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Abstract

The inverse central binomial series

Sk(z) =
∞
∑

n=1

nkzn

(

2n
n

) ,

popularized by Apéry and Lehmer, is evaluated for positive integers k along with the
asymptotic behavior for large k. We show that the value z = 2, as commented on by
D. H. Lehmer, provides a unique relation to π.

1 Introduction

Since the appearance of S−3(1) in Apéry’s famous proof [1] in 1979 that ζ(3) is irrational,
an extensive literature has been devoted to the series

Sk(z) =
∞
∑

n=1

nkzn

(

2n
n

) (1)

For example, in 1985 Lehmer [2] presented a number of special cases which could be obtained
from the Taylor series for f(x) = x−1/2(1 − x)−1/2 sin−1 x using only elementary calculus.
In passing, he noted that when k is a positive integer, Sk(2) had the form ak − bkπ and
that the rational number ak/bk “is a close approximation to π. This remark was recently
taken up by Dyson et al. [3], who proved that |ak/bk − π| = O(Q−k) as k → ∞ where
Q =

√

1 + (2π/ ln 2)2. Lehmer also showed that for positive integer k

Sk(z) =
2k+z5/2

z1/2

(4 − z)k+3/2
(Ak(z/4) sin−1(

√

z/4) +
√

z(4 − z)Bk(z/4)) (2)
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where Ak and Bk are recursively defined polynomials. It was apparently not until 2005 that
(2) was evaluated explicitly, for z = 1, by J. Borwein and P. Girgensohn [4] who showed

Sk(1) =
1

2
(−1)k+1

k+1
∑

j=1

(−1)jj!S(j + 1, j)3−j

(

2j

j

)

(

j−1
∑

i=1

3i

(2i + 1)
(

2i
i

) +
2

3
√

3
π

)

. (3)

where the Stirling numbers of the second kind are defined by

S(k, j) =
(−1)j

j!

j
∑

m=0

(−1)mmk

(

j

m

)

. (4)

The aim of the present note is to extend (3) to complex z and thus to continue (1) analytically
beyond its circle of convergence |z| = 4.

2 Calculation

We begin with the observation that
(

m
(

2m
m

))

−1
= B(m,m + 1), where B denotes Euler’s

beta integral. Hence,

Sk(z) =

∫

1

0

dt

t

∞
∑

m=1

mk+1(zt(1 − t))m. (5)

Next, equation (21) of Girgensohn and Borwein [4],

∞
∑

m=1

mpXm =

p
∑

n=1

n
∑

m=1

(−1)m+n

(

n

m

)

mpXn(1 − X)−n−1, (6)

gives

Sk(z) =
k+1
∑

n=1

n
∑

m=1

(−1)m+n

(

n

m

)

mk+1

∫

1

0

dt

t

(zt(1 − t))n

(1 − zt(1 − t))n+1
. (7)

In the appendix it is shown that

∫

1

0

dt

t

(zt(1 − t))n

(1 − zt(1 − t))n+1
=

√
πΓ(n)

Γ(n + 1/2)
Xn

2F1(−1/2, n; n + 1/2;−X) (8)

where X = z/(4 − z), so

Sk(z) =
k+1
∑

n=1

n!B(n, 1/2)S(k + 1, n)Xn
2F1(−1/2, n; n + 1/2;−X). (9)

By induction, starting with the tabulated value for n = 1 and using Gauss’ contiguity
relations we find (some details are given in the appendix)

2F1(−1/2, n; n + 1/2;−X) =

2



(

1

2

)

n

(

1

n!
+

1√
πΓ(n)

n−1
∑

k=0

(−1)kΓ(k + 1/2)

(k + 1)!

(

n − 1

k

)(

X + 1

X

)k+1

×
[

√
X sin−1

√

X

X + 1
− 1

2

k
∑

l=1

(l − 1)!

(1/2)l

(

X

X + 1

)l
])

. (10)

(We have used the ascending factorial notation (a)n = Γ(a + n)/Γ(a)). Therefore we have
the principal result

Sk(z) =
k+1
∑

n=1

n!

