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Abstract

Aronson’s sequence 1, 4, 11, 16, ... is defined by the English sentence “t is the
first, fourth, eleventh, sixteenth, ... letter of this sentence.” This paper introduces
some numerical analogues, such as: a(n) is taken to be the smallest positive integer
greater than a(n — 1) which is consistent with the condition “n is a member of the
sequence if and only if a(n) is odd.” This sequence can also be characterized by its
“square”, the sequence a®(n) = a(a(n)), which equals 2n + 3 for n > 1. There are
many generalizations of this sequence, some of which are new, while others throw new
light on previously known sequences.

1. Introduction

Aronson’s sequence is defined by the English sentence “t is the first, fourth, eleventh,
sixteenth, ... letter of this sentence (not counting spaces or commas),” and is a classic
example of a self-referential sequence ([fJ], [H], sequence M3406 in [[[], in [[7). Tt
is somewhat unsatisfactory because of the ambiguity in the English names for numbers
over 100 — for example, some people say “one hundred and one”, while others say “one
hundred one.” Another well-known example is Golomb’s sequence, in which the n** term

G(n) (for n > 1) is the number of times n appears in the sequence (AT167 in [[F]):

1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7,8, ...
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There is a simple formula for G(n): it is the nearest integer to (and approaches)
¢ ont

where ¢ = (1 ++/5)/2 ([, [, Section E25]).

Additional examples can be found in Hofstadter’s books [[]|, [H] and in [[J and [[J]].
However, the sequence {a(n)} mentioned in the Abstract appears to be new, as do many
of the other sequences we will discuss. We will also give new properties of some sequences
that have been studied elsewhere.

Section [] discusses the sequence mentioned in the Abstract, and also introduces the
“square” of a sequence. Some simple generalizations (non-monotonic, “even” and “lying”
versions) are described in Section [J. The original sequence is based on examination of the
sequence modulo 2. In Section [l] we consider various “mod y” generalizations. Section [J]
extends both the original sequence and the “mod y” generalizations by defining the
“Aronson transform” of a sequence. Finally, Section [] briefly considers the case when
the rule defining the sequence depends on more than one term.

There are in fact a large number of possible generalizations and we mention only
some of them here. We have not even analyzed all the sequences that we do mention.
In some cases we just list the first few terms and invite the reader to investigate them
himself. We give the identification numbers of these sequences in [[[J] — the entries
there will be updated as more information becomes available.

We have also investigated sequences arising when (f]) is replaced by the following
rule: s(1) = z,s(n) = s(n — 1) + y if n is already in the sequence, s(n) = s(n — 1) + z
otherwise, for specified values of x,y, z. This work will be described elsewhere [[I].

Notation. “Sequence” here usually means an infinite sequence of nonnegative num-
bers. “Monotonically increasing” means that each term is strictly greater than the
previous term. P = {1,2,3,...}, N={0,1,2,3,...}.

2. n is in the sequence if and only if a(n) is odd

Let the sequence a(1), a(2), a(3),... be defined by the rule that a(n) is the smallest
positive integer > a(n — 1) which is consistent with the condition that

“n is a member of the sequence if and only if a(n) is odd.” (1)

The first term, a(1), could be 1, since 1 is odd and 1 would be in the sequence. It
could also be 2, since then 1 would not be in the sequence (because the terms must
increase) and 2 is even. But we must take the smallest possible value, so a(1) = 1. Now
a(2) cannot be 2, because 2 is even. Nor can a(2) be 3, for then 2 would not be in the
sequence but a(2) would be odd. However, a(2) = 4 is permissible, so we must take
a(2) = 4, and then 2 and 3 are not in the sequence.

So a(3) must be even and > 4, and a(3) = 6 works. Now 4 is in the sequence, so
a(4) must be odd, and a(4) = 7 works. Continuing in this way we find that the first few



terms are as follows (this is [A79000):
n: 1
1

7 8 9 10 11 12
a(n) : 1

2 3 45 6
4 6 78 9 11 13 15 16 17 18

Once we are past a(2) there are no further complications, a(n — 1) is greater than n,
and we can, and therefore must, take

a(n)=a(n—1)+¢€, (2)

where € is 1 or 2 and is given by:

n in sequence 1 2
n not in sequence 2 1

The gap between successive terms for n > 3 is either 1 or 2.

