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Abstract: The integer sequences with first term 1 comprise a group G under convolution,
namely, the Appell group, and the lower triangular infinite integer matrices with all diagonal
entries 1 comprise a group G under matrix multiplication. If A € G and M € G, then
MA € G. The groups G and G and various subgroups are discussed. These include the
group G of matrices whose columns are identical except for initial zeros, and also the group
G® of matrices in which the odd-numbered columns are identical except for initial zeros and
the same is true for even-numbered columns. Conditions are determined for the product of
two matrices in G™ to be in G, Conditions are also determined for two matrices in G
to commute.

1 Introduction

Let G be the set of integer sequences (ay, as,as, ...) for which a; = 1. The notations A =
(ay,a9,as,...), B = (by,ba,b3,...), C = (c1,¢a,c3,...) will always refer to elements of G.

The finite sequence (a1, as, as,...,a,) will be denoted by A,, and likewise for B, and C,,.
Let * denote convolution; i.e., if C'= A x B, then

n
Cn = E akzbn—k—&—l)
k=1

which we shall sometimes write as A,, ® B,,, so that A x B is the sequence having A, ® B,
as nth term. Formally,

k=1 k=1
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In particular, if ¢; = 1 and ¢ = 0 for £ > 2, then the sequence B has generating function
1/(a1 + agz + azz® +---), and A and B are a pair of convolutory inverses.

Let G,, denote the group of finite sequences A,, under x; the identity is I,, = (1,0,0,...,0),
and A, ' is the sequence B, given inductively by b; = 1 and

n—1

bn = —Zan_k+1bk. (1)

k=1

for n > 2. The algebraic system (G, %) is a commutative group known as the Appell subgroup
of the Riordan group. Its elements, the Appell sequences, are special cases of the Sheffler
sequences, which play a leading role in the umbral calculus [}, Chapter 4]; however, the
umbral developments are not used in this paper. In G, the identity and A~! are the limits
of I, and A;'. (Here, limits are of the combinatorial kind: suppose ji,j2,J3,... iS an
unbounded nondecreasing sequence of positive integers and {a; ;} is a sequence of sequences
such for each i,

(a/k,b ak,27 ak,37 s 7ak,j¢) = (ai,la ai,Qa ai,37 s 7a’i,j¢)

for every k > i. Then
lim (a;1, a2, a;g, . . .)

1—00

is defined as the sequence (ai,as,as,...) such that for every n there exists ig such that if
1 > 19, then
(a1,as,a3,...,a,) = (az‘,h Ai2,A;3; - .- , Gin)-)

The study of the group (G, *), we shall soon see, is essentially that of a certain group of
matrices. However, we shall consider first a more general group of matrices.

For any positive integer n, let G,, be the set of lower triangular n x n integer matrices
with all diagonal entries 1, and let - denote matrix multiplication. Then (G,, ) is a non-
commutative group. Now let G denote the set of lower triangular infinite integer matrices
with all diagonal entries 1. In such a matrix, every column, excluding the zeros above the
diagonal, is an element of G, and (G, -) is a noncommutative group. Properties of matrices
in G arise via limits of those of matrices in G,. For example, if M = (m;;) € G, then the
matrix M, := (m;;), where 1 <i <n and 1 < j <n, is an element of G,,, and

V= i v
It is easy to check that if A € G and M € G, then M - A € G; here A is regarded as an
infinite column vector.

Among subgroups of G is the Riordan group (in the case that the coefficients are all
integers) introduced in [[JJ. Although the Riordan group will not be further discussed in
this paper, the reader may wish to consult the references listed at A053121 (the Catalan
triangle) in [[]].

Suppose T' = (t1,ta,1t3,...) € G. Let T be the matrix in G whose ith row is

ti,ti_l,...,tl,0,0...,



so that the first column of T is T, and each subsequent column contains 7" as a subsequence.
Let G be the set of all such matrices T. If T and U in G have first columns 7" and U,
respectively, then the first column of T - U is the sequence T'x U, and T - U € GW. Clearly,
(GM,.) is isomorphic to (G, *). Matrices in G will be called sequential matrices.

One more property of the group G, with easy and omitted proof, will be useful: if
M = (my;) € G and f(M) := ((—=1)"m,;), then

(f(M))~ = f(M7h). (2)

2 The Appell group (G, *)

The first theorem in this section concerns the convolutory inverse of a linear recurrence
sequence of order m > 2.

