix, every column of
U is determined, and this implies that every column of B is determined.

For the converse, suppose B, together with just one column Ai of A, are given, and that
the product U = AB is sequential. As a first induction step,

a21b11 + a22b21 = a32b22 + a33b32 = · · · . (11)

As ai+1,i is given, equations (11) show that ah+1,h is determined for all h ≥ 1. Assume for
arbitrary k ≥ 1 that ah+j,h is determined for all j satisfying 1 ≤ j ≤ k, for all h ≥ 1. As U
is sequential,

ak+1,1b11 + ak+1,2b21 + · · ·+ ak+1,k+1bk+1,1

= ak+2,2b22 + ak+2,3b32 + · · ·+ ak+2,k+2bk+2,2

= · · · . (12)

As ak+i,i is given, equations (12) and the induction hypothesis show that ak+h,h is determined
for all h ≥ 1. Thus, by induction, A is determined. ¥

Theorem 4A shows that Theorem 4 extends to G
(m). The method of proof of Theorem

4A clearly applies to G, so that Theorem 4A extends to G.

6 Transformations involving divisors

We return to the general group (G, ·) for a discussion of several specific matrix transforma-
tions involving divisors of integers. The first is given by the left summatory matrix,

T (n, k) =

{
1, if k|n;
0, otherwise.

The inverse of T is the left Möbius transformation matrix. The matrices T and T −1 are
indexed as A077049 and A077050 in [4], where transformations by T and T−1 of selected
sequences in G are referenced. In general, if A is a sequence written as an infinite column
vector, then

T · A = {
∑

k|n

ak} and T−1 · A = {
∑

k|n

µ(k)ak},

that is, the summatory sequence of A and the Möbius transform of A, respectively.
Next, define the left summing matrix S = {s(n, k)} and the left differencing matrix

D = {d(n, k)} by

s(n, k) =

{
1, if k ≤ n;
0, otherwise.

d(n, k) =

{
(−1)n+k, if k = n or k = n− 1;
0, otherwise.
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Note that D = S−1.

Example 12. Suppose that a sequence C = (1, c2, c3, . . .) in G is transformed to a sequence
A = (1, a2, a3, . . .) by the sums an =

∑n
k=1 ckbn/kc. In order to solve this system of equations,

let U(n, k) = bn/kc for k ≥ 1, n ≥ 1. Then U = S · T, so that U−1 = T−1 ·D, which means
that

cn =
∑

d|n

µ(d)(an/d − an/d−1),

where a0 := 0. If an = 1 for every n ≥ 1, then cn = µ(n). If an = n, then C is the convolutory

identity, (1, 0, 0, 0, . . .). If an =

(
n+ 1
2

)
, then cn = ϕ(n). If an =

(
n+ 2
3

)
, then C is

the sequence indexed as A000741 in [4] and discussed in [1] in connection with compositions
of integers with relatively prime summands.
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