(

z

4 − z

)n

S(k + 1, n)×

(

1

n
+

n−1
∑

p=0

(−1)p (1/2)p

(p + 1)!

(

n − 1

p

)(

4

z

)p+1
(

√

z

4 − z
sin−1

√
z

2
− 1

2

p
∑

l=1

Γ(l)

(1/2)l

(z

4

)l
))

(11)

Equation (11) is rather condensed; in unpacking it, sums with upper limit less than the
lower limit are to be interpreted as 0. It is clear from (11) that for rational z

∞
∑

m=1

nkzn

(

2n
n

) = R1(z, k) + R2(z, k)

√

z

4 − z
sin−1

√
z

2
, (12)

where Rj is a rational number.
One sees from (11) that Sk(z) is analytic on the two-sheeted Riemann surface formed by

two planes cut and rejoined along the real half-line x > 4. The numbers in (12) have the
explicit expressions

R1(z, k) = (13)

k+1
∑

n=1

n!S(k + 1, n)

(

z

4 − z

)n
(

1

n
− 1

2

n−1
∑

p=1

p
∑

l=1

(−1)p(1/2)p

(p + 1)!(1/2)l

(

n − 1

p

)

Γ(l)

(

4

z

)p−l+1
)

,

R2(z, k) =
k+1
∑

n=1

n!S(k + 1, n)
n−1
∑

p=0

(−1)p

(p + 1)!

(

n − 1

p

)(

4

z

)p+1

. (14)

3 Asymptotics

It is convenient to work in terms of the exponential generating function

G(z, t) :=
∞
∑

k=0

Sk(z)
tk

k!
= S0(ze

t) =
z

4 − zet
+

4
√

zet/2

(4 − zet)3/2
sin−1

√
zet/2

2
(15)

To find the generating functions ρj(z, t) :=
∑

Rj(z, k)tk/k!, it would be simplest to start
with a series Dk(z) = R1(z, k) − R2(z, k)

√

z
4−z

sin−1
√

z/2, work out its generating function
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D(z, t) and by taking the sum and difference identify ρ1 and ρ2. However, this series has not
been found and there is nothing to guarantee its existence in tractable form. Therefore, the
ρj were evaluated directly from (13) and (14). The details are omitted as the results

ρ1(z, t) =
zet

4 − zet
+

8

π

√

zet

(4 − zet)3/2

(

sin−1

√
zet/2

2
cos−1

√
z

2
− cos−1

√
zet/2

2
sin−1

√
z

2

)

, (16)

ρ2(z, t) = 4

√

(4 − z)et

(4 − zet)3
(17)

are easily verified. In the case z = 2, (15) and (16) are identical to Dyson’s formulas [3, 5]
obtained empirically.

In view of the prominent role that the ratio R1(z, t)/R2(z, t) plays in Dyson et al. [3] for
z = 2 it is interesting to examine it for general z. From (17) we have

R2(z, k) =
2k!

√
4 − z

πi

∮

ds

sk+1

es/2

(4 − zes)3/2
. (18)

The non-zero singularity closest to s = 0 is s0 = ln(4/z) and it dominates the asymptotic
behavior. Ignoring the other singularities, distorting the contour to a small circle about s0

and translating back to the origin by t = s − s0, we have

R2(z, k) ∼ −k!
√

4 − z

zsk+1

0

∮

dt

2πi

et/2

(1 − et))3/2
. (19)

The exact value of the integral in (19) is −(2/π)
√

e/(e − 1), and so

R2(z, k) ∼ k!

(ln(4/z))k+1

2

π

√

e(4 − z)

z(e − 1)
. (20)

In the same way we obtain

R1(z, k) ∼ k!