The analogy with Aronson’s sequence is clear. Just as Aronson’s sentence indicates
exactly which of its terms are t’s, {a(n)} indicates exactly which of its terms are odd.

We proceed to analyze the behavior of this sequence.

First, all odd numbers > 7 occur. For suppose 2t + 1 is missing. Therefore a(i) = 2t,
a(i+1) = 2t + 2 for some i > 3. From the definition, this means ¢ and i + 1 are missing,
implying a gap of at least 3, a contradiction.

Table [] shows the first 72 terms, with the even numbers underlined.

Examining the table, we see that there are three consecutive numbers, 6, 7, 8, which
are necessarily followed by three consecutive odd numbers, a(6) =9, a(7) = 11, a(8) =
13. Thus 9 is present, 10 is missing, 11 is present, 12 is missing, and 13 is present.
Therefore the sequence continues with a(9) = 15 (odd), a(10) = 16 (even), ..., a(13) =
19 (odd), a(14) = 20 (even). This behavior is repeated for ever. A run of consecutive
numbers is immediately followed by a run of the same length of consecutive odd numbers.

Let us define the k™ segment (for k > 0) to consist of the terms a(n) with n =
9.2% — 34+ j where —3-2F < j < 3.2F — 1. In the table the segments are separated
by vertical lines. The first half of each segment, the terms where j < 0, consists of
consecutive numbers given by a(n) = 12 - 2% — 3 + j; the second half, where j > 0,
consists of consecutive odd numbers given by a(n) = 12 - 2¥ — 3 4 2. We can combine
these formulae, obtaining an explicit description for the sequence:

a(l)=1, a(2) =4,
and subsequent terms are given by
3 1
a(9-2k—3+j):12.2k—3+§j+§|j| (3)

for k>0, —3-2F <j<3.2k
The structure of this sequence is further revealed by examining the sequence of first
differences, Aa(n) = a(n+ 1) —a(n), n > 1, which is

3,2,1,1,1,2,2,2,15 26 112 212 124 924 (4)

3
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: 3
an): 1 4] 6 7 8 9 11 13|15 16

n: 11 12 13 14 15 16 17 18 19 20
a(n): 17 18 19 20 21 23 25 27 29 31

n: 21 22 23 24 25 26 27 28 29 30
a(n): 33 34 35 36 37 38 39 40 41 42

n: 31 32 33 34 35 36 37 38 39 40
a(n): 43 44 45 47 49 51 53 55 57 59

n: 41 42 43 44|45 46 47 48 49 50
a(n): 61 63 65 67|69 70 71 72 73 T4

n: 51 52 53 54 55 56 57 58 59 60
a(n): 75 76 77 78 79 80 81 82 83 84

n: 61 62 63 64 65 66 67 68 69 70
a(n): 85 86 87 83 89 90 91 92 93 95

n: 71 72
a(n): 97 99

Table I: The first 72 terms of the sequence “n is in the sequence if and only if a(n) is
odd.”

(A7994Y), where we have written 1™ to indicate a string of m 1’s, etc. The oscillations
double in length at each step.

Segment 0 begins with an even number, 6, but all other segments begin with an odd
number, 9 - 2 — 3. All odd numbers occur in the sequence except 3 and 5. The even
numbers that occur are 4, 6, 8 and all numbers 2m with

9.2l _1<m<6-28-2, k>1.

The sequence of differences, ([]), can be constructed from the words in a certain
formal language (cf. [[LI]). Let the alphabet be A = {1,2,3}, and let A* denote the
set of strings of elements from A. We define a mapping 6 from A* to A* by the rules
6(1) =2,0(2) =1,1. Then ([]) is the concatenation

5717507517527”' 3 (5)

where

S_1 = {3,2}, SO = {1, 1, 1}, Sk—i—l = Q(Sk) for k > 0. (6)

To prove this, note that for n > 3, a difference of 2 only occurs in {a(n)} between a pair
of odd numbers. Suppose a(i) = 2j+1,a(i+1) = 25+ 3; then a(2j+ 1) = 2z + 1 (say),

4
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a(2j+2) =2z +2,a(2j 4+ 3) = 2z + 3, producing two differences of 1. Similarly, if there
is a difference of 1, say a(i) = j,a(i+1) = j+ 1, then a(j) =2z + 1,a(j + 1) = 2z + 3,
a difference of 2.

