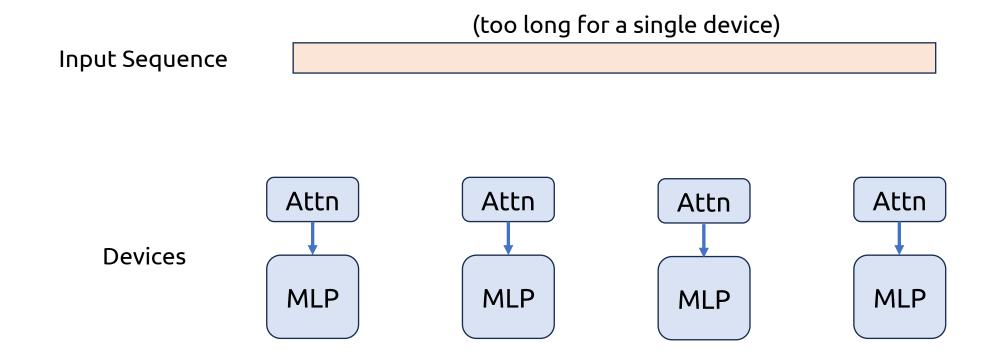
DCP: Addressing Input Dynamism In Long-Context Training via Dynamic Context Parallelism

Chenyu Jiang, Zhenkun Cai, Ye Tian, Zhen Jia, Yida Wang, Chuan Wu

The University of Hong Kong, Amazon Web Services

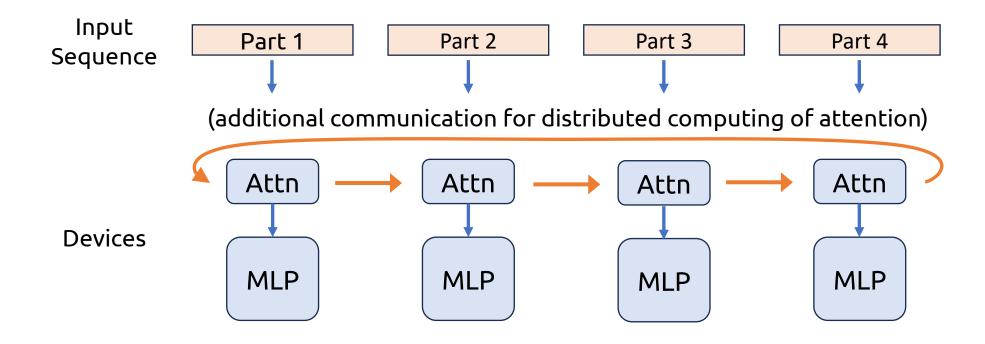
Background

Context Parallelism



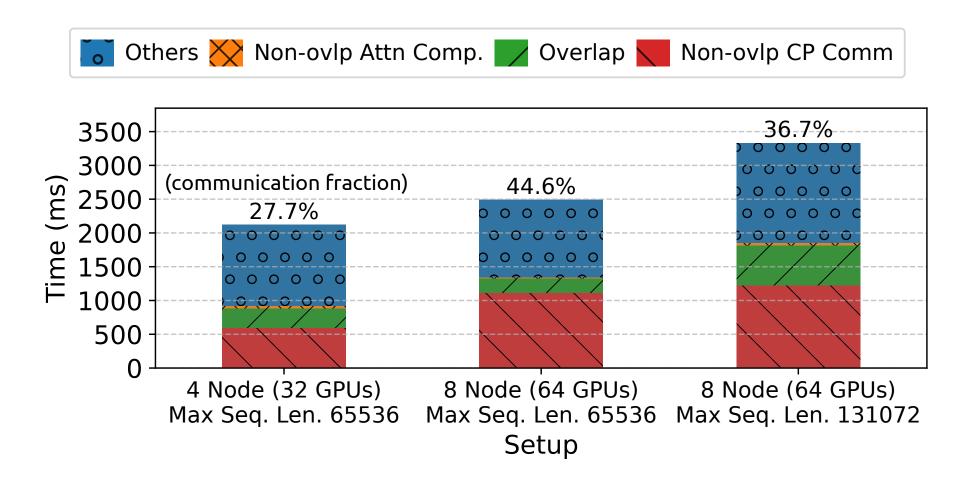
Background

Context Parallelism



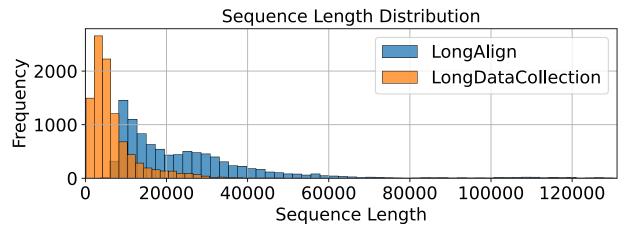
Background

Context Parallelism

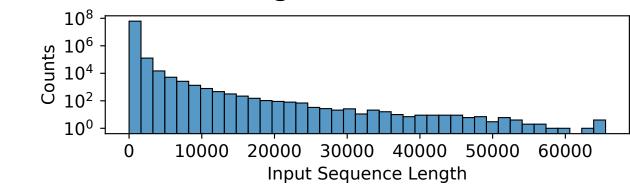


Setup: 8B model, Megatron-LM, 400Gbps interconnect between nodes, 8/16-way context parallelism cross nodes

