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Abstract

In this short note we give an interesting lemma for regular C-fractions. Applying this
lemma we obtain some congruence properties of some classical numbers such as the Springer
numbers of even index, the median Euler numbers, the median Genocchi numbers, and the
tangent numbers.

1 The interesting lemma

A regular C-fraction is a continued fraction of the form

a0 +K∞
n=1(anz/1) = a0 +

a1z

1 +

a2z

1 +

a3z

1 +
. . .

= a0 +
a1z

1 +
a2z

1 +
a3z
. . .

,

where an ∈ C.
Let f(z) =

∑∞
n=0 cnz

n ∈ C[[z]] be a formal power series. It is known that there exists a
one-to-one correspondence between regular C-fractions a0 +K∞

n=1(anz/1) and formal power
series

∑∞
n=0 cnz

n [6, pp. 252–265].
Now we assume that all coefficients are integral. The lemma we state here gives the

division relation between the integral coefficients of the regular C-fraction and the integral
coefficients of its corresponding formal power series.
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Lemma 1. Let f(z) =
∑∞

n=0 anz
n ∈ Z[[z]] be an integral formal power series. Assume the

corresponding uniquely determined regular C-fraction is

∞
∑

n=0

anz
n =

b0

1 +

bb1z

1 +

bb2z

1 +
. . . , (1)

where b and (bn)n≥0 are integral. Then an is divisible by (b0b1b
n) for n ≥ 1.

Proof. Setting z = y/b, Equation (1) becomes

∞
∑

n=0

an(
y

b
)n =

b0

1 +

b1y

1 +

b2y

1 +

b3y

1 +
. . .

= b0 −
b0b1y

1 + b1y +

b2y

1 +

b3y

1 +
. . . .

Since a0 = b0, we have

∞
∑

n=1

an

b0b1bn
yn =

−y

1 + b1y +

b2y

1 +

b3y

1 +
. . . .

Since the right-hand side of the above identity can be uniquely expressed as a formal power
series with integral coefficients, we conclude the proof.

Let f(t) =
∑

n ant
n and g(t) =

∑

n bnt
n (n ≥ 0) be two formal power series with integral

coefficients. For a non-negative integer m we write

f(t) ≡ g(t) (mod m) iff an ≡ bn (mod m) for all n ≥ 0. (2)

Applying Lemma 1 we can obtain some congruence properties of some classical numbers
such as the Springer numbers of even index, the median Euler numbers, the median Genocchi
numbers, and the tangent numbers.

2 Applications

The Springer numbers ([1, p. 275]) are defined by

S(x) = ex sech 2x =
∞
∑

n=0

Snx
n

n!
. (3)

The even (resp. odd) part of the Springer numbers is what Glaisher ([1, p. 276]) called the
numbers Pn (resp. Qn). That is to say,

coshx

cosh 2x
=

∞
∑

n=0

S2nx2n

(2n)!
,

sinhx

cosh 2x
=

∞
∑

n=0

S2n+1x
2n+1

(2n+ 1)!
. (4)
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Springer introduced these numbers for a problem about root systems, and Arnold showed
these numbers as counting various types of snakes ([4, p. 6–p. 7]).
Following the notation and the result in Corollary 3.3 of [1] we put

p(x) =
∞
∑

n=0

S2nx2n+1 = x− 3x3 + 57x5 − . . .

=
x

1 +

3x2

1 +

16x2

1 +

35x2

1 +
. . .

+

16n2x2

1 +

(4n+ 1)(4n+ 3)x2

1 +
. . . . (5)

Note that our definition of the Springer numbers S2n differs from that in [1]. The unsigned
sequence (−1)nS2n : 1, 3, 57, 2763, 250737, . . ., is the sequence A000281 in [7]. Applying
Lemma 1 we have S2n is divisible by 3. Moreover, we have the following theorem.

Theorem 1. For n ≥ 1, the Springer number with even index S2n is divisible by 3 and

S2n

3
≡ (−1)n3n−1 (mod 16). (6)

Proof. Multiplying x into p(x) and setting t = x2, we have

∞
∑

n=0

S2ntn+1 = t− 3t2 + 57t3 − · · · =
t

1 +

3t

1 +

16t

1 +
. . . .

Applying Lemma 1, S2n is divisible by 3 for n ≥ 1. And

∞
∑

n=1

S2n

3
tn+1 =

−t2

1 + 3t+

16t

1 +

35t

1 +
. . . (7)

≡
−t2

1 + 3t
(mod 16)

=
∞
∑

n=1

(−1)n3n−1tn+1.

Comparing the coefficients of tn+1, we have

S2n

3
≡ (−1)n3n−1 (mod 16), n ≥ 1.