The ratio n/a(n), which is the fraction of positive integers in the sequence that are
less than or equal to a(n), rises from close to 2/3 at the beginning of segment k (assuming
k is large), reaches a maximum 3/4 at the midpoint of the segment, then falls back to
2/3 at the end of the segment. It is not difficult to show that if n is chosen at random
in the k" segment then the average value of the fraction of numbers in the sequence at
that point approaches

1 32
“og ==
1 og o7 = 0.7075.

3
4
for large k.

The sequence has an alternative characterization in terms of its “square.”

The square of a sequence s = {s(n) : n > ng} is given by s® = {s(s(n)) : n > ny}.
If s is monotonically increasing so is s(?

Lemma 1. Let s be monotonically increasing. Then n (> ng) is in the sequence s if

and only if s(n) is in the sequence s,

Proof. If n is in the sequence, n = s(i) for some i > ng, and s(n) = s(s(i)) is in s®.
Conversely, if s(n) € s, s(n) = s(s(i)) for some i > ng, and since s is monotonically
increasing, n = s(i). =

For our sequence a = {a(n)}, examination of Table [| shows that a® = {1,5,7,9,11,.
{1} U 2P + 3. This can be used to characterize a. More precisely, the sequence can be
defined by: a(l) = 1, a(2) = 4, a(3) = 6 and, for n > 4, a(n) is the smallest posi-
tive integer which is consistent with the sequence being monotonically increasing and
satisfying a(a(n)) = 2n + 3 for n > 2.

This is easily checked. Once the first three terms are specified, the rule a(a(n)) =
2n + 3 determines the remaining terms uniquely.

In fact that rule also forces a(2) to be 4, but it does not determine a(3), since
there is an earlier sequence {a’(n)} (in the lexicographic sense) satisfying o/(1) = 1,
a'(a’'(n)) = 2n + 3 for n > 2, namely

1,4,5,7,9,10,11,12,13,15,17,19,21,22, .. .,
(ES0590), and given by a'(1) = 1,

4 3. 1.
a’(6-2k—3+j):8-2k—3+§j+§|]| (7)
for k>0, =2k < j < 2k+1,
As the above examples show, the square of a sequence does not in general determine
the sequence uniquely. A better way to do this is provided by the “inverse Aronson
transform”, discussed in Section [
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3. First generalizations

The properties of {a(n)} given in Section [] suggest many generalizations, some of which
will be discussed in this and the following sections.

(3.1) Non-monotonic version. If we replace “a(n) > a(n — 1)” in the definition
by “a(n) is not already in the sequence”, we obtain a completely different sequence,
suggested by J. C. Lagarias [[(]: b(n), n > 1, is the smallest positive integer not already
in the sequence which is consistent with the condition that “n is a member of the
sequence if and only if b(n) is odd.” This sequence (A79313) begins:

n: 1 2 3 4 5 6 7 8 9 10
bn): 1 3 5 2 7 8 9 11 13 12
n: 11 12 13 14 15 16 17 18 19 20
b(n): 15 17 19 16 21 23 25 20 27 29

The even members are underlined. The behavior is simpler than that of {a(n)}, and we
leave it to the reader to show that, for n > 5, b(n) is given by

b4t —2) =

b(dt — 1) = 6t —
b(4t) = 6t— 1

b4t +1) = 6t+1.

All odd numbers occur. The only even numbers are 2 and 4¢, t > 2. (The square b(® is
not so interesting.)

(3.2) “Even” version. If instead we change “odd” in the definition of {a(n)} to
“even”, we obtain a sequence c¢ which is best started at n = 0: ¢(n), n > 0, is the
smallest nonnegative integer > ¢(n — 1) which is consistent with the condition that

“n is a member of the sequence if and only if ¢(n) is even.” (8)

This is[A79253: 0, 3, 5, 6,7, 8, 10, 12, 14, 15, .. .. It is easily seen that ¢(n) = a(n+1)—1
for n > 0, so there is nothing essentially new here. Also c® = {0} U 2P + 4.

