
Onsite
training

Audience
People developing devices using the Linux kernel
People supporting embedded Linux system developers.

Training objectives
• Be able to understand the overall architecture of Embedded Linux systems.
• Be able to choose, build, setup and use a cross-compilation toolchain.
• Be able to understand the booting sequence of an embedded Linux system, and to

set up and use the U-Boot bootloader.
• Be able to select a Linux kernel version, to configure, build and install the Linux

kernel on an embedded system.
• Be able to create from scratch a Linux root filesystem, including all its elements:

directories, applications, configuration files, libraries.
• Be able to choose and setup the main Linux filesystems for block and flash storage

devices, and understand their main characteristics.
• Be able to interact with hardware devices, configure the kernel with appropriate

drivers and extend the Device Tree
• Be able to select, cross-compile and integrate open-source software components

(libraries, applications) in an Embedded Linux system, and to handle license com-
pliance.

• Be able to setup and use an embedded Linux build system, to build a complete
system for an embedded platform.

• Be able to develop and debug applications on an embedded Linux system.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands: participants must

be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

• Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics
• Lectures delivered by the trainer: 50% of the duration
• Practical labs done by participants: 50% of the duration
• Electronic copies of presentations, lab instructions and data files. They are freely

available here.

Certificate
Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Disabilities
Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

1

Embedded Linux system
development training

Course duration
U 5 days – 40 hours

Language

Materials English

Oral Lecture English
French
Portuguese
Italian

Trainer
One of the following engineers

• Alexandre Belloni
• Alexis Lothoré
• Antonin Godard
• Grégory Clement
• Jérémie Dautheribes
• João Marcos Costa
• Luca Ceresoli
• Maxime Chevallier
• Mathieu Dubois-Briand
• Miquèl Raynal
• Richard Genoud
• Romain Gantois
• Thomas Petazzoni

Contact
@ training@bootlin.com
T +33 484 258 097

bootlin.com

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/embedded-linux
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/alexandre-belloni/
https://bootlin.com/company/staff/alexis-lothore/
https://bootlin.com/company/staff/antonin-godard/
https://bootlin.com/company/staff/gregory-clement/
https://bootlin.com/company/staff/jeremie-dautheribes/
https://bootlin.com/company/staff/joaomarcos-costa/
https://bootlin.com/company/staff/luca-ceresoli/
https://bootlin.com/company/staff/maxime-chevallier/
https://bootlin.com/company/staff/mathieu-dubois-briand/
https://bootlin.com/company/staff/miquel-raynal/
https://bootlin.com/company/staff/richard-genoud/
https://bootlin.com/company/staff/romain-gantois/
https://bootlin.com/company/staff/thomas-petazzoni/
mailto:training@bootlin.com
https://bootlin.com


Required equipement
For on-site session delivered at our customer location, our customer must provide:

• Video projector
• One PC computer on each desk (for one or two persons) with at least 16 GB of RAM, and Ubuntu Linux 24.04 installed in

a free partition of at least 30 GB
• Distributions other than Ubuntu Linux 24.04 are not supported, and using Linux in a virtual machine is not supported.
• Unfiltered and fast connection to Internet: at least 50 Mbit/s of download bandwidth, and no filtering of web sites or

protocols.
• PC computers with valuable data must be backed up before being used in our sessions.

For on-site sessions organized at Bootlin premises, Bootlin provides all the necessary equipment.

Hardware platform for practical labs

STM32MP1 Discovery Kit
One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-
DK2 or STM32MP157F-DK2

• STM32MP157, dual Cortex-A7 processor
from STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino compatible headers
• Audio codec, buttons, LEDs
• LCD touchscreen (DK2 kits only)

BeagleBone Black
BeagleBone Black or BeagleBone Black
Wireless board

• An ARM AM335x (single Cortex-A8) pro-
cessor from Texas Instruments

• USB powered
• 512 MB of RAM
• 2 or 4 GB of on-board eMMC storage
• USB host and device
• HDMI output
• 2 x 46 pins headers, to access UARTs, SPI

buses, I2C buses and more.
• Ethernet or WiFi

BeaglePlay
BeaglePlay board

• Texas Instruments AM625x (4xARM
Cortex-A53 CPU)

• SoC with 3D acceleration, integrated
MCU and many other peripherals.

• 2 GB of RAM
• 16 GB of on-board eMMC storage
• USB host and USB device, microSD,

HDMI
• 2.4 and 5 GHz WiFi, Bluetooth and also

Ethernet
• 1 MicroBus Header (SPI, I2C, UART, ...),

OLDI and CSI connector. 2



NXP i.MX93 FRDM
NXP FRDM-IMX93 development board

• NXP i.MX93 SoC (Dual Cortex-A55 +
Cortex-M33)

• 2 GB LPDDR4X, 32 GB eMMC
• Dual Gigabit Ethernet
• USB 2.0 Type-C + USB Type-A
• CAN interface
• MicroSD slot, EEPROM
• Wi-Fi 6 + Bluetooth 5.4 + 802.15.4

(MAYA-W276)
• HDMI output (via LVDS), MIPI DSI and

CSI
• Audio jack (MQS), buttons and LEDs
• SWD and UART debug

3



Training Schedule

Day 1 - Morning
Lecture Introduction to embedded Linux • Advantages of Linux versus traditional embedded operating systems.