Remark 1. Now we write Equation (7) as

−t2

1 + 3t+

16t

1 +

35t

1 +
. . . =

−t2

1 + 3t+

∞

K
n=1

(

cnt

1

)

,

where c2n−1 = 16n
2 and cn = (4n+ 1)(4n+ 3), for n ≥ 1.

3



If we take the modulus c2 = 35 instead of c1 = 16 for Equation (7) in the above proof.
Then we have

∞
∑

n=1

S2n

3
tn+1 ≡

−t2

1 + 19t
(mod 35)

≡
−t2

1− 16t
(mod 35)

=
∞
∑

n=1

(−16n−1)tn+1.

Comparing the coefficients of tn+1, we have

S2n

3
≡ −16n−1 (mod 35), n ≥ 1. (8)

Since 163 ≡ 1 (mod 35), we can also write Equation (8) as follows: for k ≥ 1,

S2n

3
≡







34 (mod 35), if n = 3k − 2;
19 (mod 35), if n = 3k − 1;
24 (mod 35), if n = 3k.

(9)

Similarly, we take another cn as the modulus for Equation (7), then we can get the
congruences for S2n/3 under the modulus cn.

Let us define the Euler numbers En through the exponential generating function E(x):

E(x) = sechx+ tanhx =
∞
∑

n=0

Enx
n

n!
.

We construct the Seidel matrix (an,m)n,m≥0 associated with the sequence (0, E1, E2, E3, . . .)
as follows:

1. The first row (a0,n)n≥0 of the matrix is the initial sequence (0, E1, E2, E3, . . .).

2. Each entry an,m of the n-th row is the sum of the entry immediately above and of the
entry above and to the right of it:

an,m = an−1,m + an−1,m+1.

The resulting Seidel matrix is

0 1 −1 −2 5 16 −61 · · ·
1 0 −3 3 21 −45 · · ·
1 −3 0 24 −24 · · ·

−2 −3 24 0 · · ·
−5 21 24 · · ·
16 45 · · ·
61 · · ·
· · ·
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The absolute values of the upper diagonal sequence 1, 3, 24, 402, . . . are called the median
Euler numbers Rn (see [1, Section 4] or [7, Sequence A002832]). Using the same method as
above, we have

Theorem 2. For n ≥ 1, the median Euler number Rn is divisible by 3 and

Rn

3
≡ 3n−1 (mod 5). (10)

Proof. Since the ordinary generating function of the median Euler numbers Rn satisfies the
continued fraction representation [1, Proposition 7]:

r(x) =
∞
∑

n=0

(−1)nRnx
n+1 = x− 3x2 + 24x3 − 402x4 + 11616x5 − · · ·

=
x

1 +

3x

1 +

5x

1 +

2 · 7x

1 +

2 · 9x

1 +
. . . . (11)

Applying Lemma 1, Rn is divisible by 3 for n ≥ 1. And

∞
∑

n=1

(−1)n
Rn

3
xn+1 =

−x2

1 + 3x+

5x

1 +

14x

1 +
. . .

≡
−x2

1 + 3x
(mod 5)

=
∞
∑

n=1

(−1)n3n−1xn+1.

Comparing the coefficients of xn+1, we complete the proof.

The Genocchi numbers Gn [7, Sequence A036968] are defined by

2x

ex + 1
=

∞
∑

n=0

Gnxn

n!
.

The median Genocchi numbers H2n+1 (see [1, 2], or [7, Sequence A005439]) can be defined
by H1 = 1 and

H2n+1 =

bn−1

2
c

∑

k=0

(

n

2k + 1

)

G2n−2k, n ≥ 1,

where bxc denotes the greatest integer not exceeding x.

Theorem 3. For n ≥ 1, the median Genocchi number H2n+3 is divisible by 2n and

H2n+3

2n
≡

{

1 (mod 6), if n is odd;

4 (mod 6), if n is even.
(12)
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Proof. Since the ordinary generating function of the median Genocchi numbers H2n+1 satis-
fies the continued fraction representation [1, p. 295]

h(x) =
∞
∑

n=0

H2n+1x
n+1 = x− x2 + 2x3 − 8x4 + 56x5 − · · ·

=
x

1 +

x

1 +

x

1 +

22x

1 +

22x

1 +

32x

1 +

32x

1 +
. . . . (13)

From [1, Lemma 1] we have

x

1 +

c1x

1 +

c2x

1 +

c3x

1 +
. . .