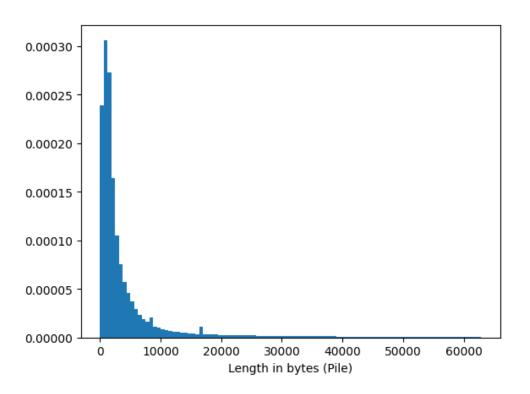
Input Dynamism in sequence length



Long Context Datasets

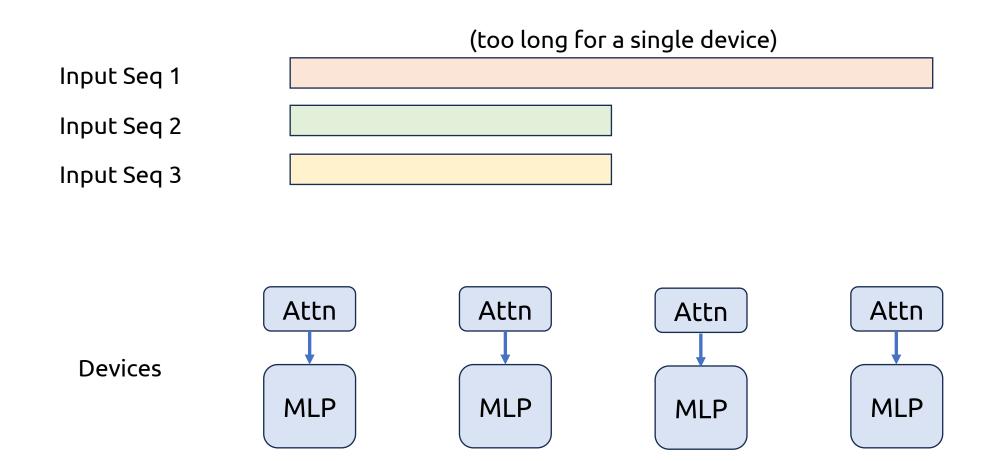


FLANv2

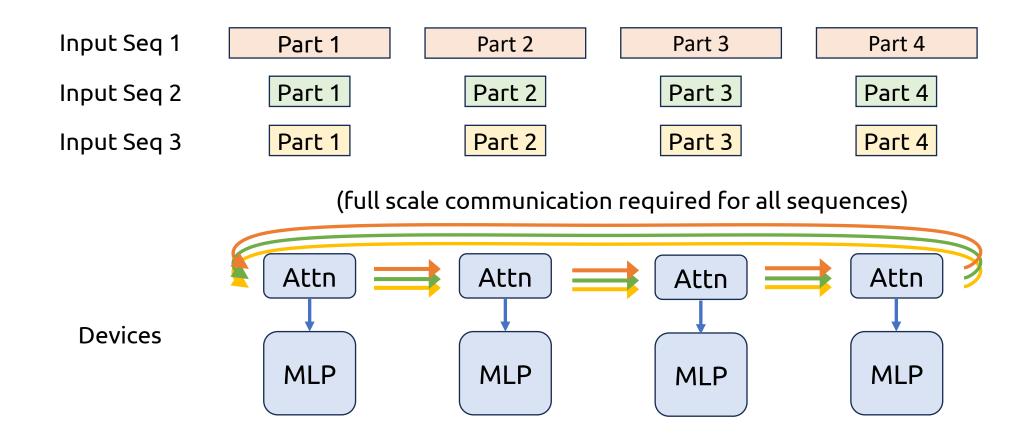


The Pile

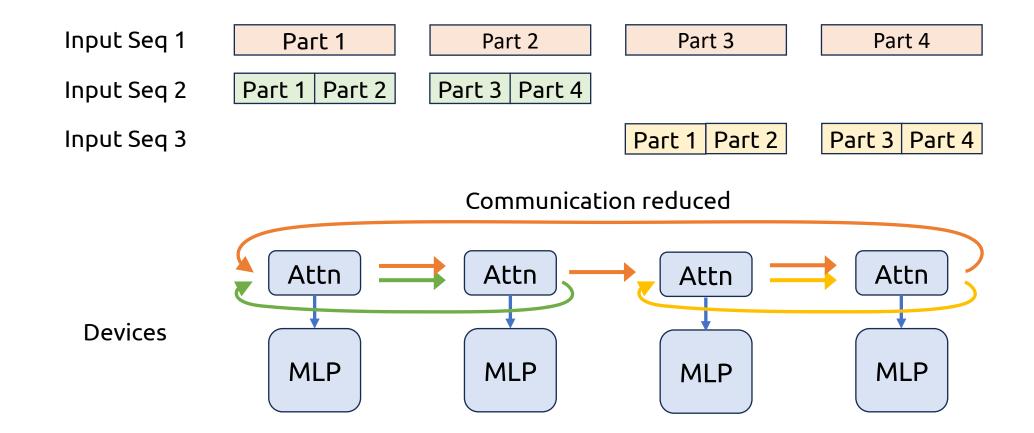
Input Dynamism in sequence length



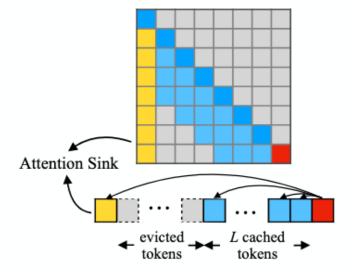
Input Dynamism in sequence length



Input Dynamism in sequence length

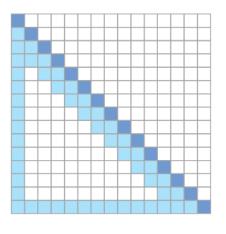


Input Dynamism *in attention masks*



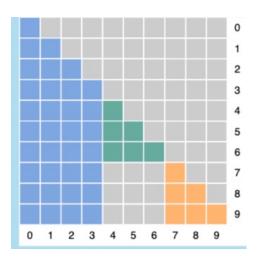
StreamingLLM

Xiao, et al., 2024