(3.3) The “lying” version. The lying version of Aronson’s sequence is based on the
completely false sentence “t is the second, third, fifth, sixth, seventh, ... letter of this
sentence.” The sentence specifies exactly those letters that are not t’s, and produces the
sequence (AST02]) 2, 3, 5, 6, 7, 8,9, 10, 11, 12, .. ..

Just as {a(n)} is an analogue of Aronson’s sequence, we can define an analogue
{d(n) : n > 1} of this sequence by saying that: d(n) is the smallest positive integer
> d(n — 1) such that the condition “n is in the sequence if and only if d(n) is odd” is
false. Equivalently, the condition “either n is in the sequence and d(n) is even or n is

6
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not in the sequence and d(n) is odd” should be true. The resulting sequence ([AS0657)
begins 2, 4, 5, 6, 8, 10, 11, 12, 13, 14, .... We will give an explicit formula for d(n) in
the next section.

A related sequence is also of interest. Let {d'(n)} be defined by d'(1) = 2, and, for
n > 1, d'(n) is the smallest integer greater than d’'(n — 1) such that the condition “n and
d'(d'(n)) have opposite parities” can always be satisfied. One can show that this is the

sequence
2,4,5,7,8,9,11,12,13,14, 16, . . .

(AT1133), the complement of the triangular numbers (A217), with d’'(n) = n + (nearest
integer to v/2n).

4. The “mod m” versions

Both {a(n)} and {c(n)} are defined modulo 2. Another family of generalizations is
based on replacing 2 by some fixed integer y > 2. To this end we define a sequence
{s(n) : n > ng} by specifying a starting value s(ng) = sg, and the condition that n is in
the sequence if and only if s(n) = z (mod y), where y and z are given.

Although we will not digress to consider this here, it is also of interest to see what
happens when “if and only if” in the definition is replaced by either “if” or “only if.”
(We mention just one example. The above sequence {d(n)}, prefixed by d(0) = 0, can
be defined as follows: d(n) is the smallest nonnegative number > d(n — 1) such that the
condition “n (n > 0) is in the sequence only if d(n) is even” is satisfied.)

We saw in the previous section that {a(n)} can also be characterized by the property
that its square a®(n) = a(a(n)) is equal to 2n 43 for n > 2 (together with some appro-
priate initial conditions). This too can be generalized by specifying that the sequence
{s(n)} satisty s(s(n)) = yn+ z, for given values of y and z. The two generalizations are
related, but usually lead to different sequences. The s(s(n)) family of generalizations
will connect the present investigation with several sequences that have already appeared
in the literature. There are too many possibilities for us to give a complete catalogue of
all the sequences that can be obtained from these generalizations. Instead we will give a
few key examples and one general theorem. Many other examples can be found in [[].

A simple “mod 3" generalization is: e(1) = 2, and, for n > 1, e(n) is the smallest
integer > e(n — 1) which is consistent with the condition that

“n is a member of the sequence if and only if e(n) is a multiple of 3.” (9)
This turns out to be James Propp’s sequence
2.3,6,7,8,9,12,15,18,19, ... |,

which appeared as sequence M0747 in [[J] (R360] in [[J]). Propp gave a different
(although equivalent) definition involving the square of the sequence: {e(n)} is the

unique monotonically increasing sequence satisfying e(e(n)) = 3n for all n > 1. Michael
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Somos [[[]] observed that this sequence satisfies
e(3n) = 3e(n),
(

e(Bn+1) = 2e(n)+e(n+1),
e(3n+2) = e(n)+2e(n+1). (10)

o

An analysis similar to that for {a(n)} leads to the following explicit formula, which
appears to be new:

e(2-3% +4) = 3"+ 2j + il (11)
forkZOand—3k§j<3k.

A sequence closely related to {e(n)} had earlier been studied by Arkin et al. [}, Eq.
(12)]. This is the sequence €'(n) = e(n) — n (AGIGO). Arkin et al. give a recurrence
similar to ([[(]J). The sequences defined by recurrences s(s(n)) = kn for k > 4 have
recently been studied by Allouche et al. [I].

The sequence {e(n)} can be generalized as follows.

