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Abstract

The inverse central binomial series

popularized by Apéry and Lehmer, is evaluated for positive integers k£ along with the
asymptotic behavior for large k. We show that the value z = 2, as commented on by
D. H. Lehmer, provides a unique relation to .

1 Introduction

Since the appearance of S_3(1) in Apéry’s famous proof [1] in 1979 that ((3) is irrational,
an extensive literature has been devoted to the series
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For example, in 1985 Lehmer [2] presented a number of special cases which could be obtained
from the Taylor series for f(x) = 27/2(1 — )"*/?sin"! x using only elementary calculus.
In passing, he noted that when k is a positive integer, Si(2) had the form a; — bpm and
that the rational number a; /by “is a close approximation to m. This remark was recently
taken up by Dyson et al. [3], who proved that |a;/by — 7| = O(Q*) as k — oo where
Q= \/ 1+ (27/In2)2. Lehmer also showed that for positive integer k

2kz+25/ 2,1/2

Sk(z) = m(x‘lk@/‘l) sin™!(v/2/4) + /2(4 — 2) Bi(2/4)) (2)
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where A; and By, are recursively defined polynomials. It was apparently not until 2005 that
(2) was evaluated explicitly, for z = 1, by J. Borwein and P. Girgensohn [4] who showed

S(1) = %(—1)k+12(—1)jj!5(j+ 1,7)377 (2]‘7) <i @i j’;)(g}i) + 3\2/§7r> .3

j=1 i=1

where the Stirling numbers of the second kind are defined by

(k) = S5 Y1), (@)

m=0

The aim of the present note is to extend (3) to complex z and thus to continue (1) analytically
beyond its circle of convergence |z| = 4.

2 Calculation

We begin with the observation that (m(%;n))_l = B(m,m + 1), where B denotes Euler’s
beta integral. Hence,

s = [ o m e - o)

Next, equation (21) of Girgensohn and Borwein [4],

mi:l mPX™ = i Zn:(—1)m+” (:71) mPX™(1 — X)L, (6)

n=1m=1

gives
k+1 n

M\ g [fdt (21—t
Si(z) =2 > (=" (m>m /07(1£z7(5(1—35;)n+1' (7

n=1m=1

In the appendix it is shown that

Lt (st(1—t)" Vi) . | |
/0 T (1 — 2t(1—¢))nH1 - T(n+ 1/2)X oF1(—1/2,n;n +1/2; —X) (8)

where X = z/(4 — 2), so

k+1
Si(z) = nlB(n,1/2)S(k + 1,n)X" 2Fy(—1/2,n;n + 1/2; - X). (9)
n=1
By induction, starting with the tabulated value for n = 1 and using Gauss’ contiguity

relations we find (some details are given in the appendix)

2F1(=1/2,nin +1/2; - X)) =



M

(1) (1 L (1)1 k+1/2)(n 1) (X+1>k+1x
2), )& (k1) k X
k !
1 (-1 X
Xsin™! — = : 10
[‘/_Sln \/X+1 2; (1/2); (X+1> ) (10)
(We have used the ascending factorial notation (a),, = I'(a + n)/I'(a)). Therefore we have

the principal result
k+1 5 n
Si(z) =) nl (4 - 2) S(k+1,n)x

n=1

(% + 2(—1)17(;112173! (n; 1) (g)pﬂ ( = £ ) %z::

P
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Equation (11) is rather condensed; in unpacking it, sums with upper limit less than the
lower limit are to be interpreted as 0. It is clear from (11) that for rational z

Z? < (z,k) + Ra(z, k:),/4_zsm_1 \/_ (12)

where R; is a rational number.

One sees from (11) that Sk(z) is analytic on the two-sheeted Riemann surface formed by
two planes cut and rejoined along the real half-line x > 4. The numbers in (12) have the
explicit expressions

Ri(z,k) = (13)

AR 2 \" (1 1. (-1)P(1/2), (n—1
Sonste 1 () (ﬁ‘i,;;(pmu/z)( o

Ro(z, k) = kin!sug +1,n) : (](:)f)! (” ; 1) (g)pﬂ . (14)

n=1 P

3 Asymptotics

It is convenient to work in terms of the exponential generating function

o 1k 5 4\/get/2 . \/Eet/Q
G(z,t) = ZSk<Z>k[ = Sp(ze') = e + (1= 202 sin )

k=0

(15)

To find the generating functions p;(z,t) := > R;(z, k)t*/k!, it would be simplest to start
with a series Dy (2) = Ri(z, k) — Ro(z, k) /72 sin~" /z/2, work out its generating function
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D(z,t) and by taking the sum and difference identify p; and ps. However, this series has not
been found and there is nothing to guarantee its existence in tractable form. Therefore, the
p; were evaluated directly from (13) and (14). The details are omitted as the results

zet

nzt) = 4 — zet i
8 ze! o1 \/zet/2 1 Vz -1 \/zet/2 .1 V/z
\ Tz (sm 5 cosT S5~ —cos 5 sin 5= |, (16)
(4 — 2)et
) =44 —= 17
p2(z7 ) (4—Z€t)3 ( )

are easily verified. In the case z = 2, (15) and (16) are identical to Dyson’s formulas [3, 5]
obtained empirically.