Theorem 1. Suppose m > 2, and a; = 1,as,...,a,, are initial values of an mth order
recurrence sequence given by

Ap = U1Ap—1 + UoQp—2 + -+ U Qp—m + T'n—m (3)

for n > m+ 1, where uy,us, ..., Uy and r1,79,73,... are integers and u,, # 0. Then the
convolutory inverse, B, of A, is a sequence

(L,ba, .o by b1, b2y - - -

for which the subsequence (byyo,bmas,...) satisfies

—1
bn - bn—kck - Bn—m ® Rn—m7
1

3

£
Il

where
k

Cp = —Qk4+1 + E UjQf41—j
=1

for n>m+ 2.
Proof: By (1), by =ay; = 1. Also, by = —as, and
b, = —apbi — ap_1by — - -+ — asb,
for n > 3. For the rest of this proof, assume that n > m + 2, and for later convenience, let
Sp = —Qpby — ap_1by — -+ — apaobp_m_1.

For n > m + 2 (but not generally for n = m + 1), the recurrence (1) gives

n—m—1 m

Zukbn,k = — Z b; Zukanfkfj#l - U,
k=1

j=1 k=1



where

U= Uk ajbn k—j+1
k=1 j=2
Then
n—m—1
Zukbnfk = - bj(@nt1-j — Tng1—j—m) = U
— j=1
n—m—1
= Sn+ Z bjrn+1—j—m —-U
j=1
m—+1 n—m-—1
= bn + Z Cljbn_H_j + Z bjrn+1—j—m — U7
so that
m m+41 n—m—1
= Zukbn,k — Z ajbnﬂ,j — Z bjrnJrlfjfm + U. (4)
k=1 j=2 j=1

Now put n = m+1 into (3) and substitute in (4) for a,,;1. The resulting coefficient of b,,_,,
is —ry, and (4) simplifies to

m—1 m m—2 m—k n—m
bn = ukzbn—k_ E 6ijn—‘rl ] U, E a n—k—j+1 = g b; T n+1—j—m
k=1 j=2 k=1 j=1
m—1
= bn k( Af+1 + E UjAk+1— E b Tntl1—j—m n
k=1 7=1 =

Corollary 1. If the recurrence for A in (3) is homogeneous of order m > 2, then the

recurrence for the sequence (by, bs, bg, . . .) is of order m — 1. If m = 2, then the convolutory
inverse of A is the sequence

(bl, bg, bg, .. ) = (1, — Qg, f, (Ul — (lz)f, ('Lbl — a2)2f, (Ul — a2)3f, .. .),
where f = a3 — as.

Proof: Homogeneity of a means that r, = 0 for n > 1, so that b, = Z:ll crby_y for
n>m+ 2. [ ]

Example 1. The Fibonacci sequence, A = (1,1,2,3,5,8,...), hasinverse (1, —1,—1,0,0,0,0,0, .. .).

Example 2. The Lucas sequence, A = (1,3,4,7,11,18,...), has inverse, (1, —3,5, —10, 20, —40, 80, . . .),
recurrent with order 1 beginning at the third term.



Example 3. Let A be the 2nd-order nonhomogeneous sequence given by a; = 1, ay =
1, and a, = an_1 + ap_o2 +n — 2 for n > 3. The inverse of A is the sequence B =
(1,-1,-2,-1,1,4,6,4,—4,—11,...) given for n > 4 by

bn = _Bn—2 ® Rn—2 = _(b17b27 e 7bn—2) * (17273a s — 2)

Example 4. Suppose that A and C are sequences in G. Since G is a group, there exists B
in G such that A = Bx (. For example, if A and C' are the Fibonacci and Lucas sequences
of Examples 1 and 2, then

B=AxC"1=(1,-2,4,-816,...),
a lst-order sequence.

Theorem 2. Let B = (1,b9,bs,...) be the convolutory inverse of A = (1,as,as,...), and
let A = (1,—ag,as, —aq,as,—ag,...). Then the convolutory inverse of A is the sequence
B = (17 _b27 b37 _b47 b57 _b67 . )

Proof: Apply (2) to the subgroup G™) of sequential matrices. |
Example 5. Let A be the sequence given by a, = |n7], where 7 = (1 ++/5)/2. Then
A=(1,3,4,6,809,11,12,...) and A\ =(1,-3,5 9,17, 30,52, —90,...).
Let A be the sequence given by a, = (—1)""*|n7|. Then
A=(1,-3,4,—6,8,—9,11,-12,...) and A~'=(1,3,5,9,17,30,52,90,...).