Causal Blockwise Mask

Bertsch, et al., 2025

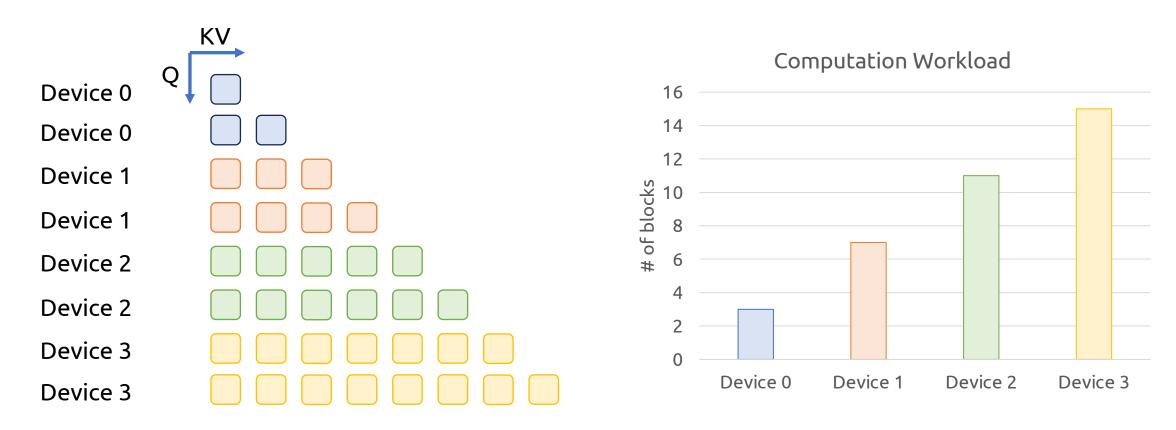


Shared Question Mask

Wang, et al., 2025

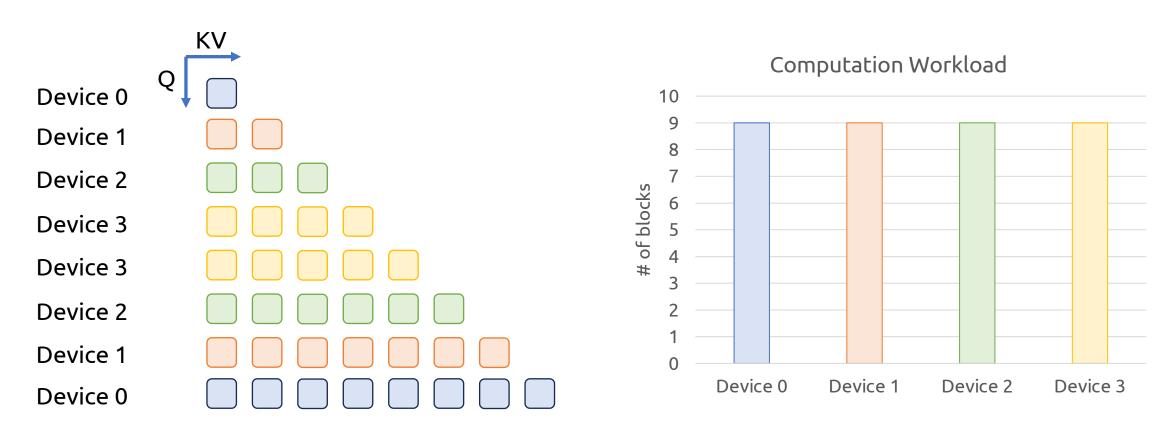
Diverse attention mask patterns on input sequences.

Input Dynamism in attention masks



Special Data Placement for Causal Mask

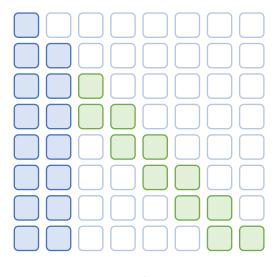
Input Dynamism in attention masks



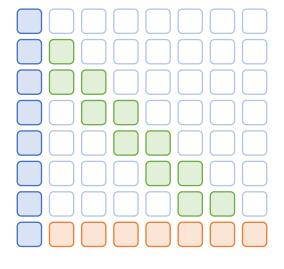
Special Data Placement for Causal Mask

Input Dynamism *in attention masks*

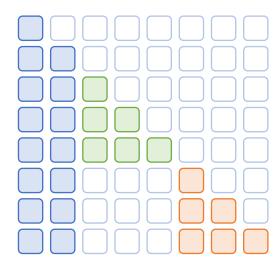
Other masks...



