Do Structurally Similar InChIs Have Similar Hash Keys?

Dac-Trung Nguyen

National Center for Advancing Translational Sciences National Institutes of Health

> InChI Virtual Workshop March 22–24, 2021

InChI is the greatest thing ever since sliced bread.

—Steve Heller

InChIKey is perhaps the greatest thing ever since butter. —Dac-Trung Nguyen

InChIKey is a hash key with...

- (i) Compact representation (27 characters)
- (ii) Structural "hints" (UHFFFAOYSA and charge suffix -N)
	- ▶ Approximately 74% of structures in PubChem contains UHFFFAOYSA
- (iii) Collision resistance (truncated SHA-2 with very low probability of collision)

InChIKey is well-suited for applications that require uniqueness (e.g., resolver). However, for many use cases such as registration and HTS analysis, we would like a more flexible hash key that can facilitate "meaningful" comparison while retaining relevant features

NIH Mational Center
Translational Sciences

Spectral hash key at a glance

CHEMBL279476

PVSICLYUDGZPCO-UHFFFAOYSA-N 111ZMSDKX4LX8LNL6ZRD728VM5HM7J

CHEMBL282495

GTTQCZXVNFENHV-UHFFFAOYSA-N 111ZMSDKX4LX8LNL6ZRUL5DJK5J2XW

CHEMBL20178

ZIJDJRBEHTWHFS-UHFFFAOYSA-N
111ZMSDKXW278SN92KHW12FPL5V1YL

 H_3C N NS.

Outline

- ▶ Spectral graph theory
- ▶ Graph spectrum
	- ▶ Adjacency
	- ▶ Laplacian
	- ▶ Normalized Laplacian
- ▶ Spectral properties
- ▶ Spectral hash key
- ▶ Do similar hash keys have similar biological activity?
- ▶ What is "similarity"?
- ▶ Code availability & Acknowledgements

Spectral graph theory

- ▶ Graph *G* consists of a set of *n* vertices $V = \{v_1, v_2, \ldots, v_n\}$ and *m* edges $E = \{e_1, e_2, \dots, e_m\}$ where $e_k = v_i \sim v_j$
- ▶ Let *M* be a matrix that encodes *G* based on *V*, *E*, or combinations thereof
- ▶ Spectral graph theory is about understanding the properties of *G* in terms of eigenvalues and eigenvectors of *M*, i.e.,

$$
M\mathbf{v}_i = \lambda_i \mathbf{v}_i,
$$

where λ_i is the *i*th eigenvalue and \mathbf{v}_i is the corresponding eigenvector.

- \blacktriangleright The eigenvalues $\{\lambda_i\}$ define the *spectrum* of *G*
- ▶ Outstanding problem: Which graphs are determined by their spectrum?
	- ▶ Under what conditions do non-isomorphic graphs have the same spectrum?

Graph spectrum

Adjacency

The adjacency *A* representation of *G* is defined as

$$
A_{ij} = \begin{cases} 1 & \text{if } v_i \sim v_j \\ 0 & \text{otherwise} \end{cases}
$$

Foundation of Hückel theory

The topology of a molecule, rather than its geometry, determines the form of the Hückel molecular orbitals.

$$
{}^{\circ}N
$$
\n
$$
\begin{pmatrix}\n{}^{\circ} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
{}^{\circ} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
{}^{\circ} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
{}^{\circ} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
{}^{\circ} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
{}^{\circ} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
{}^{\circ} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
{}^{\circ} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}\n\end{pmatrix}
$$

Graph spectrum Laplacian

> Let *D* be the degree matrix of *G*, i.e., $D_{ii} = \text{degree}(v_i)$ and 0 elsewhere, we have the Laplacian *L* defined as follows

$$
L=D-A,
$$

where *A* is the adjacency matrix.

$$
\begin{array}{c}\n \stackrel{\stackrel{\phantom{0
$$

Graph spectrum Normalized Laplacian

The normalized Laplacian is defined as

$$
\tilde{L}=D^{-\frac{1}{2}}LD^{-\frac{1}{2}},
$$

or

$$
\tilde{L}_{ij} = \begin{cases} 1 & i = j \\ -\frac{1}{\sqrt{d_i d_j}} & i \neq j \end{cases}
$$

where *dⁱ* and *d^j* are the degrees of *vⁱ* and *v^j* , respectively.