In view of the prominent role that the ratio R;(z,t)/Ra(z,t) plays in Dyson et al. [3] for
z = 2 it is interesting to examine it for general z. From (17) we have

_2]@!\/4—2]4 ds es/?
™

SEHL (4 — zes)3/2

RQ(Z, k)

(18)

The non-zero singularity closest to s = 0 is so = In(4/z) and it dominates the asymptotic
behavior. Ignoring the other singularities, distorting the contour to a small circle about sg
and translating back to the origin by t = s — sy, we have

k4 — 2 dt et/?

~— SRS 1

Ralz k) zsh T 271 (1 — et))3/2 (19)

The exact value of the integral in (19) is —(2/7)+/e/(e — 1), and so

k! 2 Je(4—2)
R k) ~ — . 20
22 k)~ e\ 2 =) (20)
In the same way we obtain
k! 2 e NZERWAL 2

k)~ ——————— 24— — V2 PYE 2 sintt X D). 21
(k) ~ oy (\er - < e—1 f) STy T ) (21)

4 Discussion

From (20) and (21) we find

. Rl(zak)_ z g /z _ < —1\/2_-—1\/E
kh—{go (Rg(z, k)Y V4-=z i 2 ) V4—-= o8 2 i 2 ) (22)




It thus appears that Lehmer’s choice, z = 2, is the unique permissible case for which the
limit (22) vanishes. (Also the Lehmer limit, as defined by Dyson et al. [3], relates to 7/4
here rather than 7). Finally, for negative integer indices, since

2S5 1(2) = e Fe(1,...,1;2,2,...,2;

y Ly 9

z), (23)

»M»—‘

the fact that S_g(z) can be obtained from Sy(z) by successive integrations with respect to z
and the explicit evaluations by Lehmer [2], Borwein and Girgensohn [4] and others [6, 7, 8,
9, 10] it should be possible to obtain explicit values for sundry generalized hypergeometric
functions.

5 Appendix: Derivation of Equations (8) and (10)

Let us consider, for any integrable function F,

r:/o Tria 1)

Let u=t(1—1), so u(0) = u(l) =0; wu(1/2) =1/4. Then there are two expressions for ¢:

1 1 dt, 1 du
ty =—=(1 1—4t for - <t<1 ith — = [1 — — | ==
+ 2( +V ) or g <t<l, wi . ( 1—4u)u
and . ' ; , ]
. t+ u
t_=—-(1—+v1-—4t for0<t< - th—=(14 — | —.
2( ) for0< <5 wi ., ( + 1—4u> »
Consequently,

12 gt Lt
[ = / ——F(u +/ —F(u —2/ ——
0 tf () 1/2t Uu 1_4u <>

- / e (1) 2/01<1—di>ﬁF(12t>
I:4/Ollixm2F(1_4‘T2>.

1 _ a a—f 1 2 a—1
T R T =t
o t(1—zt(1—1))8 4 0 (a? + 22)P
where a? = 1/X = (4 — 2)/z.
From standard references

/o1 dz cos(zy)(1 — 2%)* " = % (2)a H el

Y

and, with ¢t = 22,

Therefore,




/oOO dz cos(zy)(a® 4+ 2%) 7 = % (%)5‘1/2 Kp-1/2(ay)

so, by the Parseval relation for the Fourier transform

1 (1 :L,Q)a—l 2a—ﬁ F( ) [os]
Q B—a
/0 dx (@ + 22)7 = 5 ) /0 dyy” ™" Ja—1/2(y) Kp-1/2(ay).

This is a tabulated Hankel Transform and yields
4\ I'() 1 1
L= - Xt R (2, Ba =X
\/7?(/2) F(a—|—1)2 1<2,ﬂ,6¥+2, )

Consequently

[ s = e (2) s (o v )

However, since oF(a,b;c;z) = (1 — 2)7 %%, Fi(c —a,c—b;c; 2),

Next, we note that [11, p . 590]

tan}i;; \/Z> |

With z — —z, noting that —itanh™'jw = sin™* | / T+ One has

S (—1/2,1:3/2; 2) = % (1 + (1= 2)

WP (—1/2,1;3/2; —2) = %(1 +(1 +Z)sin_17\/%). (24)

We next apply Gauss’ differentiation formula

d

(L4 2)" 2R (=1/2, ks k +1/2;=2)) =

2% (k + 1)
2% + 1

Iteration of (25) starting with (24), after a great deal of tedious algebra, aided by Mathe-
matica, results in (10).

(1+42) 2Py (—=1/2,k + 15k + 3/2; —2). (25)
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