StreamingLLM

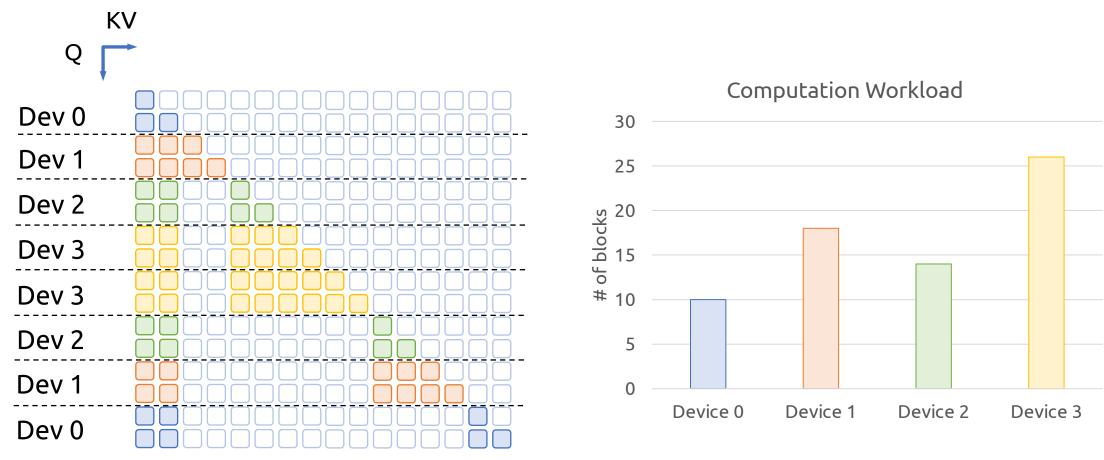


Causal Blockwise Mask



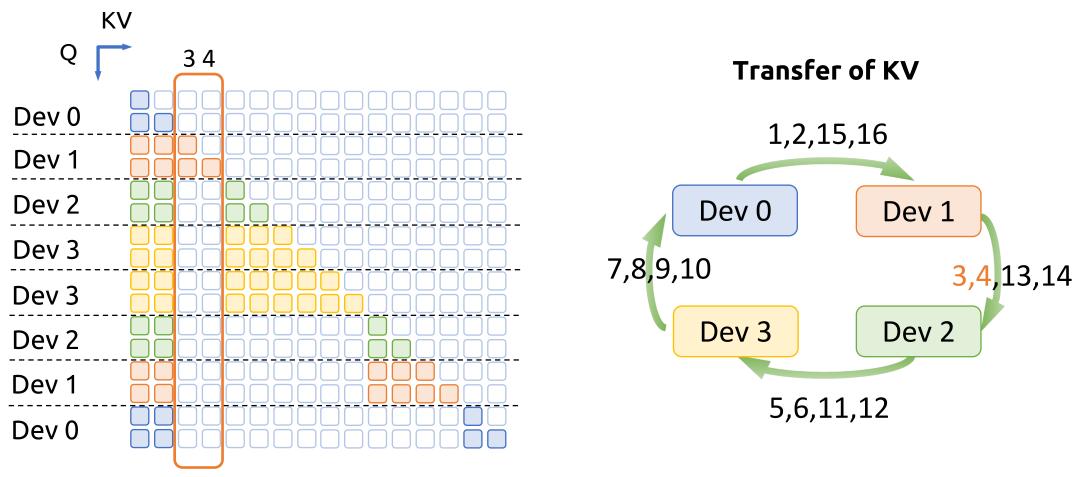
Shared Question Mask

Input Dynamism *in attention masks*



Computation Imbalance

Input Dynamism *in attention masks*



Redundant Communication

Input Dynamism in distributed attention

Observation:

Different batches require different parallelization strategy for optimal performance.

Question:

How to automatically optimize parallelization strategy for each input batch?

How to build a system that flexibly adapts to such dynamic parallelism?

Path to automatic parallelization strategy optimization

1. Optimize the placement of data and computation (parallelization)

2. Determine the schedule of communication and computation

Path to automatic parallelization strategy optimization

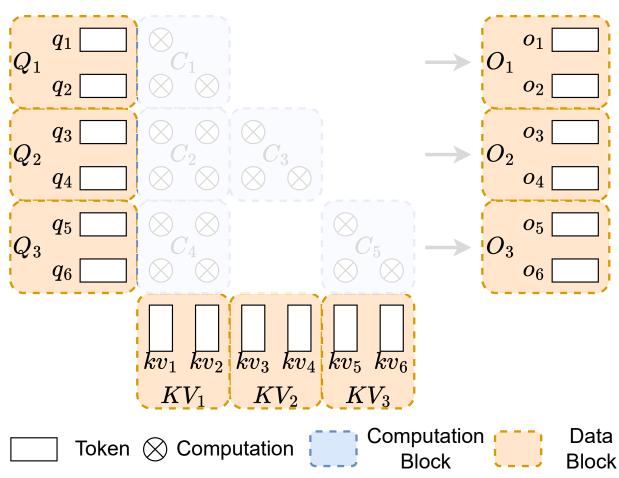
1. Optimize the placement of data and computation (parallelization)

2. Determine the schedule of communication and computation

Optimize parallelization with Hypergraph Partition

Attention described with two type of blocks:

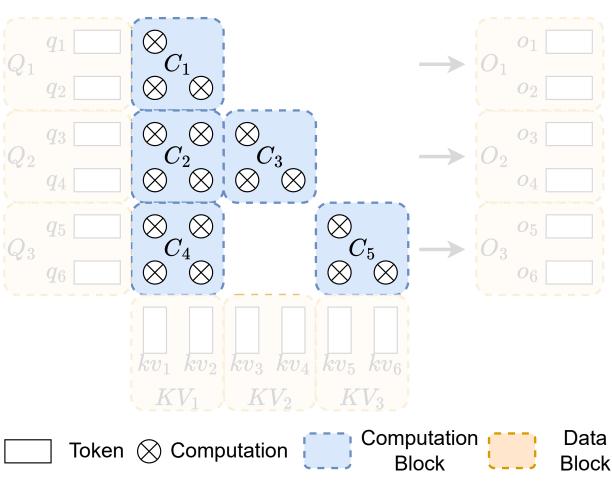
Data blocks



Optimize parallelization with Hypergraph Partition

Attention described with two type of blocks:

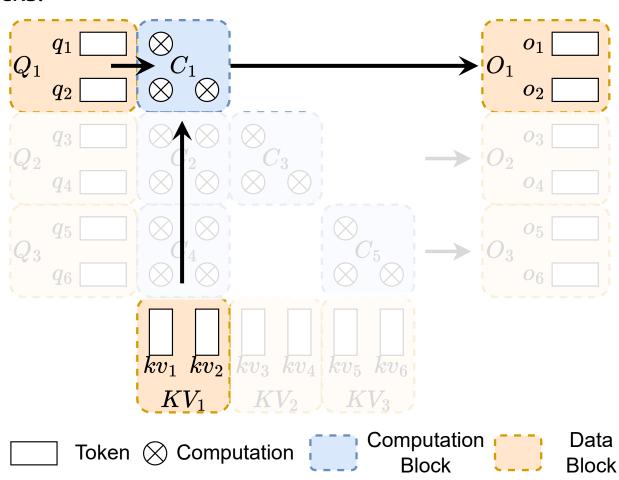
Data blocks



Optimize parallelization with Hypergraph Partition

Attention described with two type of blocks:

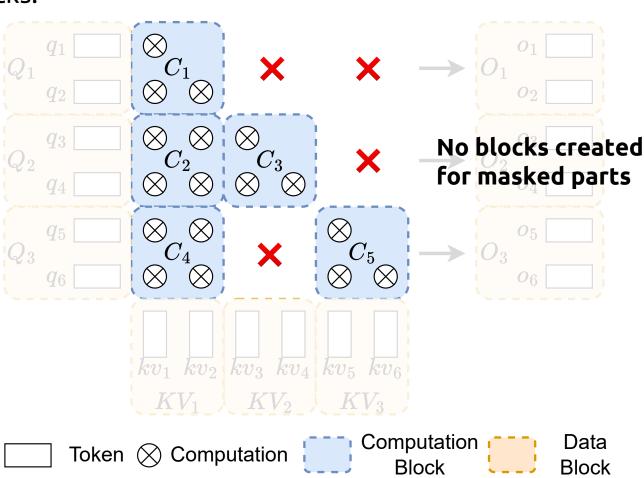
Data blocks



Optimize parallelization with Hypergraph Partition

Attention described with two type of blocks:

Data blocks



Optimize parallelization with Hypergraph Partition

Goal: find a balanced partition of data and computation, while minimizing communication

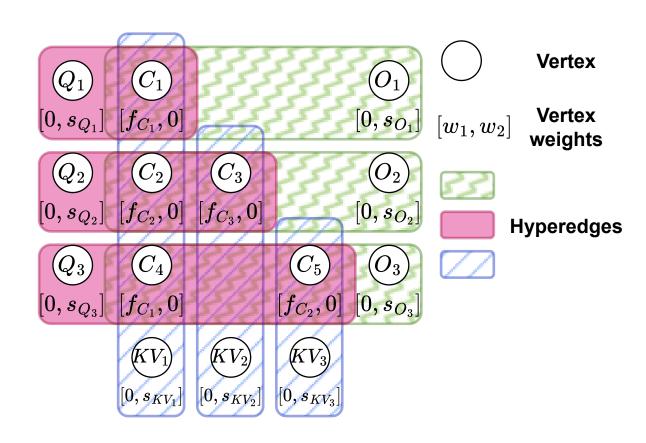
Hypergraph: each edge connects >=2 vertices

Vertices: data and computation blocks

Hyperedges: dependency between vertices (one for each data block)

Communication: for each hyper-edge, required communication is:

 $(\# cut - 1) \times Size(data block)$



Optimize parallelization with Hypergraph Partition

Goal: find a balanced partition of data and computation, while minimizing communication

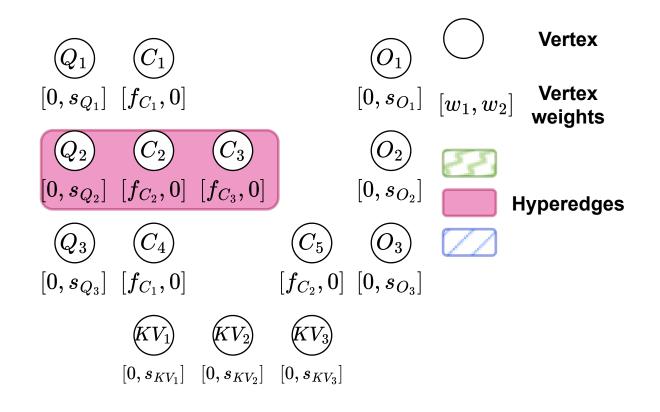
Hypergraph: each edge connects >=2 vertices

Vertices: data and computation blocks

Hyperedges: dependency between vertices (one for each data block)

Communication: for each hyper-edge, required communication is:

$$(\# cut - 1) \times Size(data block)$$



Optimize parallelization with Hypergraph Partition

Goal: find a balanced partition of data and computation, while minimizing communication

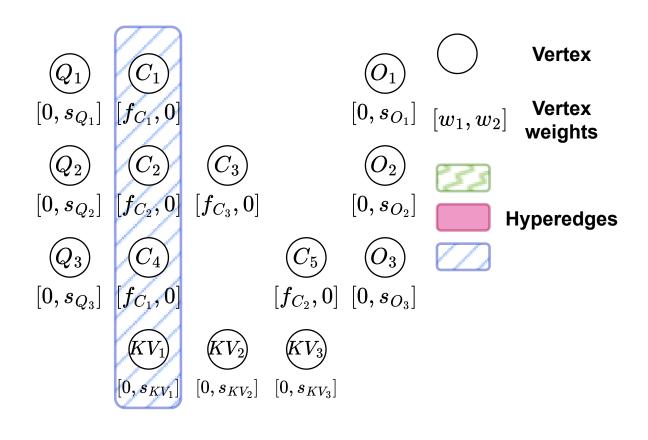
Hypergraph: each edge connects >=2 vertices

Vertices: data and computation blocks

Hyperedges: dependency between vertices (one for each data block)

Communication: for each hyper-edge, required communication is:

 $(\# cut - 1) \times Size(data block)$



Optimize parallelization with Hypergraph Partition

Goal: find a balanced partition of data and computation, while minimizing communication

