[返回数码家电首页]·[所有跟帖]·[ 回复本帖 ] ·[热门原创] ·[繁體閱讀]·[版主管理]
谷歌更新Transformer架构 更节省计算资源!50%性能提升
送交者: An4dy[♂☆★★★声望勋衔15★★★☆♂] 于 2024-04-05 7:42 已读 25155 次  

An4dy的个人频道

谷歌终于更新了Transformer架构。

最新发布的Mixture-of-Depths(MoD),改变了以往Transformer计算模式。

它通过动态分配大模型中的计算资源,跳过一些不必要计算,显著提高训练效率和推理速度。

结果显示,在等效计算量和训练时间上,MoD每次向前传播所需的计算量更小,而且后训练采样过程中步进速度提高50%。

这一方法刚刚发布,就马上引发关注。

MoE风头正盛,MoD已经来后浪拍前浪了?


所以MoD如何实现?

迫使大模型关注真正重要信息

这项研究提出,现在的大模型训练和推理中,有很多计算是没必要的。


比如预测下一个句子很难,但是预测句子结束的标点符号很简单。如果给它们分配同样的计算资源,那么后者明显浪费了。


在理想情况下, 模型应该只给需要准确预测的token分配更多计算资源。


所以研究人员提出了MoD。

它在输入序列中的特定位置动态分配FLOPs(运算次数或计算资源),优化不同层次的模型深度中的分配。

通过限制给定层的自注意力和MLP计算的token数量,迫使神经网络学会主要关注真正重要的信息。

因为token数量是事先定义好的,所以这个过程使用一个已知张量大小的静态计算图,可以在时间和模型深度上动态扩展计算量。

下图右上图中的橙色部分,表示没有使用全部计算资源。


这种方法在节省计算资源的同时,还能提高效率。

这些模型在等效的FLOPS和训练时间上与基线性能相匹配,但每次前向传播所需的FLOP更少,并且在训练后采样时提速50%。

对比来看,如果为每一个token生成一个概率分布,每个token根据最高概率被送去对应的“专家”,可能会导致负载不平衡。

如果反过来,这能保障负载平衡,但是可能导致某些token被过度处理或处理不足。

最后来看论文中使用的Expert-choice MoD,router输出的权重被用于确定哪些token将使用transformer亏啊计算。权重较大的token将参与计算,权重较小的token将通过残差连接绕过计算,从而解决每次向前传播的FLOPs。


最后,研究团队展示了MoD在不同实验中的性能表现。

首先,他们使用相对较小的FLOP预算(6e18),以确定最佳超参数配置。

通过这些实验,作者发现MoD方法能够“拉低并向右推移”isoFLOP基线曲线,这意味着最优的MoD方法在更低的损失水平上拥有更多的参数。


通过isoFLOP分析,比较6e18、2e19和1e20 FLOPs的总计算预算下的模型性能。

结果显示,在更多FLOP预算下,FLOP最优的MoD仍然比基线模型有更多的参数。

存在一些MoD变体,在步骤速度上比isoFLOP最优基线模型更快,同时实现更低的损失。这表明在训练之外,MoD的计算节省仍然有效。


同时,研究团队还探讨了MoD和MoE结合的可能性——MoDE。

结果表明而这结合能提供更好的性能和更快的推理速度。

网友:联想到了ResNet

MoD推出后马上引发了不小关注。

有人感慨,MoE还没有弄清楚呢,MoD都已经来了!


这么高效的方法,让人马上联想到了ResNet。


不过和ResNet不同,MoD跳过连接是完全绕过层的。


还有人表示,希望这种方法是完全动态的,而不是每个层固定百分比。


这项研究由DeepMind和麦吉尔大学共同带来。

主要贡献者是David Raposo和Adam Santoro。


他们二人都是DeepMind的研究科学家。此前共同带来了神作《Relational inductive biases, deep learning, and graph networks》。 6park.com

喜欢An4dy朋友的这个贴子的话, 请点这里投票,“赞”助支持!
[举报反馈]·[ An4dy的个人频道 ]·[-->>参与评论回复]·[用户前期主贴]·[手机扫描浏览分享]·[返回数码家电首页]
帖子内容是网友自行贴上分享,如果您认为其中内容违规或者侵犯了您的权益,请与我们联系,我们核实后会第一时间删除。

所有跟帖:        ( 主贴楼主有权删除不文明回复,拉黑不受欢迎的用户 )


    用户名:密码:[--注册ID--]

    标 题:

    粗体 斜体 下划线 居中 插入图片插入图片 插入Flash插入Flash动画


         图片上传  Youtube代码器  预览辅助

    打开微信,扫一扫[Scan QR Code]
    进入内容页点击屏幕右上分享按钮

    楼主本栏目热帖推荐:

    >>>>查看更多楼主社区动态...





    [ 留园条例 ] [ 广告服务 ] [ 联系我们 ] [ 个人帐户 ] [ 版主申请 ] [ Contact us ]