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Do Structurally Similar InChIs
Have Similar Hash Keys?
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InChI is the greatest thing ever since sliced   bread.
—Steve Heller

InChIKey is perhaps the greatest thing ever since butter.
—Dac-Trung Nguyen

InChIKey is a hash key with...
(i) Compact representation (27 characters)
(ii) Structural “hints” (UHFFFAOYSA and charge suffix -N)

▶ Approximately 74% of structures in PubChem contains
UHFFFAOYSA

(iii) Collision resistance (truncated SHA-2 with very low
probability of collision)

InChIKey is well-suited for applications that require uniqueness
(e.g., resolver). However, for many use cases such as registration
and HTS analysis, we would like a more flexible hash key that can
facilitate “meaningful” comparison while retaining relevant features
of InChIKey. This is the story of spectral hash key for InChI.
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Spectral hash key at a glance

CHEMBL279476

CH3

Cl

H
N

N

N

N

N

O

O

S

PVSICLYUDGZPCO-UHFFFAOYSA-N
111ZMSDKX4LX8LNL6ZRD728VM5HM7J

CHEMBL282495

CH3

Cl

N

N

N

N

N

HO

O

S

GTTQCZXVNFENHV-UHFFFAOYSA-N
111ZMSDKX4LX8LNL6ZRUL5DJK5J2XW

CHEMBL20178

H3C

CH3

Cl

N

N

N

N

N

O

S

ZIJDJRBEHTWHFS-UHFFFAOYSA-N
111ZMSDKXW278SN92KHW12FPL5V1YL
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Outline

▶ Spectral graph theory
▶ Graph spectrum

▶ Adjacency
▶ Laplacian
▶ Normalized Laplacian

▶ Spectral properties
▶ Spectral hash key
▶ Do similar hash keys have similar biological activity?
▶ What is “similarity”?
▶ Code availability & Acknowledgements
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Spectral graph theory

▶ Graph G consists of a set of n vertices V = {v1, v2, . . . , vn}
and m edges E = {e1, e2, . . . , em} where ek = vi ∼ vj

▶ Let M be a matrix that encodes G based on V, E, or
combinations thereof

▶ Spectral graph theory is about understanding the properties of
G in terms of eigenvalues and eigenvectors of M, i.e.,

Mvi = λivi,

where λi is the ith eigenvalue and vi is the corresponding
eigenvector.

▶ The eigenvalues {λi} define the spectrum of G
▶ Outstanding problem: Which graphs are determined by their

spectrum?
▶ Under what conditions do non-isomorphic graphs have the

same spectrum?
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Graph spectrum
Adjacency

The adjacency A representation of G is defined as

Aij =

{
1 if vi ∼ vj
0 otherwise

Foundation of Hückel theory
The topology of a molecule, rather than its geometry, determines
the form of the Hückel molecular orbitals.

A =



0 1 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 1 0 0
0 1 0 0 0 1 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
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Graph spectrum
Laplacian

Let D be the degree matrix of G, i.e., Dii = degree(vi) and 0
elsewhere, we have the Laplacian L defined as follows

L = D − A,

where A is the adjacency matrix.

L =



2 −1 −1 0 0 0 0
−1 3 −1 −1 0 0 0
−1 −1 3 0 −1 0 0

0 −1 0 3 0 −1 −1
0 0 −1 0 1 0 0
0 0 0 −1 0 1 0
0 0 0 −1 0 0 1
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Graph spectrum
Normalized Laplacian

The normalized Laplacian is defined as

L̃ = D− 1
2 LD− 1

2 ,

or

L̃ij =

1 i = j
− 1√

didj
i ̸= j

where di and dj are the degrees of vi and vj, respectively.

L̃ =


1.0 −0.4 −0.4 0.0 0.0 0.0 0.0

−0.4 1.0 −0.3 −0.3 0.0 0.0 0.0
−0.4 −0.3 1.0 0.0 −0.6 0.0 0.0

0.0 −0.3 0.0 1.0 0.0 −0.6 −0.6
0.0 0.0 −0.6 0.0 1.0 0.0 0.0
0.0 0.0 0.0 −0.6 0.0 1.0 0.0
0.0 0.0 0.0 −0.6 0.0 0.0 1.0
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Spectral properties

▶ The spectrum of A is bounded by the maximum degree in G,
i.e., |λi| ≤ maxk d(vk) for k = 1, 2, . . . , n. For organic
molecules, |λi| ≤ 4.