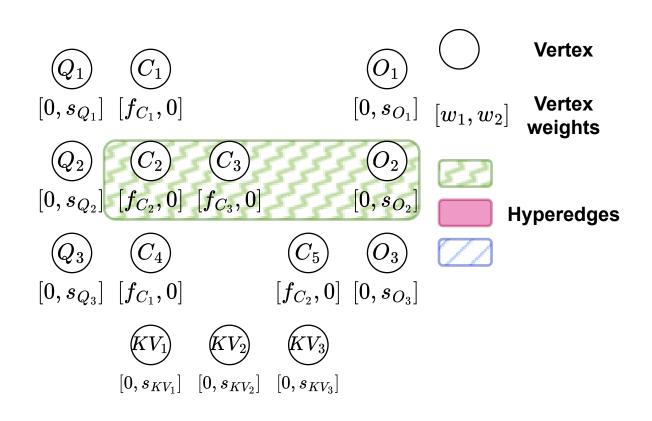
Hypergraph: each edge connects >=2 vertices

Vertices: data and computation blocks

Hyperedges: dependency between vertices (one for each data block)

Communication: for each hyper-edge, required communication is:

$$(\# cut - 1) \times Size(data block)$$



Optimize parallelization with Hypergraph Partition

Goal: find a balanced partition of data and computation, while minimizing communication

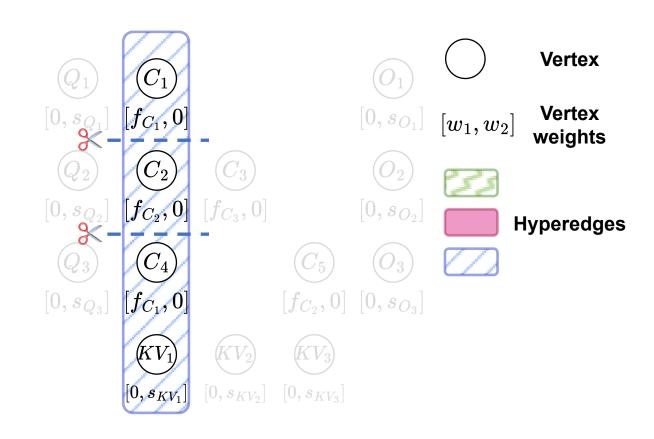
Hypergraph: each edge connects >=2 vertices

Vertices: data and computation blocks

Hyperedges: dependency between vertices (one for each data block)

Communication: for each hyper-edge, required communication is:

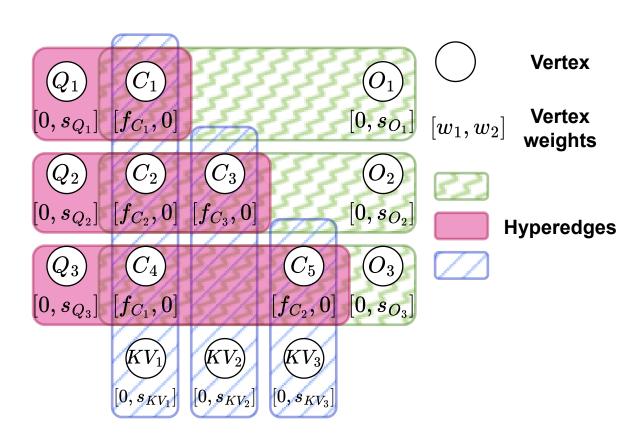
 $(\# cut - 1) \times Size(data block)$



Optimize parallelization with Hypergraph Partition

Goal: find a balanced partition of data and computation, while minimizing communication

Solving the balanced hyper-graph partitioning problem yields the optimal data and computation placement.



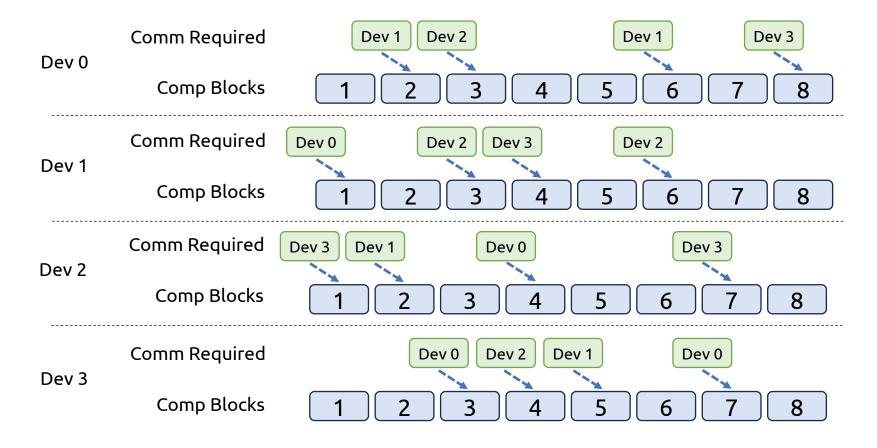
Path to automatic parallelism optimization

1. Optimize the placement of data and computation (parallelization)

2. Determine the schedule of communication and computation

Block scheduling for overlapping computation and communication

Goal: maximize communication-computation overlap while avoiding congestion



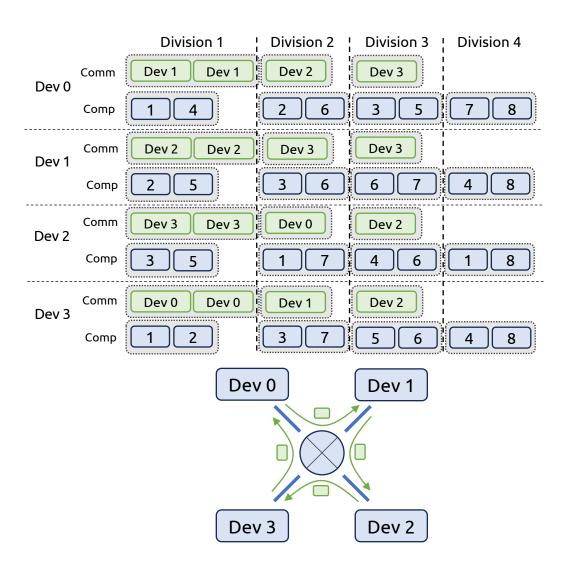
Block scheduling for overlapping computation and communication