2n — 2
n—1

Example 6. Let A be the Catalan sequence, given by a, = + <

n

>. Then
A = (1,1,2,5,14,42,132,429, 1430, . . .)
A™Y = (1,-1,-1,-2, -5, —14, 42, —132,.. ).

Example 7. Let A be the sequence of central binomial coefficients, given by a, =

2n — 2
( ) , Then

n—1

A=(1,2,6,20,70,252,924,...) and A '=(1,-2,-2,—4,—10, 28, —84, —264,...),
with obvious connections to the Catalan sequence.

Certain operations on sequences in G are easily expressed in terms of convolution. Two
of these operations are given as follows. Suppose x is an integer, and A = (1,as,as,...) is
a sequence in G, with inverse B = (1,bs,bs,...). Then

(1, zas, xas, xaq ...) = (1, (1 —2)by, (1 —x)b3, (1 —2)by,...)*x A



and
(1, z, ag, as,...) = (1, x + by, (x—1)bg + b3, (x —1)bg+ by,...)* A.

Stated in terms of power series
a(t) =14 agt +ast* +--- and 1/a(t) = b(t) = 1+ bot + bst* +-- -,
the two operations correspond to the identities

za(t)+1—az = [(1—2)b(t) + x]a(t);
ta(t)+ 1+ (x— 1)t = {b(t)+ [(z — 1)b(t) + 1]t}a(t).

3 The group (G, )

Recall that the set G consists of the lower triangular infinite integer matrices with all diagonal
entries 1. Define " on G as follows: if A € G, then A’ is the matrix that remains when row
1 and column 1 of A are removed. Clearly A’ € G. Define

AO = A Al — (A(nfl))/

for n > 1. Let
G™ ={AcG:AM = A}

for m > 0. Note that (G(!),-) is the group of sequential matrices introduced in Section 1,
and G C G if and only if d|m.

Theorem 3. (G™) ) is a group for m > 0.

Proof: (G ).) is the group (G,-). For m > 1, first note that (AB)" = A'B’, so that,
inductively, (AB)@ = A@WBW for all ¢ > 1. In particular, if A and B are in G™), then

(AB)(m) = AM B — AB,

so that AB € G(™). Moreover,

so that A1 € G(™). [ ]

4 The group (G?,.)

Suppose that A, B, C, D are sequences in G. Let (A; B) denote the matrix in G® whose first
column is A = (ay, as, . . .) and whose second column is (0, by, bs, ...), where a; = by = 1. We

shall see that the product (A; B) - (C; D) is given by certain “mixed convolutions.” Write
(A; B) - (C; D) as (U; V). Then

~f (a1,b9,a3,...,by_1,a,) % (c1,Ca,...,cy), if nisodd;
7 (bras, b, if 1 is even;
(b1, a2,b3, ..., by_1,a,) % (c1,¢2,...,¢y), if m is even;

6



v _{ (bl,a2,b3,...,an_l,bn)*(dl,dg,...,dn), if n is Odd,

(a1,be,as,...,an_1,b,) x (dy,ds,...,d,), if nis even.

In particular (A; B) - (B; A) is the sequential matrix of the sequence A x B.
Recursive formulas for columns of (A; B) ™" can also be given: write (4; B) ™" as (X;Y
)

S )
so that (A; B) - (X;Y) is the identity matrix. Each nondiagonal entry of (A; B) - (X;

1S

zero, so that, solving inductively for x1, zo, x3,... and y1, vy, y3, ... gives
—Qp — bp_1T9 — Ap_ox3 — -+ — box,_q, if n is odd;
T, = P . (5)
—Qp — by 179 — Ap_ox3 — -+ - — agx,_1, if n is even,
_ —bp — @p_1Y2 — by_2ys — -+ — a2Yp—1, if nis odd; (6)
In _bn — Gp—1Y2 — bn—2y3 - b?yn—la if n is even.

