

INCHI ON WIKIPEDIA: WHY MANY COMPOUNDS HAVE MORE THAN ONE INCHI.

Roger Sayle

NextMove Software, Cambridge, UK

NIH Virtual Workshop on InChI, Zoom Meeting, Tuesday 23rd March 2021

DISCLAIMER

- Firstly, thanks to the organizers; Steve, Marc, Evan, Noel and Janelle.
- Admission, NextMove Software makes relatively little use of InChI (but see John Mayfield's talk tomorrow).
- However, one role where I do use InChI is as a contributor/editor to Wikipedia, adding SMILES, InChI and InChI keys to ChemBox and DrugBox.
- Thanks to the developers of Open Babel for their graphical user interface, and Perkin Elmer for ChemDraw.

DISCLAIMER DISCLAIMER

- There are two types of errors for when assigning unique identifiers to chemical structures.
 - 1. When two (or more) distinct chemicals get mapped to the same identifier.
 - 2. When two (or more) representations of the same chemical get mapped to different identifiers.
- This presentation concerns type 2 errors.
- For the most part, InChI does a pretty good job.

CLASSIC TYPE 2 ERROR: TAUTOMERS

• The world's first tautomer [Laar 1885] contains a 1,7shift not handled (by default) by standard InChI.

InChI=1S/C16H12N20/c19-16-11-10-15(13-8-4-5-9-14(13)16)18-17-12-6-2-1-3-7-12/h1-11,19H InChI=1S/C16H12N20/c19-16-11-10-15(13-8-4-5-9-14(13)16)18-17-12-6-2-1-3-7-12/h1-11,17H

NIH Virtual Workshop on InChI, Zoom Meeting, Tuesday 23rd March 2021

KOPEXIL

• An example of a 1,4-tautomer with different InChI.

On1c(N)ccnc1=N

– InChI=1S/C4H6N4O/c5-3-1-2-7-4(6)8(3)9/h1-2,6,9H,5H2

- [O-][n+1]1c(N)ccnc1N
 - InChI=1S/C4H6N4O/c5-3-1-2-7-4(6)8(3)9/h1-2H,5H2,(H2,6,7)

PYRITHIONE

• Pyrithione mesomers have different InChI

- InChI=1S/C5H4NOS/c7-6-4-2-1-3-5(6)8/h1-4H/q-1
- InChI=1S/C5H5NOS/c7-6-4-2-1-3-5(6)8/h1-4,8H/p-1

POSTERA'S COVID MOONSHOT

- Zinc pyrithione has been proposed (by researchers in Hamburg) as an inhibitor of COV2 main protease.
- Two structure representation families of InChI
 - C1=CC2=[S][Zn+2]3([O-]N2C=C1)[O-]N4C=CC=CC4=[S]3
 - S=c1ccccn10[Zn]On1ccccc1=S
 - S=c1ccccn1[O-].[Zn+2].[O-]n1ccccc1=S
 - [O-]n1ccccc1=[S+][Zn][S+]=c1ccccn1[O-]
 - O=n1ccccc1[S-].[Zn+2].[S-]c1ccccn1=O
 - O=n1ccccc1S[Zn]Sc1ccccn1=O
 - [O-][n+]1ccccc1S[Zn]Sc1cccc[n+]1[O-]
- Perhaps why PDB code 6YT8 has been obsoleted by 7B83.

NEUTRAL COMPONENT DUPLICATION

- Duplicated components lead to different InChI
 - Water (O)
 - InChI=1S/H2O/h1H2
 - XLYOFNOQVPJJNP-UHFFFAOYSA-N
 - Wet water (O.O)
 - InChI=1S/2H2O/h2*1H2
 - JEGUKCSWCFPDGT-UHFFFAOYSA-N
 - Dilute water (0.0.0)
 - InChI=1S/3H2O/h3*1H2
 - JLFVIEQMRKMAIT-UHFFFAOYSA-N
- Goodman's Hypothesis: How many InChI keys?

WATERS OF HYDRATION

 One usage where this is useful is in distinguishing hydrates (with different properties such as density, melting point, boiling point, solubility, appearance).

CAS ADVISION OF THE ADVISION O	About CAS Contact	ADVISION OF THE AMERICAN CREMICAL SOCIETY	About CAS Contact
Calcium chloride, dihydrate	<u>ل</u>	Calcium chloride, hexahydrate	4
CAS Registry Number® 10035-04-8 CI ——Ca —— CI	Compound Properties Density (1) 1.86 g/cm ³ Source(s) (1) Leclaire, A.; Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry, (1977), B33(5), 1608-10, CAplus	CAS Registry Number® 7774-34-7 CI ——Ca —— CI	Compound Properties Melting Point (1) 299 °C Source(s) (1) Akatsu, Eiko: Analytica Chimica Acta, (1971), 55(2), 333-40, CAplus Other Names and Identifiers
• 2 H ₂ O CAS Name Calcium chloride, dihydrate Molecular Formula Cacl.,2H,O	Other Names and Identifiers Inchi Inchi=IS/Ca.2CIH.H2O/h;2*1H;1H2/q+2;;;/p-2 InchiKey YMIFCOGYMQTQBP-UHFFFAOYSA-L SMILES O.CI[Ca]CI	• 6 H ₂ O CAS Name Calcium chioride, hexahydrate Molecular Formula CaCl ₂ .6H ₂ O	InChI InChI=1S/Ca.2ClH.H2O/h;2*1H;1H2/q+2;;;/p-2 InChIKey YMIFCOGYMQTQBP-UHFFFAOYSA-L SMILES O.CI[Ca]CI Canonical SMILES

HOMODIMERS, POLYMERS & LATTICES

• This behavior complicates handling of homodimers.