Theorem 2. Let y and z be integers of opposite parity satisfying

Then there is a unique monotonically increasing sequence { f(n)} satisfying f(1) = %(y—i—
z41) and f(f(n)) =yn+ z forn > 1. It is given by

z . z y+1. y—1
f<clyk_ﬁ+j>zc2yk+l_y_1+ 5 I+ =5l (13)

for k >0, where
y+z—1 . o y+z—1
<y < ——"

<
2 =/ 2
and
(y+1(y+2z—-1) y+z—1
= N ——
2(y — 1) y—1

Proof. Tt is easy to see that the sequence {s(n)} defined by

(y+1)n —2f(n) + =z

s(n) = —

is a “saw-tooth” sequence of the form
0,1,2,3,...,3,2,1,0,1,2,3,4,5,6,...,6,5,4,3,2,1,0,1,2,3,... ,

where the 0’s occur at

_ k __
(y+2z—-1)(y" —1) for k>0 .
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Consequently the k-th “tooth” 0,1,2,3,...,3,2,1,0 contains (y + z — 1)y* terms and
reaches a maximal value of (y+z—1)y*/2. Then from simple considerations of symmetry,
for any k > 0 and any j such that |j| < (y + 2z — 1)y*/2, we have

+z -1 -1 +2z -1yt +2z-1 ,
. (1_+_(y =Dyt =1)  (ytz—1y +_]) _ (y+= )yk<_,]"
y—1 2 2
In other words,
+z-Dy+1) , =z +z-1) , .
_ = - ) 15
s( S AT R 5y il (15)

Equation ([) follows from ([4) and ([[). =

It can be shown (we omit the details) that this sequence can also be defined by:
f(1) = (y+ 2+ 1)/2, and, for n > 1, f(n) is the smallest integer > f(n — 1) which is
consistent with the condition that “n is a member of the sequence if and only if f(n)
belongs to the set

,“W%@+z—n]u{w+zmz1y” (16)

If (y+2—1)/2 <1, the first set in ([Q) is to be omitted.

2

Examples. Setting y = 3, z = 0 in the theorem produces {e(n)}.
Setting y = 2, z = 1 yields another interesting “mod 2”7 sequence. This is the
sequence {g(n) : n > 1} that begins

2,3,5,6,7,9,11,12,13, 14, . ..

(A80G37). It has the following properties:

(i) By definition, this is the unique monotonically increasing sequence {g(n)} satis-
fying ¢g(1) = 2, g(g(n)) =2n + 1 for n > 2.

(i) m is in the sequence if and only if g(n) is an odd number > 3.

(iii) The sequence of first differences is ([A79389):

1,2,1%,2% 1% 24 18 28 116 216

(iv)

. 3 1,
9(3-2" —1+j) =2 2" =1+ o + i,

for k >0, —2F < j < 2% (from ([)).
(v) g(2n) = g(n) + g(n—1) + 1, g(2n + 1) = 2g(n) + 1, for n > 1 (taking g(0) = 0).
(vi) The original sequence {a(n)} satisfies a(3n) = 3g(n),a(3n+1) = 2g(n) + g(n +
1),a(3n+2) =g(n) +2g(n+ 1), forn > 1.
(vii) The “lying version” of Section [ is given by d(n) = g(n +1) — 1 for n > 1.
(viii) Let ¢'(n) = g(n) + 1. The sequence {¢'(n) : n > 2} was apparently first
discovered by C. L. Mallows, and is sequence M2317 in [[J] (A7379 in [[F]). This is
"(d'(n

the unique monotonically increasing sequence satisfying ¢’(¢'(n)) = 2n. An alternative
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description is: ¢'(n) (for n > 2) is the smallest positive integer > ¢'(n — 1) which is
consistent with the condition that

“n is a member of the sequence if and only if ¢’(n) is an even number > 47 (17)

Note that, although (f) and ([[7]) are similar, the resulting sequences {c¢(n)} and {g'(n)}
are quite different. ¢’ is not directly covered by Theorem [}, and we admit that we
have not been able to identify the largest family of sequences which can be described by

formulae like (f), (), (L1), (I)-
The sequence {h(n)} defined by: h(1) = 2, and, for n > 1, h(n) is the smallest

positive integer > h(n — 1) which is consistent with the condition that “n is a member
of the sequence if and only if h(n) is a multiple of 6”:

2.6,7,8,9,12,18,24,30,31, . ..