L˜ = 1*.*0 *−*0*.*4 *−*0*.*4 0*.*0 0*.*0 0*.*0 0*.*0 *−*0*.*4 1*.*0 *−*0*.*3 *−*0*.*3 0*.*0 0*.*0 0*.*0 *−*0*.*4 *−*0*.*3 1*.*0 0*.*0 *−*0*.*6 0*.*0 0*.*0 0*.*0 *−*0*.*3 0*.*0 1*.*0 0*.*0 *−*0*.*6 *−*0*.*6 0*.*0 0*.*0 *−*0*.*6 0*.*0 1*.*0 0*.*0 0*.*0 0*.*0 0*.*0 0*.*0 *−*0*.*6 0*.*0 1*.*0 0*.*0 0*.*0 0*.*0 0*.*0 *−*0*.*6 0*.*0 0*.*0 1*.*0

Spectral properties

. .

- ▶ The spectrum of *A* is bounded by the maximum degree in *G*, i.e., $|\lambda_i| \leq \max_k d(v_k)$ for $k=1,2,\ldots,n.$ For organic molecules, $|\lambda_i| \leq 4$.
- ▶ *L* and \tilde{L} 's spectra are non-negative, i.e., $\lambda_i \geq 0$. *L* and \tilde{L} are semidefinite.
- \blacktriangleright Multiplicity of $\lambda_i = 0$ in *L* and \tilde{L} is the number of connected components in *G*.
- ▶ The spectrum of \tilde{L} is bounded by 2, i.e., $0 \leq \lambda_i \leq 2$.
- ▶ Let $\lambda_1 = 0 \leq \lambda_2 \leq \cdots \leq \lambda_n$ for *L* and \tilde{L} . The first non-zero λ_i is the *algebraic connectivity* index with the corresponding eigenvector known as the *Fiedler* vector. This vector provides near-optimal 2-partition of *G*. The Fiedler vector is the foundation of many spectral clustering algorithms.

$$
\mathbf{v}_2(\tilde{L}) = \begin{bmatrix} 0.29255 \\ 0.11507 \\ -0.53342 \\ 0.32870 \\ -0.39416 \\ -0.39416 \end{bmatrix}
$$

Spectral hash key

*|h*1*|*=9 111ZMSDKX 4LX8LNL6ZR D728VM5HM7J *|h*2*|*=10 *|h*3*|*=11 **Properties**

Algorithm

- (i) Let $\{\lambda_i\}$ be the spectrum of *L* (largest component)
- (ii) h_1 is the truncated (45) bits) SHA-1 digest of $\{\lambda_i\}$
- (iii) h_2 is the truncated (50 bits) SHA-1 digest of h_1 and /c layer of the largest component
- (iv) h_3 is the truncated (55 bits) SHA-1 digest of h_2 and full InChI string
- (v) Spectral hash key is an 150-bit string $h_1h_2h_3$
- ▶ Hash key is a base-32 encoded string with the alphabet *{A, . . . , Z} ∪ {*1*, . . . ,* 9*}\{E, I, O}*
- \blacktriangleright Three logical blocks h_1 , h_2 , and h_3 with progressively increased resolution
- ▶ Hash chaining allows the individual blocks to be used independently
- $\Box \rightarrow \leftarrow \Box \rightarrow \exists$ ▶ Structure grouping with sort

Spectral hash key by the numbers ChEMBL 28

 $\Box \rightarrow \ast \, \bar{\Box} \rightarrow$

. .

Do similar hash keys have similar biological activity? Kinase (h_1)

Do similar hash keys have similar biological activity? GCPR & Ion channel (*h*1)

What is "similarity"? The problem

What should the similarity be between the following structures?

Tanimoto = 0.55 , InChI edit distance = 8 What about this pair?

Tanimoto $= 1$, InChI edit distance $= 47$ *Limitations of the Tanimoto metric are well-recognized within the cheminformatics community, but what about the InChI edit distance?*

What is "similarity"?

- ▶ *Can you translate chemical images to text?* https://www.kaggle.com/c/bms-molecular-translation/
- ▶ Use InChI edit distance as an evaluation metric
- ▶ Despite our best efforts so far, we're being destroyed by the GPU-bound Python notebook crowds

▶ Ignorance is bliss (or less is more)

Perfect reconstruction, but the extra E/Zs implied by the drawing cost us 34 edit distance!

What is "similarity"? Next step

Challenge to the InChI community

Develop a robust distance or similarity metric for InChI that reflects the chemist's intuitions

- ▶ Graph edit distance based on MCS (e.g., NextMove's smallworld)
- ▶ Edit distance based on graph spectrum

Code availability

- ▶ Self-contained source code in C at https://github.com/ncats/spectral_hk
- ▶ Spectral hash keys generated for ChEMBL 28 are available at mysql -u chembl -h chembl.ncats.io chembl28_ncats
- ▶ Welcome questions and feedback: nguyenda@mail.nih.gov

Acknowledgements

- ▶ Alexey Zakharov
- ▶ Tyler Peryea (FDA)
- ▶ Lu Chen
- ▶ Ewy Mathé
- ▶ Noel Southall

Funding

NCATS intramural