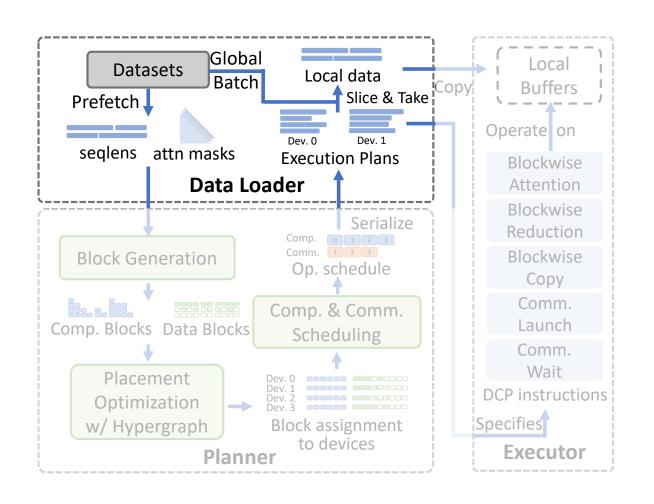
Partition comm. and comp. on each device into divisions.

Within each division, desire **balanced computation and communication.**

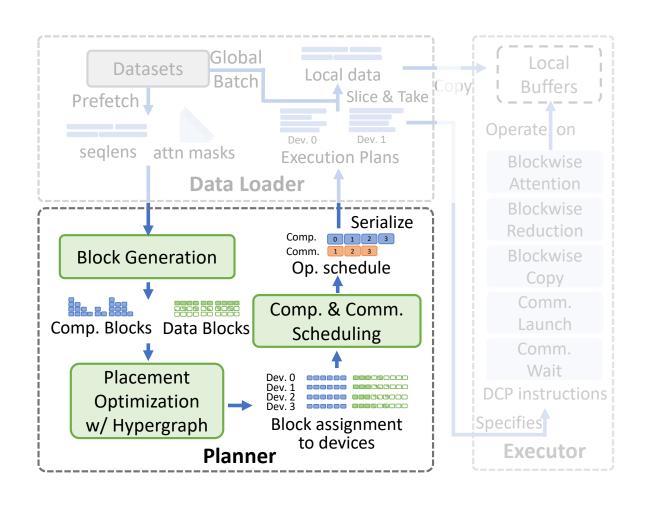
Communication required by the next division can **overlap** with computation in the current division.

Problem is **NP-hard**, using a greedy heuristic.

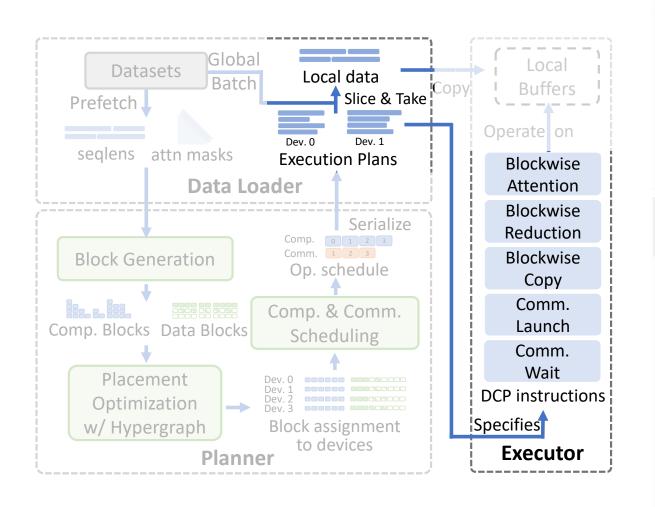




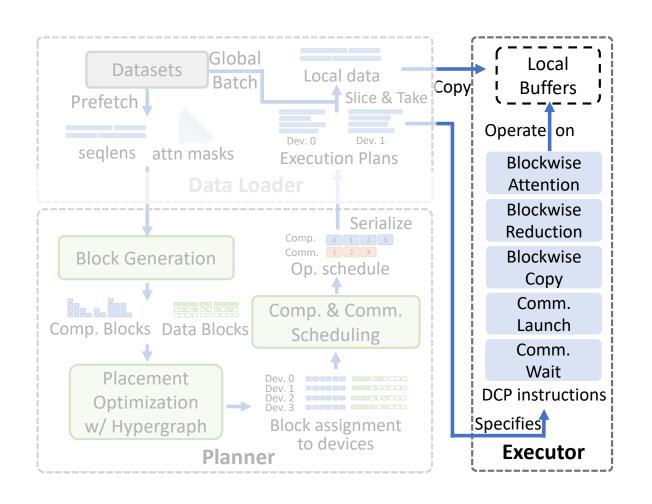
```
class TransformerLayer(...):
 def forward(..., dcp_executor):
   # replace attention implementation with DCPAttn
    core_attn_out = DCPAttn.apply(dcp_executor, q, kv)
# in training script
dcp_dataloader = DCPDataloader(dataset, mask_fn)
# dcp_group is a communicator that connects all devices
# (e.g., torch.distributed.ProcessGroup)
dcp_executor = DCPExecutor(group=dcp_group)
# training iterations
for (local_data, execution_plan) in dcp_dataloader:
  # set execution plan and create buffers
  dcp_executor.prepare(execution_plan)
  loss = model(local_data, dcp_executor)
```



```
class TransformerLayer(...):
 def forward(..., dcp_executor):
   # replace attention implementation with DCPAttn
    core_attn_out = DCPAttn.apply(dcp_executor, q, kv)
# in training script
dcp_dataloader = DCPDataloader(dataset, mask_fn)
# dcp_group is a communicator that connects all devices
# (e.g., torch.distributed.ProcessGroup)
dcp_executor = DCPExecutor(group=dcp_group)
# training iterations
for (local_data, execution_plan) in dcp_dataloader:
  # set execution plan and create buffers
  dcp_executor.prepare(execution_plan)
  loss = model(local_data, dcp_executor)
```



