Do Structurally Similar InChls Have Similar Hash Keys?

Dac-Trung Nguyen

National Center for Advancing Translational Sciences National Institutes of Health

> InChI Virtual Workshop March 22–24, 2021

InChI is the greatest thing ever since sliced bread.

-Steve Heller

InChIKey is perhaps the greatest thing ever since butter.

—Dac-Trung Nguyen

InChIKey is a hash key with...

- (i) Compact representation (27 characters)
- (ii) Structural "hints" (UHFFFAOYSA and charge suffix -N)
 - Approximately 74% of structures in PubChem contains UHFFFA0YSA
- (iii) Collision resistance (truncated SHA-2 with very low probability of collision)

InChIKey is well-suited for applications that require uniqueness (e.g., resolver). However, for many use cases such as registration and HTS analysis, we would like a more flexible hash key that can facilitate "meaningful" comparison while retaining relevant features of InChIKey. This is the story of *spectral hash key* for InChI.

Spectral hash key at a glance

CHEMBL279476

CHEMBL282495

CHEMBL20178

PVSICLYUDGZPCO-UHFFFAOYSA-N 111ZMSDKX4LX8LNL6ZRD728VM5HM7J GTTQCZXVNFENHV-UHFFFAOYSA-N 111ZMSDKX4LX8LNL6ZRUL5DJK5J2XW ZIJDJRBEHTWHFS-UHFFFAOYSA-N 111ZMSDKXW278SN92KHW12FPL5V1YL

Outline

Spectral graph theory

- Graph spectrum
 - Adjacency
 - Laplacian
 - Normalized Laplacian
- Spectral properties
- Spectral hash key
- Do similar hash keys have similar biological activity?
- What is "similarity"?
- Code availability & Acknowledgements

Spectral graph theory

- Graph *G* consists of a set of *n* vertices $V = \{v_1, v_2, ..., v_n\}$ and *m* edges $E = \{e_1, e_2, ..., e_m\}$ where $e_k = v_i \sim v_j$
- Let *M* be a matrix that encodes *G* based on *V*, *E*, or combinations thereof
- Spectral graph theory is about understanding the properties of G in terms of eigenvalues and eigenvectors of M, i.e.,

$$M\mathbf{v}_i = \lambda_i \mathbf{v}_i,$$

where λ_i is the *i*th eigenvalue and \mathbf{v}_i is the corresponding eigenvector.

- The eigenvalues $\{\lambda_i\}$ define the *spectrum* of *G*
- Outstanding problem: Which graphs are determined by their spectrum?
 - Under what conditions do non-isomorphic graphs have the same spectrum?

NIH National Center for Advancing Translational Sciences

Graph spectrum

Adjacency

The adjacency A representation of G is defined as

$$A_{ij} = egin{cases} 1 & ext{if } v_i \sim v_j \ 0 & ext{otherwise} \end{cases}$$

Foundation of Hückel theory

The topology of a molecule, rather than its geometry, determines the form of the Hückel molecular orbitals.

Graph spectrum

Laplacian

Let D be the degree matrix of G, i.e., $D_{ii} = \text{degree}(v_i)$ and 0 elsewhere, we have the Laplacian L defined as follows

$$L=D-A,$$

where A is the adjacency matrix.

Graph spectrum

Normalized Laplacian

The normalized Laplacian is defined as

$$\tilde{L}=D^{-\frac{1}{2}}LD^{-\frac{1}{2}},$$

or

$$\tilde{L}_{ij} = \begin{cases} 1 \quad i = j \\ -\frac{1}{\sqrt{d_i d_j}} \quad i \neq j \end{cases}$$

where d_i and d_j are the degrees of v_i and v_j , respectively.

Spectral properties

- ► The spectrum of A is bounded by the maximum degree in G, i.e., |λ_i| ≤ max_k d(v_k) for k = 1, 2, ..., n. For organic molecules, |λ_i| ≤ 4.
- ► L and L's spectra are non-negative, i.e., \u03c6, i ≥ 0. L and L are semidefinite.
- Multiplicity of $\lambda_i = 0$ in L and \tilde{L} is the number of connected components in G.
- The spectrum of \tilde{L} is bounded by 2, i.e., $0 \le \lambda_i \le 2$.
- ▶ Let $\lambda_1 = 0 \le \lambda_2 \le \cdots \le \lambda_n$ for *L* and \tilde{L} . The first non-zero λ_i is the *algebraic connectivity* index with the corresponding eigenvector known as the *Fiedler* vector. This vector provides near-optimal 2-partition of *G*. The Fiedler vector is the foundation of many spectral clustering algorithms.