(E30780), shows that such simple rules do not hold in general. We can characterize the
sequence of first differences in a manner similar to ([]), ([]): the alphabet is now A =
{1,2,...,6}, and we define a mapping # from A* to A* by therules (i) = 1,1,...,1,7—i
(with ¢ — 1 1’s followed by 7 — i), for i = 1,...,6. Then the sequence of differences of
{h(n)} is So,S1, S, ..., where Sy = {4}, Sk41 = 0(Sk) for k > 0. However, it appears
that no formula similar to (fJ) holds for h(n).

We end this “mod m” section with two interesting “mod 4” sequences. The even
numbers satisfy s(s(n)) = 4n, and the odd numbers satisfy s(s(n)) = 4n + 3. But
there are lexicographically earlier sequences with the same properties. The “pseudo-
even numbers” {i(n) : n > 0} are defined by the property that i(n) is the smallest
nonnegative integer > i(n — 1) and satisfying i(i(n)) = 4n (AS0539):

0,2,4,5,8,12,13,14,16, 17, . ..

We analyze this sequence by describing the sequence of first differences, which are
2,2,1,3,4,1,1,2,1,1,1,1,4,4,1,3, ...
After the initial 2, 2, 1, this breaks up into segments of the form
3 Sk 21Ty,

where T}, is the reversal of

11 42 14 48 116 432, ., 4212
and Sy, is the reversal of

12 41 18 44 182 416 ... 122’6*1422’@'*2 ‘

The “pseudo-odd numbers”, i'(n), are similarly defined by '(¢(n)) = 4n + 3:

1,3,4,7,11,12,13,15,16, 17, . ..
(A80501)), and satisfy i'(n) = i(n + 1) — 1.

10
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5. The Aronson transform

A far-reaching generalization of both the original sequence and the “mod m” extensions
of the previous section is obtained if we replace “odd number” in the definition of {a(n)}
by “member of 3”7, where 3 is some fixed sequence.

More precisely, let us fix a starting point ng, which will normally be 0 or 1. Let
B ={f(n):n > ng} be an infinite monotonically increasing sequence of integers > ny
with the property that its complement (the numbers > ng that are not in 8) is also
infinite. Then the sequence a = {a(n) : n > ng} given by: a(n) is the smallest positive
integer > a(n — 1) which is consistent with the condition that

“n is in a if and only if a(n) is in B”
is called the Aronson transform of 3.

Theorem 3. The Aronson transform exists and is unique.

Proof. For ease of discussion let us call the numbers in 3 “hot”, and those in its
complement “cold.” We will specify the transform o, leaving to the reader the easy
verification that this has the desired properties, in particular that there are no contra-
dictions.

The proof is by induction. First we consider the initial term a(ng). If ng is hot,
a(ng) = ng. If ng is cold, a(ng) = smallest cold number > ng + 1.

For the induction step, suppose a(n) = k for n > ny.

Case (i), k = n. If n+ 1 is hot then a(n +1) = n+ 1. If n + 1 is cold then
a(n + 1) = smallest cold number > n + 2.

Case (ii), k > n. If k = n+ 1 then a(n + 1) = smallest hot number > n + 2. If
k > n+1 then if n + 1 is hot, a(n + 1) = smallest hot number > k + 1, while if n + 1
is cold, a(n + 1) = smallest cold number >k +1. =

In certain cases it may be appropriate to specify some initial terms in a to get it
started properly.

Examples. Of course taking B to be the odd numbers (with ny = 1) leads to our
original sequence {a(n)}, and the even numbers (with no = 0) lead to {c¢(n)} of Section

B

If we take 3 to be the triangular numbers we get 1, 4, 5, 6, 10, 15, 16, 17, 18, 21, ...
(A79257); the squares give 1, 3, 4, 9, 10, 11, 12, 13, 16, 25, ... (A79258)); the primes give
4,6, 8, 11, 12, 13, 14, 17, 18, 20, ... (A79254)); and the lower Wythoff sequence ([L207]),
in which the n'" term is [n¢|, gives 1, 5, 7, 10, 11, 13, 14, 15, 18, 19, ... ((A30706().