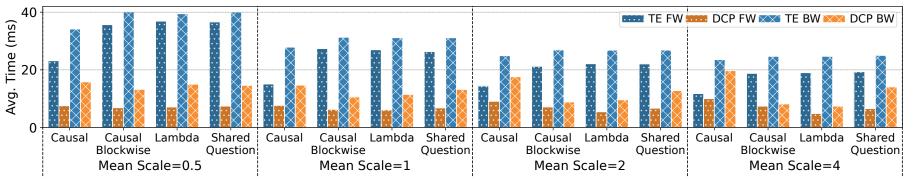
```
class TransformerLayer(...):
 def forward(..., dcp_executor):
   # replace attention implementation with DCPAttn
    core_attn_out = DCPAttn.apply(dcp_executor, q, kv)
# in training script
dcp_dataloader = DCPDataloader(dataset, mask_fn)
# dcp_group is a communicator that connects all devices
# (e.g., torch.distributed.ProcessGroup)
dcp_executor = DCPExecutor(group=dcp_group)
# training iterations
for (local_data, execution_plan) in dcp_dataloader:
  # set execution plan and create buffers
  dcp_executor.prepare(execution_plan)
  loss = model(local_data, dcp_executor)
```



```
# when defining models
class TransformerLayer(...):
  def forward(..., dcp_executor):
    # replace attention implementation with DCPAttn
    core_attn_out = DCPAttn.apply(dcp_executor, q, kv)
# in training script
dcp_dataloader = DCPDataloader(dataset, mask_fn)
# dcp_group is a communicator that connects all devices
# (e.g., torch.distributed.ProcessGroup)
dcp_executor = DCPExecutor(group=dcp_group)
# training iterations
for (local_data, execution_plan) in dcp_dataloader:
  # set execution plan and create buffers
  dcp_executor.prepare(execution_plan)
  # execute model
  loss = model(local_data, dcp_executor)
```

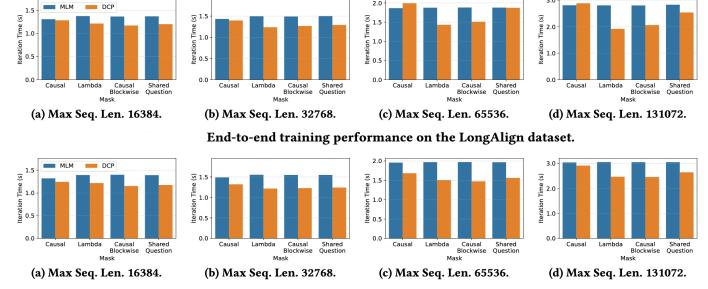
Key Results

Configuration: 8 nodes, each with 8 A100-80GB GPUs, 400 Gbps interconnect between nodes **Model:** follow llama3-8B setup



Mean Scale & Mask

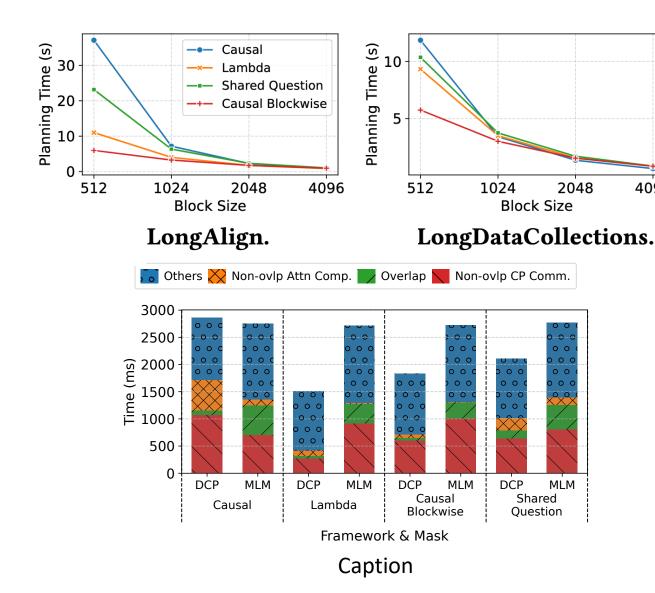
Attention microbenchmark: speed up 1.19x~2.45x under causal masks, 2.15x~3.77x under sparse masks



End-to-end benchmarks: speed up 0.94x~1.16x under causal masks, 1.00x~1.46x under sparse masks

End-to-end training performance on the LongDataCollections dataset.

Key Results



Planning time: < 10s per iteration under reasonable block size, full overlap with model execution when parallelized onto more than 10 CPU cores.

4096

Timeline decomposition: communication time greatly reduced. Potential performance improvement with better communication scheduling.

Takeaway

Dynamism in model input — sequence length and attention mask — can be exploited to accelerate context parallelism training.

Context parallelization strategies can be described and optimized in two layers:

- data and computation placement (modelled and optimized with hyper-graph representation)
- 2. Computation/communication scheduling.

Thank you

Contact: jchenyu@connect.hku.hk