$$\mathbf{v}_{2}(\tilde{L}) = \begin{bmatrix} 0.29255\\ 0.11507\\ 0.44483\\ -0.5342\\ 0.32870\\ -0.39416\\ -0.39416 \end{bmatrix}$$

(日)

Spectral hash key

Algorithm

$\overbrace{111ZMSDKX}^{|h_1|=9} \xrightarrow{|h_2|=10} \xrightarrow{|h_3|=11} \\ \overbrace{111ZMSDKX}^{|h_2|=10} \xrightarrow{|h_3|=11} \\ \overbrace{Properties}^{Properties}$

- (i) Let $\{\lambda_i\}$ be the spectrum of \tilde{L} (largest component)
- (ii) h_1 is the truncated (45 bits) SHA-1 digest of $\{\lambda_i\}$
- (iii) h_2 is the truncated (50 bits) SHA-1 digest of h_1 and /c layer of the largest component
- (iv) h_3 is the truncated (55 bits) SHA-1 digest of h_2 and full InChl string
- (v) Spectral hash key is an 150-bit string $h_1h_2h_3$

- ► Hash key is a base-32 encoded string with the alphabet {A,..., Z} ∪ {1,...,9}\{E, I, O}
- Three logical blocks h₁, h₂, and h₃ with progressively increased resolution
- Hash chaining allows the individual blocks to be used independently
- Structure grouping with sort

400

500

Spectral hash key by the numbers ChEMBI 28

 $h_1 = VXL4K9UW2$ comprising of 537 structures (peptide) WU7MZ9LTZ 229 FHTNW1AYS 234 ▶ 1,727,459 unique values for h_2 with $h_2 = 9154$ K6U6NH comprising of 515 structures 72X2TJJJC1 86

 \blacktriangleright 1,268,784 unique values for h_1 with

- PNNJW7VMJW 79
- 4B8X9B61KH 70

8 8 Count 8 8 200 300 400 Number of structures per topolog Distribution of h2 8

Distribution of h1

00

Count 00

20

0

100

300 Number of structures per framework

200

Do similar hash keys have similar biological activity? $K_{inase(h_1)}$

Kinase (ChEMBL 28)

TK protein kinase (ChEMBL 28)

Do similar hash keys have similar biological activity? GCPR & Ion channel (*h*₁)

What is "similarity"?

The problem

What should the similarity be between the following structures?

Tanimoto = 0.55, InChI edit distance = 8 What about this pair?

Tanimoto = 1, InChI edit distance = 47 Limitations of the Tanimoto metric are well-recognized within the cheminformatics community, but what about the InChI edit distance?

Pairwise for h1=WU7MZ9LTZ

Pairwise for h2=3U51T8HJB72X2TJJJC1

What is "similarity"?

What's wrong with InChl edit distance? (a diatribe)

- Can you translate chemical images to text? https://www.kaggle.com/c/bms-molecular-translation/
- Use InChI edit distance as an evaluation metric
- Despite our best efforts so far, we're being destroyed by the GPU-bound Python notebook crowds

42	copypaste	D	12.50	1	Sh
43	John Robinson	Ê.	12.58	1	6d
44	https://molwec.noats.io	0	12.96	5	33m
		ы 💆	Tweet this!		
45	George #2	0	13.09	2	3d
45		9) 9	13.09 13.44	2	3d 3d
	Binh Nguyen	<u> </u>			

Ignorance is bliss (or less is more)

Perfect reconstruction, but the extra E/Zs implied by the drawing cost us 34 edit distance!

What is "similarity"?

Challenge to the InChl community

Develop a robust distance or similarity metric for InChI that reflects the chemist's intuitions

- Graph edit distance based on MCS (e.g., NextMove's smallworld)
- Edit distance based on graph spectrum

Code availability

- Self-contained source code in C at https://github.com/ncats/spectral_hk
- Spectral hash keys generated for ChEMBL 28 are available at mysql -u chembl -h chembl.ncats.io chembl28_ncats
- Welcome questions and feedback: nguyenda@mail.nih.gov

Acknowledgements

- Alexey Zakharov
- Tyler Peryea (FDA)
- Lu Chen
- Ewy Mathé
- Noel Southall

Funding

NCATS intramural