
Running InChI Anywhere with

WebAssembly

Rich Apodaca

(@rapodaca)

Metamolecular

•Unique Key: Does this database have this molecule?

•Foreign Key: What other databases have this molecule?

•Permissionless (cf. CAS)

The InChI Value Proposition

•165,000 lines of code

•Mostly C

InChI Source Code

Deployment

{ }

C Source

1001101010…

1100111010…

1110010101…

Native ExecutablesBuild System

What About…

✓ Ubiquitous

X Native Code not Allowed!

Servers… Permission

The Most Important App

https://www.wsj.com/articles/your-browser-is-the-most-important-app-you-havemake-sure-you-use-the-right-one-1537707600

•Browser debut in 1994

•Universal browser support

•Pretty fast

JavaScript

InChI to JavaScript

Rewrite

160,000 lines

of C to JS.

Transpile

160,000 lines

of C to JS.

{ }

InChI

Source

https://github.com/metamolecular/inchi-js

•Ad hoc solution

•Limited tooling

•Limited scope

•Gobs of glue code

•Not built for speed

JavaScript as Assembly Language

{ }
C Source

•Binary instruction format

•Fast, portable compile target

•Sandboxed for security

•Runs in all browsers, 2017

•W3C Standard, 2019

•Runs InChI?

WebAssembly (Wasm)

•Minimal tooling

•No auto-generated glue code

•Use verbatim InChI source

• In other words, a build system

Goals

InChI Wasm

compile

{ } 1010100111…

InChI-Wasm Project

{ }
C

Wrapper

Build

Script

⚙️
InChI

Wasm

+

LLVM

Compiler

{ } +

InChI C

Source

v1.06

https://github.com/rapodaca/inchi-wasm

Application Stack

JS-Wasm Interface (2 KB)

Standard Library (Static, 69 KB)

User Interface

InChI Wasm (601 KB)

chemwriter.com/inchi

C Wrapper

Wasm interface

Also, inchi_to_inchikey with help from Bob Hanson

heavy lifting 💪

copy result (InChI or Error)

JS error reporting

Build Script

LLVM compiler

Wasm Target

Standard Library

Obscure, hard-won hack

Wasm options

Standard build

stuff

Data Schlepping in JS

Inputs: molfile and options

Byte wranglers

Translate input

} Write output

Call InChI Wrapper

Return result}

Performance

“WebAssembly aims to execute at native

speed by taking advantage of common

hardware capabilities available on a wide

range of platforms.”

- webassembly.org

•114 K SureChEMBL Update

•Test Wasm & native

•Same InChI output

•155 ChEMBL discrepancies

•3 Errors

Benchmark

0 550 1100 1650 2200 2750

Wasm

Native

InChIs/sec

https://github.com/rapodaca/inchi-benchmark

Rethinking the Web Browser for Chemistry

Ertl et. al. https://doi.org/10.1186/s13321-015-0061-y

Pyodide Project https://github.com/iodide-project/pyodide

Beyond the Browser

•Legacy code written in C, C++, or FORTRAN

• Incentive for in-browser and/or serverless deployment

•Compile to Wasm with LLVM

•User Interface in HTML5

A Template for Future Work

https://metamolecular.com