Example 8. Example 6 shows that the Catalan sequence satisfies the equation
(1, ag, as, . . .)_1 = (1, —1, —a9, —as, .. .),

which we abbreviate as A™! = (1, —A). It is natural to ask whether there are sequences A
and B for which

(A;B)™ = (1,-4; B). (7)
This problem is solved as follows. Write the first and second columns of (1, —A; B) as
(1,z9,23,...) and (0,1,y2,ys,...), respectively.  Equation (7) implies x,, = —a,_; and

Yn = b, for n > 2. Thus, by = ys, but also, by (6), yo = —bo, so that by = 0. Inductively,
(6) and (7) imply b, = 0 for all n > 3, so that B is the convolutory identity sequence:
B =(1,0,0,0,...). Using this fact together with (5) gives

—Qyp — QAp_9T3 — Op_gy Ty — *++ — A2Tp_1, if IS even;
Ty = P
—Qp — Ap—9T3 — Op_y Ty — *++ — A3Tp_o, if n is odd;
so that, substituting x;, = —ag_1, we have a recurrence for A:

Q-1 + Qp_9ao + Ap_gay + - - + asa,_o if n is even;
ap = e
A1 + Qp_oao + ap_gaq + - -+ + aza,—3 if n is odd;

with intial values a; = 1, ap = 1. This sequence, listed as A047749 in [4], is given by

1 (Sm), if n = 2m;

2m—+1 m
a =
" 3m+1 .
1 _

Example 9. Let a, =1 and b, = F,, for n > 1, where F}, denotes the Fibonacci sequence
in Example 1. Let C' be the sequence given by ¢; = 1, ¢co = —1, ¢c3 = 0, ¢4 = 1, and
cn = 2L=9/2] for n > 5. Let D be the sequence given by d; = 1, dy = —1, d3 = —1, and
d,, = —Cpyy for n>dy. Then (A; B)™' = (C; D).

7



Theorem 4. If any three of four sequences A, B,C,D in G are given, then the fourth
sequence is uniquely determined by the condition that (A; B) - (C; D) be a sequential matriz.

Proof:  The requirement that (A; B) - (C; D) be a sequential matrix is equivalent to an
infinite system of equations, beginning with

d =1
bg + d2 = ag+Co
bg + a2d2 + d3 = as+ bQCQ + c3.

For n > 3, the system can be expressed as follows:

bn + an_ldg + bn_gdg + -+ hgdn_1 + dn
= ap+ by 16+ apnocs+ -+ hycpq + cp, (8)

where hy = ay if n is odd, he = by if n is even; and hf, = by if n is odd, h} = ay if n is even.
Equations (8) show that each of the four sequences is determined by the other three.
|

Example 10. By (8), D is determined by A, B, C' in accord with the recurrence

dy = ap+Coby 1+ C3a, 0+ Caby 3+ -+ cn1hy+c,
—bp — daay_1 — d3by_o — dsap_3- -+ — dp_1hs. 9)

Suppose a, = b, = ¢,_5 =0 for n > 3. Then by (9),

q - —bod,,_1 — asd,_o, if n is even;
"o —azdn_l — bgdn_z, if n is Odd,

for n Z 4, with d1 = 1, d2 = a9 — bg, d3 = asz — agdg — bgdl. If (al,ag,ag) = (]_, —1, —1) and
(bl,bg, bg) = (1, —2, —1) and cC1 = 1, then

D = (1,1,1,3,4,11,15,41,56,153, ...),

which, except for the initial 1, is the sequence of denominators of the convergents to v/3,
indexed in [4] as A002530. In this example, (A; B) - (C; D) is the sequential matrix with
first three terms 1, —1, —1 and all others zero.

Theorem 5. If A, B,C in G are given and |as| = 1, then there exists a unique sequence
D in G such that (A; B) - (C; D) = (C; D) - (A; B).

Proof: Write (A4; B) - (C; D) as (s;;) and (C; D) - (A; B) as (t;;). Equating s, 411 and t,411
and solving for d,, give

dy = —(up — vp) (10)



for n > 3, where

T Coby + 3,1 + C4by_o + - - - + cpao, if nis odd;
no Coby, + C30p_1 + Cabp_o + -+ - + by, if 1 is even;
a3Cn_1 + a4dy,_o + + -+ + ayce, if nis odd;
Uy = P
a3Cn_1 + a4d,_o + -+ + a,dy, if n is even;

with dy = 1, dy = bacy/as. A sequence D is now determined by (10); we shall refer to the
foregoing as part 1.
It is necessary to check that the equations s,412 = t,412 implied by

(A; B) - (C; D) =(C; D) - (A; B)

do not impose requirements on the sequence D that are not implied by those already shown
to determine D. In fact, the equations s,419 = t,412 With initial value d; = 1 determine
exactly the same sequence D. To see that this is so, consider the mapping (A4; B)' = (B; A) .
It is easy to prove the following lemma:

((4;B) - (C; D))" = (B; A) - (D; C).