Taking the Aronson transform of {a(n)} itself we get 1, 3, 4, 6, 10, 11, 12, 14, 22,
23, ... (E79327]). [[J] contains several other examples.

The inverse transform may be defined in a similar way. Given an infinite mono-
tonically increasing sequence o« = {a(n) : n > ng} of numbers > ng, such that its
complement (the numbers > ng that are not in a) is also infinite, its inverse Aronson
transform is the sequence 3 = {3(n) : n > ng} such that the Aronson transform of 3 is
Q.

11


http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A079257
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A079258
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A079254
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A000201
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A080760
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A079325

Theorem 4. The inverse Aronson transform exists and is unique.

Proof. We establish this by giving a simple algorithm to construct the inverse trans-
form. We illustrate the algorithm in Table [ by applying it to the sequence of squares,
a={n*:n>0}

Form a table with four rows. In the first row place the numbers n = ng, ng + 1,
no+2,..., and in the second row place the sequence a(ng), a(ng+1),.... The third row
contains what we will call the “hot” numbers: these will comprise the elements of the
inverse transform. The fourth row are the “cold” numbers, which are the complement
of the hot numbers.

The third and fourth rows are filled in as follows. If n is in (resp. not in) the sequence
a, place a(n) in the n-th slot of the hot (resp. cold) row.

To complete the table we must fill in the empty slots. Suppose we are at column
n, where we have placed a(n) in one of the two slots. Let [, be the largest number
mentioned in columns ng,...,n — 1 in the hot or cold rows. Then we place the numbers
l,+1,...,a(n) —1 in the empty slot in column n, with the single exception that if n is
not in the sequence and [,, = n — 1 then we place n in the cold slot rather than the hot
slot. (This is illustrated by the position of 2 in the fourth row of Table [].) We leave
it to the reader to verify that the entries in the “hot” row form the inverse Aronson
transform 3. =

n 11 2 3 4 5 6 7 8 9

an, 11 4 9 16 25 26 49 64 81

“hot” | 1| 3 |5-8| 16 |17-24|26-35|37-48|50-63| 81
“cold” | —12,4] 9 |10-15| 25 36 49 64 | 65-80

Table II: Computation of the inverse Aronson transform of the squares. The “hot”
numbers comprise the transform.

It follows from Lemmal[]] that 3 contains the members of a®, but in general 8 # a?.
The additional terms in 3 make it possible to recover a uniquely from S3.

Examples. Asshown in Table [, the inverse Aronson transform of the squares ([R10900)
is
1;3;5,6,7,8,16;17,...,24;26,27,... .

This consists of a number of segments (separated here by semicolons). For k > 1 the k"
segment is {k?} if k is a square, or {(k —1)? +1,...,k* — 1} if k is not a square, except
that the second segment = {3}.

The inverse transform of the primes is 3, 5, 6, 11, 12, 17, 18, 20, 21, 22, ... (E30759)
— this has a similar decomposition into segments.

The inverse transform of the lower Wythoff sequence is 1, 4, 6, 7, 9, 10, 12, 14, 15, 17,

. (A80740). This consists of the numbers |pk|+k—1 (k > 1) and |20k |+k—1 (k > 2).

The inverse transform of our original sequence {a(n)} is the sequence of odd numbers
(whereas, as we saw in Section [J, a/® omits 3).
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In general (because of the above algorithm), the inverse Aronson transforms are
easier to describe than the direct transforms.

6. More complicated conditions

Finally, we may make the condition for n to be in the sequence depend on the values of
several consecutive terms a(n), a(n + 1),...,a(n + 7), for some fixed 7. To pursue this
further would take us into the realm of one-dimensional cellular automata (cf. [[], [[9]),
and we will mention just two examples.

q(n) is the smallest positive integer > g(n — 1) which is consistent with the condition
that “n is in the sequence if and only if ¢(n) is odd and g(n — 1) is even” ([K79257):

1,4,6,9,12, 15,18, 20, 23, 26,28, . ..

(13

The gaps between successive terms are always 2 or 3. Changing the condition to

both ¢(n) and ¢(n + 1) are odd” gives [A79257:

1,5,6,10,11,15,19,20, 24,25, . . .
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