NIH Virtual Workshop on InChI, Zoom Meeting, Tuesday 23rd March 2021

DEMOCRITOS' CORROLARY

- "Nothing exists except atoms, organic connectivity and net charge, all else is opinion".
- The molecular formula, including hydrogen count and net charge is important.
- Ionization (and some tautomerism) is a dilute aqueous phenomenon.
- A challenge in inorganic representation is whether bonds undergo heterolytic or homolytic cleavage, which effects how charges distribute over fragments.

WHEN INCHI WORKS WELL

- Silver diammine fluoride (SDF)
- InChI=1S/Ag.FH.2H3N/h;1H;2*1H3/q+1;;;/p-1
- Incorrect in NIH ChemIDPlus (but MF is OK!?).

WHEN INCHI WORKS WELL #2

InChI=1S/O2.Zn/c1-2;/q-2;+2

Zn

Be

- Hydrogen Chloride InChI=1S/CIH/h1H
 - Cl
 - [H+].[Cl-]
- Zinc Peroxide
 - [Zn]1001
 - [Zn+2].[O-][O-]
- Beryllium Azide InChI=1S/Be.2N3/c;2*1-3-2/q+2;2*-1
 - [N-]=[N+]=N[Be]N=[N+]=[N-]
 - [N-]=[N+]=[N-].[Be+2].[N-]=[N+]=[N-]
 - [Be]1N=[N+]=N1.[N-]=[N+]=[N-]

WHEN THINGS GO WRONG

- Sodium Chloride
 - [Na].[Cl] InChI=1S/Cl.Na
 - [Na+].[Cl-] InChl=1S/ClH.Na/h1H;/q;+1/p-1
- Lithium Oxide
 - [Li]O[Li] InChI=1S/2Li.O
 - [Li+].[Li+].[O-2] InChI=1S/2Li.O/q2*+1;-2
- Chromium(IV) oxide
 - O=[Cr](=O)=O InChI=1S/Cr.3O
 - O=[Cr+2]([O-])[O-] InChI=1S/Cr.3O/q+2;;2*-1
- $NH_3 \cdot BF_3$
 - N.FB(F)F InChI=1S/BF3.H3N/c2-1(3)4;/h;1H3
 - [NH3+][B-](F)(F)F InChI=1S/BF3H3N/c2-1(3,4)5/h5H3

NIH Virtual Workshop on InChI, Zoom Meeting, Tuesday 23rd March 2021

WHEN THINGS GO WRONG #2

- Lithium nitride
 - [Li]N([Li])[Li]
 - [Li+].[Li][N-][Li]
 - [Li+].[Li+].[Li+].[N-3]
- Calcium nitride
 - [Ca]=N[Ca]N=[Ca]
 - N12[Ca]N([Ca]1)[Ca]2
 - [Ca]=[N-].[Ca+2].[N-]=[Ca]
 - [Ca+2].[Ca+2].[Ca+2].[N-3].[N-3]

InChI=1S/3Li.N InChI=1S/3Li.N/q;;+1;-1 InChI=1S/3Li.N/q3*+1;-3

InChI=1S/3Ca.2N InChI=1S/3Ca.2N InChI=1S/3Ca.2N/q;;+2;2*-1 InChI=1S/3Ca.2N/q3*+2;2*-3

WHEN THINGS GO WRONG #3

- Boron nitride
 - B#N
 - B1=NB=N1
 - B1=NB=NB=N1

InChI=1S/BN/c1-2 InChI=1S/B2N2/c1-3-2-4-1

- InChI=1S/B3N3/c1-4-2-6-3-5-1
- Aluminium chloride
 - CI[AI](CI)CI InChI=1S/AI.3CIH/h;3*1H/q+3;;;/p-3
 - CI[AI]1(CI)[CI][AI]([CI]1)(CI)CI

InChI=1S/2AI.4CIH.2CI/h;;4*1H;;/q2*+2;;;;;/p-4

- CI[AI-]1(CI)[CI+][AI-]([CI+]1)(CI)CI

InChI=1S/2AI.4CIH.2CI/h;;4*1H;;/q2*+1;;;;;2*+1/p-4

WHEN THINGS GO WRONG #4

Collins reagent

- c1ccncc1.c1ccncc1.O=[Cr](=O)=O

InChI=1S/2C5H5N.Cr.3O/c2*1-2-4-6-5-3-1;;;;/h2*1-5H;;;;