= x−
c1x

2

1 + (c1 + c2)x−

c2c3x
2

1 + (c3 + c4)x−

c4c5x
2

1 + (c5 + c6)x−
. . . (14)

=
x

1 + c1x−

c1c2x
2

1 + (c2 + c3)x−

c3c4x
2

1 + (c4 + c5)x−
. . . . (15)

Then we can rewrite the continued fraction representation of h(x) as

h(x) = x−
x2

1 + 2x−

22x2

1 + 2 · 22x−

22 · 32 · x2

1 + 2 · 32x−
. . .
−

n2(n+ 1)2x2

1 + 2 · (n+ 1)2x−
. . . .

Hence

−
∞
∑

n=1

H2n+1x
n =

x

1 + 2x−

22 · x2

1 + 2 · 22x−
. . . .

Now we apply Equation (15), and transform the above equation to

−
∞
∑

n=0

H2n+3x
n+1 =

∞

K
n=0

(cnx

1

)

,

where c0 = 1, c2n−1 = c2n = n(n+ 1), for n ≥ 1.
Applying Lemma 1, H2n+3 is divisible by 2

n for n ≥ 1, and

∞
∑

n=1

H2n+3

2n
xn =

x

1 + x+

x

1 +

3x

1 +

3x

1 +

6x

1 +

6x

1 +
. . . (16)

≡
x

1 + x+

x

1 +

3x

1 + 3x
(mod 6)

≡
x

3x2 + 2x+ 1
(mod 6)

≡
x

3x2 − 4x+ 1
(mod 6)

=
x

(3x− 1)(x− 1)
=
1

2
·

1

1− 3x
−
1

2
·
1

1− x

=
∞
∑

n=0

(

3n − 1

2

)

xn.
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Comparing the coefficients of xn, we have

H2n+3

2n
≡

3n − 1

2
(mod 6)

= 3n−1 + 3n−2 + · · ·+ 3 + 30.

Since 3n ≡ 3 (mod 6), for n ≥ 1, we have

H2n+3

2n
≡ (n− 1) · 3 + 1 ≡ 3n− 2 (mod 6). (17)

If n = 2k − 1, for k ≥ 1, then

H2n+3

2n
≡ 3(2k − 1)− 2 ≡ 1 (mod 6).

If n = 2k, for k ≥ 1, then

H2n+3

2n
≡ 3(2k)− 2 ≡ 4 (mod 6).

Hence we complete our proof.

Using the similar method, we could get Barsky’s result ([2, Theorem 1]): for n ≥ 1,

H2n+3

2n
≡

{

3 (mod 4), if n is odd;
2 (mod 4), if n is even.

(18)

The tangent numbers Tn are defined by

1 + tanhx =
∞
∑

n=0

Tnxn

n!
.

The unsign tangent numbers are the sequence [7, Sequence A009006]. The tangent numbers
Tn are closely related to the Bernoulli numbers:

T2n−1 = 2
2n(22n − 1)B2n/2n. (19)

Theorem 4. For n ≥ 1, the tangent number T2n+1 is divisible by 2n and

T2n+1

2n
≡ (−1)n4n−1 (mod 6). (20)

Proof. We use the classical continued fraction representation for the ordinary generating
function of the tangent numbers Tn [1, Corollary 3.1]

∞
∑

n=0

Tnxn+1 = x+ x2 − 2x4 + 16x6 − 272x8 + . . .

= x+
x2

1 +

2x2

1 +

6x2

1 +
. . .
+

n(n+ 1)x2

1 +
. . . . (21)
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Changing the variable x2 as t we have

t+
∞
∑

n=1

T2n+1t
n+1 =

t

1 +

2t

1 +

6t

1 +
. . .
+

n(n+ 1)t

1 +
. . . .

Applying Lemma 1, T2n+1 is divisible by 2
n for n ≥ 1. And

∞
∑

n=1

T2n+1

2n
tn+1 =

−t2

1 + t+

3t

1 +

6t

1 +
. . .

≡
−t2

1 + t+ 3t
(mod 6)

=
∞
∑

n=1

(−1)n4n−1tn+1.

Comparing the coefficients of tn+1, we complete the proof.

The result that T2n+1 is divisible by 2
n is not new. Howard [5, Theorem 8] proved in an

elementary way that for every n ≥ 1 the number (2n+1(1−22n)/2n)B2n is an integer. That is
to say, T2n−1 is divisible by 2

n−1. Ramanujan (see [3, p. 7]) proved some similar congruence
properties, such as

2(24n+2 − 1)

2n+ 1
B4n+2, and

−2(28n+4 − 1)

2n+ 1
B8n+4

are integers of the form 30k + 1, for n ≥ 0. And it means that T4n+1, T8n+3 are divisible by
24n, 28n+1, respectively, and

T4n+1

24n
≡
−T8n+3

28n+1
≡ 1 (mod 30).
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