(ln(4/z))k+1

(√
2 +

2

π

(√

e

e − 1
−

√
2

)

cos−1

√
z

2
− 23/2

π
sin−1

√
z

2

)

. (21)

4 Discussion

From (20) and (21) we find

lim
k→∞

(

R1(z, k)

R2(z, k)
−
√

z

4 − z
sin−1

√
z

2

)

=

√

z

4 − z

(

cos−1

√
z

2
− sin−1

√
z

2

)

. (22)
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It thus appears that Lehmer’s choice, z = 2, is the unique permissible case for which the
limit (22) vanishes. (Also the Lehmer limit, as defined by Dyson et al. [3], relates to π/4
here rather than π). Finally, for negative integer indices, since

2S−k(z) = k+1Fk(1, . . . , 1; 3

2
, 2, . . . , 2; 1

4
z), (23)

the fact that S−k(z) can be obtained from S0(z) by successive integrations with respect to z
and the explicit evaluations by Lehmer [2], Borwein and Girgensohn [4] and others [6, 7, 8,
9, 10] it should be possible to obtain explicit values for sundry generalized hypergeometric
functions.

5 Appendix: Derivation of Equations (8) and (10)

Let us consider, for any integrable function F ,

I =

∫

1

0

dt

t
F (t(1 − t))

Let u = t(1 − t), so u(0) = u(1) = 0; u(1/2) = 1/4. Then there are two expressions for t:

t+ =
1

2
(1 +

√
1 − 4t) for

1

2
≤ t ≤ 1, with

dt+
t+

=

(

1 − 1√
1 − 4u

)

du

u

and

t− =
1

2
(1 −

√
1 − 4t) for 0 ≤ t ≤ 1

2
, with

dt+
t+

=

(

1 +
1√

1 − 4u

)

du

u
.

Consequently,

I =

∫

1/2

0

dt−
t−

F (u) +

∫

1

1/2

dt+
t+

F (u) = 2

∫

1/4

0

du

u
√

1 − 4u
F (u)

= 2

∫

1

0

dx

x
√

1 − x
F

(

1

4
x

)

= 2

∫

1

0

dt

(1 − t)
√

t
F

(

1 − t

4

)

and, with t = x2,

I = 4

∫

1

0

dx

1 − x2
F

(

1 − x2

4

)

.

Therefore,

L =

∫

1

0

dt

t

(zt(1 − t))α

(1 − zt(1 − t))β
= 2

(z

4

)α−β
∫

1

0

dx
(1 − x2)α−1

(a2 + x2)β
,

where a2 = 1/X = (4 − z)/z.
From standard references

∫

1

0

dx cos(xy)(1 − x2)α−1 =

√

πy

8

(

2

y

)α

Γ(α)Jα−1/2(y),
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∫

∞

0

dx cos(xy)(a2 + x2)−β =

√
π

Γ(β)

( y

2a

)β−1/2

Kβ−1/2(ay)

so, by the Parseval relation for the Fourier transform

∫

1

0

dx
(1 − x2)α−1

(a2 + x2)β
=

2α−β

aβ−1/2

Γ(α)

Γ(β)

∫

∞

0

dyyβ−αJα−1/2(y)Kβ−1/2(ay).

This is a tabulated Hankel Transform and yields

L =
√

π

(

4

z

)β−α

Xβ Γ(α)

Γ(α + 1)
2F1

(

1

2
, β; α +

1

2
;−X

)

.

Consequently

∫

1

0

dx

x

(zt(1 − t))n

(1 − zt(1 − t))n+1
=

√
π

(

4

z

)

Xn+1
2F1

(

1

2
, n + 1; n +

1

2
;−X

)

However, since 2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z),

2F1

(

1

2
, n + 1; n + 1

2
;−X

)

= (1 + X)−1
2F1

(

−1

2
; n; n + 1

2
;−X

)

Next, we note that [11, p . 590]

2F1(−1/2, 1; 3/2; z) =
1

2

(

1 + (1 − z)
tanh−1

√
z√

z

)

.

With z → −z, noting that −i tanh−1 iw = sin−1
√

w
1+w

one has

2F1(−1/2, 1; 3/2;−z) =
1

2
(1 + (1 + z)

sin−1
√

z
1+z√

z
). (24)

We next apply Gauss’ differentiation formula

d

dz
((1 + z)k

2F1(−1/2, k; k + 1/2;−z)) =

2k(k + 1)

2k + 1
(1 + z) 2F1(−1/2, k + 1; k + 3/2;−z). (25)

Iteration of (25) starting with (24), after a great deal of tedious algebra, aided by Mathe-
matica, results in (10).
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