By part 1 applied to (B; A) - (D;C) and (D;C) - (B; A), the first column of (B; A) - (D; C)
equals the first column of (D;C) - (B; A). Therefore, by the lemma, the second column of
(A; B)-(C; D) equals the second column of (C; D)-(A; B) , which is to say that the equations
Sn+1,2 = tn+172 hold. [ |

Example 11. Let a; = 1, a3 = 1, and a, = 0 for n > 3. Let B be the Fibonacci
sequence. Let C' = (1,1,0,1,0,0,...), with ¢, = 0 for n 5. Then D is given by
d =1,dy, =1,d3 =2, and d,, = L, for n > 4, where (L,) is the Lucas sequence, as

) (C; D) - (A; B), where

>

)
in Example 1. Writing (A; B) - (C; D) as (U,V), we have (U,V) =

07,...).

U=(1,21,3,4,7,11,18,...) and V = (1,2,5,9, 20, 32, 66, 105, 2

5 Generalization of Theorem 4

It is natural to ask what sort of generalization Theorem 4 has for m > 3. The notation
(A; B) used for matrices in G is now generalized in the obvious manner to (A, Ay, ..., A,,)
in G, where A; is a sequence (a1, a0, ...) having a;q =1, for i = 1,2,...,m.

Theorem 4A. Suppose A1, As, ..., A, and B; for some i satisfying 1 < i < m are given.
Then sequences B; for j # i are uniquely determined by the condition that (Aq, A, ..., Apy)-
(B1, Ba, ..., Bp) be a sequential matriz. Conversely, suppose By, Bs,..., B, and A; for
some i satisfying 1 < ¢ < m are given. Then sequences A; for j # i are uniquely determined
by the condition that (Ay, Ao, ... Ap) - (B1, By, ..., By) be a sequential matriz.

Proof: Let U = AB. For given A, each column of B uniquely determines the corresponding
column of U, and each column of U determines the corresponding column of B. Thus, under



the hypothesis that a particular column B; of B is given, the equation U = AB determines
the corresponding column of U. Consequently, as U is a sequential matrix, every column of
U is determined, and this implies that every column of B is determined.

For the converse, suppose B, together with just one column A; of A, are given, and that
the product U = AB is sequential. As a first induction step,

a21011 4 a22bo1 = asabag 4 aszbsy = -+ - . (11)

As a;4q; is given, equations (11) show that aj4q ) is determined for all A > 1. Assume for
arbitrary k > 1 that ap,j is determined for all j satisfying 1 < j <k, forall h > 1. AsU
is sequential,

k41,1011 + apg1,2001 + -+ g1 pp1begi

k42,2020 + Apg23b30 + -+ - + Apgo pr2bita2
N (12)

As ayy;; is given, equations (12) and the induction hypothesis show that aj.p, 5 is determined
for all A > 1. Thus, by induction, A is determined. [

Theorem 4A shows that Theorem 4 extends to G™. The method of proof of Theorem
4A clearly applies to G, so that Theorem 4A extends to G.

6 Transformations involving divisors

We return to the general group (G, ) for a discussion of several specific matrix transforma-
tions involving divisors of integers. The first is given by the left summatory matrix,

1, itk
T(n. k) = { 0, otherwise.

The inverse of T is the left Mobius transformation matrix. The matrices 7" and T! are
indexed as A077049 and A077050 in [[], where transformations by 7" and T~! of selected
sequences in G are referenced. In general, if A is a sequence written as an infinite column
vector, then

T-A= {Z ai} and T A= {Z p(k)a},

that is, the summatory sequence of A and the Mdbius transform of A, respectively.
Next, define the left summing matriz S = {s(n,k)} and the left differencing matriz
D ={d(n,k)} by

1, itk <n
s(n,k) = {O, otherwise.

B (=)t ifk=nork=n—1;
d(n, k) = { 0, otherwise.

10



Note that D = S1.

Example 12. Suppose that a sequence C' = (1, ¢, ¢3,...) in G is transformed to a sequence
A= (1,as,as,...) by thesums a, = Y_,_, ¢x[n/k|. Inorder to solve this system of equations,
let U(n,k) = |n/k] for k>1,n>1. Then U =S -T, so that U~' =T~ D, which means
that
en =Y i(d)(@nsa = anya-1),
dln

where ag := 0. If a,, = 1 for every n > 1, then ¢, = u(n). If a,, = n, then C'is the convolutory
identity, (1,0,0,0,...). Ifa, = < n—21- : ) , then ¢, = p(n). If a, = ( n—?i)—Z ) , then C'is

the sequence indexed as A000741 in [[]] and discussed in [[[] in connection with compositions
of integers with relatively prime summands.
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