- c1cccc[n+]1[Cr](=O)([O-])([O-])[n+]1ccccc1
InChI=1S/2C5H5N.Cr.3O/c2*1-2-4-6-5-3-1;;;;/h2*1-5H;;;;/q;;+2;;2*-1

• Pyridinium Chlorochromate (PCC)

- [nH+]1ccccc1.[O-][Cr](=O)(=O)Cl

InChI=1S/C5H5N.ClH.Cr.3O/c1-2-4-6-5-3-1;;;;;/h1-5H;1H;;;;/q;;+1;;;-1

- n1ccccc1.0[Cr](=0)(=0)Cl InChI=1S/C5H5N.ClH.Cr.H2O.20/c1-2-4-6-5-3-1;;;;;/h1-5H;1H;;1H2;;/q;;+2;;;/p-2
- Magnus' Green Salt
 - [NH3+][Pt-2]([NH3+])([NH3+])[NH3+].Cl[Pt-2](Cl)(Cl)Cl
 InChI=1S/4ClH.4H3N.2Pt/h4*1H;4*1H3;;/q;;;;;;2*+2/p-4
 - [NH3][Pt]([NH3])([NH3])([NH3])[Pt](Cl)(Cl)(Cl)Cl
 InChl=1S/4ClH.4H3N.2Pt/h4*1H;4*1H3;;/q;;;;;;;+4/p-4

WIKIPEDIA'S PRAGMATIC SOLUTION

 Wikipedia's ChemBox and DrugBox templates support multiple InChIs, InChI keys and SMILES.

	Kopexil			
H ₂ N NH				
Names				
IUPAC names 2,3-Dihydro-3-h pyrimidinamine 2,4-Diaminopyr	nydroxy-2-imino-4- rimidine 3- <i>N</i> -oxide			
Other names Aminexil				
Identifiers				
CAS Number	113275-13-1 ㎡ ✓ 74638-76-9 럆 (pyridine oxide tautomer) ✓			
3D model (JSmol)	Interactive image 🗗			
ChemSpider	10445922 &			
EC Number	616-121-2			
PubChem <u>CID</u>	10197687 ៤			
UNII	1756681479 교			
InChl	[hide]			
InChI=1S/C4H6N4O (H2,6,7) Key: SGHQFNHCCC InChI=1S/C4H6N4O H2	/c5-3-1-2-7-4(6)8(3)9/h1-2H,5H2, DBUKB-UHFFFAOYSA-N /c5-3-1-2-7-4(6)8(3)9/h1-2,6,9H,5			
Key: YTKGAYFHUZ	TLCI-UHFFFAOYSA-N			
SMILES [hide]				
CTCHC([H+](CH4)[O-])	N			

PERSONAL BEST PRACTICES

- Prefer molecular over ionic representations (both).
 - "Humpty dumpty" principle: It's easier to break things, than to put them back together again.
- Prefer uncharged over zwitterionic representations.
 - "Born-Oppenheimer" may also be implemented algorithmically on InChIs (during registration/search).
- Prefer canonical forms of metal oxides, metal halides and metal chalcogenides.
- Capture both monomeric and dimeric/polymeric forms.

METAL OXIDE EQUIVALENT FORMS #1

O

0 — М

M

 \cap

0

0

Ο

M

(II)

м==о

,0

M

NIH Virtual Workshop on InChI, Zoom Meeting, Tuesday 23rd March 2021

METAL OXIDE EQUIVALENT FORMS #2

 And these are just the neutral binary metal oxides, there are even more permutations for ions (permanganates, perchlorate) and halides (aluminium chloride) and so on.

BLACK ADDER QUOTE

• "The path of my life is strewn with cowpats from the devil's own satanic herd".

ACKNOWLEDGEMENTS

- The team at NextMove Software
 - John Mayfield, Richard Gowers, Ingvar Lagerstadt
- And Alumni (Daniel Lowe, Noel O'Boyle)
- And the InChI/Cheminformatics Community (including)
 - Evan Bolton
 - Greg Landrum
 - Marc Nicklaus
 - Alex Clark
 - Jonathan Goodman
 - Andrew Dalke
 - Nick Tomkinson
 - Colin Batchelor
- And many thanks for your time!

- Philip Skinner Ben Bracke
- Pierre Morieux
- Phil McHale

NIH Virtual Workshop on InChI, Zoom Meeting, Tuesday 23rd March 2021

THE NATURE OF THE CHEMICAL BOND

• Ionization energy (first)

 $- X \rightarrow X^+ + e^-$ [Na] -> [Na+] requires 496 kJ/mol

• Electron affinity (first)

 $- X + e^{-} \rightarrow X^{-}$ [CI] -> [CI-]

- [Na].[Cl] -> [Na+].[Cl-]
- Enthalpy of hydration
 - [Na+]
 - [Cl-]
 - [Na+].[Cl-]

produces 349 kJ/mol requires 147 kJ/mol

produces 406 kJ/mol produces 363 kJ/mol produces 770 kJ/mol