▶ L and L̃’s spectra are non-negative, i.e., λi ≥ 0. L and L̃ are
semidefinite.

▶ Multiplicity of λi = 0 in L and L̃ is the number of connected
components in G.

▶ The spectrum of L̃ is bounded by 2, i.e., 0 ≤ λi ≤ 2.
▶ Let λ1 = 0 ≤ λ2 ≤ · · · ≤ λn for L and L̃. The first non-zero λi

is the algebraic connectivity index with the corresponding
eigenvector known as the Fiedler vector. This vector provides
near-optimal 2-partition of G. The Fiedler vector is the
foundation of many spectral clustering algorithms.

v2(L̃) =


0.29255
0.11507
0.44483

−0.53342
0.32870

−0.39416
−0.39416
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Spectral hash key
|h1|=9︷ ︸︸ ︷

111ZMSDKX
|h2|=10︷ ︸︸ ︷

4LX8LNL6ZR
|h3|=11︷ ︸︸ ︷

D728VM5HM7J
Algorithm
(i) Let {λi} be the spectrum

of L̃ (largest component)
(ii) h1 is the truncated (45

bits) SHA-1 digest of {λi}
(iii) h2 is the truncated (50

bits) SHA-1 digest of h1
and /c layer of the largest
component

(iv) h3 is the truncated (55
bits) SHA-1 digest of h2
and full InChI string

(v) Spectral hash key is an
150-bit string h1h2h3

Properties
▶ Hash key is a base-32

encoded string with the
alphabet {A, . . . ,Z} ∪
{1, . . . , 9}\{E, I,O}

▶ Three logical blocks h1,
h2, and h3 with
progressively increased
resolution

▶ Hash chaining allows the
individual blocks to be
used independently

▶ Structure grouping with
sort
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Spectral hash key by the numbers
ChEMBL 28

▶ 1,268,784 unique values for h1 with
h1 = VXL4K9UW2 comprising of 537
structures (peptide)
WU7MZ9LTZ 229
FHTNW1AYS 234

▶ 1,727,459 unique values for h2 with
h2 = 9154K6U6NH comprising of 515
structures
72X2TJJJC1 86
PNNJW7VMJW 79
4B8X9B61KH 70



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.

Do similar hash keys have similar biological activity?
Kinase (h1)
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Do similar hash keys have similar biological activity?
GCPR & Ion channel (h1)
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What is “similarity”?
The problem

What should the similarity be between the
following structures?

O

O

H
Cl

O

H

CHEMBL1395094 CHEMBL1554418

Tanimoto = 0.55, InChI edit distance = 8
What about this pair?

O

O

O

O

H

H

H

H

CHEMBL268313CHEMBL3349077

Tanimoto = 1, InChI edit distance = 47
Limitations of the Tanimoto metric are
well-recognized within the cheminformatics
community, but what about the InChI edit
distance?
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What is “similarity”?
What’s wrong with InChI edit distance? (a diatribe)

▶ Can you translate chemical images to text?
https://www.kaggle.com/c/bms-molecular-translation/

▶ Use InChI edit distance as an evaluation metric
▶ Despite our best efforts so far, we’re being destroyed by the

GPU-bound Python notebook crowds

▶ Ignorance is bliss (or less is more)

→

Perfect reconstruction, but the extra E/Zs implied by the
drawing cost us 34 edit distance!
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What is “similarity”?
Next step

Challenge to the InChI community
Develop a robust distance or similarity metric for InChI that
reflects the chemist’s intuitions
▶ Graph edit distance based on MCS (e.g., NextMove’s

smallworld)
▶ Edit distance based on graph spectrum
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Code availability
▶ Self-contained source code in C at

https://github.com/ncats/spectral_hk
▶ Spectral hash keys generated for ChEMBL 28 are available at

mysql -u chembl -h chembl.ncats.io chembl28_ncats
▶ Welcome questions and feedback: nguyenda@mail.nih.gov

Acknowledgements
▶ Alexey Zakharov
▶ Tyler Peryea (FDA)
▶ Lu Chen
▶ Ewy Mathé
▶ Noel Southall

Funding
NCATS intramural

https://github.com/ncats/spectral_hk