• Typical hardware platforms used to run embedded Linux systems.
• Overall architecture of embedded Linux systems: overview of the ma-

jor software components.
• Development environment for Embedded Linux development.

Lecture Cross-compiling toolchain and C
library

• What’s inside a cross-compiling toolchain
• Choosing the target C library
• What’s inside the C library
• Ready to use cross-compiling toolchains
• Building a cross-compiling toolchain with automated tools.

Lab Cross compiling toolchain • Getting and configuring Crosstool-NG
• Executing it to build a custom cross-compilation toolchain
• Exploring the contents of the toolchain

Day 1 - Afternoon
Lecture Boot process, firmware, bootload-

ers
• Booting process of embedded platforms, focus on the x86 and ARM

architectures
• Boot process and bootloaders on x86 platforms (legacy and UEFI)
• Boot process on ARM platforms: ROM code, bootloaders, ARM

Trusted Firmware
• Focus on U-Boot: configuration, installation, and usage.
• U-Boot commands, U-Boot environment, U-Boot scripts, U-Boot

generic distro boot mechanism

Lab Bootloader and U-boot • Set up serial communication with the board.
• Configure, compile and install U-Boot for the target hardware.
• Only on STM32MP1: configure, compile and install Trusted

Firmware-A
• Become familiar with U-Boot environment and commands.
• Set up TFTP communication with the board. Use TFTP U-Boot

commands.

Day 2 - Morning
Lecture Linux kernel • Role and general architecture of the Linux kernel

• Separation between kernel and user-space, and interfaces between
user-space and the Linux kernel

• Understanding Linux kernel versions: choosing between vendor-
provided kernel and upstream kernel, Long Term Support versions

• Getting the Linux kernel source code

Lab Fetching Linux kernel sources • Clone the mainline Linux tree
• Accessing stable releases

Lecture Configuring, compiling and boot-
ing the Linux kernel

• Configuring the Linux kernel: ready-made configuration files, config-
uration interfaces

• Concept of Device Tree
• Cross-compiling the Linux kernel
• Study of the generated files and their role
• Installing and booting the Linux kernel
• The Linux kernel command line

4



Lab Kernel cross-compiling and boot-
ing

• Configuring the Linux kernel and cross-compiling it for the embedded
hardware platform.

• Downloading your kernel on the board through U-boot’s TFTP client.
• Booting your kernel.
• Automating the kernel boot process with U-Boot scripts.

Day 2 - Afternoon
Lecture Root filesystem in Linux • Filesystems in Linux.

• Role and organization of the root filesystem.
• Location of the root filesystem: on storage, in memory, from the

network.
• Device files, virtual filesystems.
• Contents of a typical root filesystem.

Lecture BusyBox • Detailed overview. Detailed features.
• Configuration, compiling and deploying.

Lab Tiny root filesystem built from
scratch with BusyBox

• Setting up a kernel to boot your system on a workstation directory
exported by NFS

• Passing kernel command line parameters to boot on NFS
• Creating the full root filesystem from scratch. Populating it with

BusyBox based utilities.
• System startup using BusyBox init
• Using the BusyBox HTTP server.
• Controlling the target from a web browser on the PC host.
• Setting up shared libraries on the target and compiling a sample exe-

cutable.

Day 3 - Morning
Lecture Accessing hardware devices • How to access hardware on popular busses: USB, SPI, I2C, PCI

• Usage of kernel drivers and direct user-space access
• The Device Tree syntax, and how to use it to describe additional

devices and pin-muxing
• Finding Linux kernel drivers for specific hardware devices
• Using kernel modules
• Hardware access using /dev and /sys
• User-space interfaces for the most common hardware devices: storage,

network, GPIO, LEDs, audio, graphics, video

Lab Accessing hardware devices • Exploring the contents of /dev and /sys and the devices available
on the embedded hardware platform.

• Using GPIOs and LEDs.
• Modifying the Device Tree to control pin multiplexing and to declare

an I2C-connected joystick.
• Adding support for a USB audio card using Linux kernel modules
• Adding support for the I2C-connected joystick through an out-of-tree

module.

Day 3 - Afternoon
Lecture Block filesystems • Accessing and partitioning block devices.

• Filesystems for block devices.
• Usefulness of journaled filesystems.
• Read-only block filesystems.
• RAM filesystems.
• How to create each of these filesystems.
• Suggestions for embedded systems.

5



Lab Block filesystems • Creating partitions on your SD card
• Booting a system with a mix of filesystems: SquashFS for the root

filesystem, ext4 for system data, and tmpfs for temporary system files.

Lecture Flash filesystems • The Memory Technology Devices (MTD) filesystem.
• Filesystems for MTD storage: JFFS2, Yaffs2, UBIFS.
• Kernel configuration options
• MTD storage partitions.
• Focus on today’s best solution, UBI and UBIFS: preparing, flashing

and using UBI images.

Note: as the embedded hardware platform used for the labs does not have
any flash-based storage, this lecture will not be illustrated with a corre-
sponding practical lab.

Day 4 - Morning
Lecture Cross-compiling user-space li-

braries and applications
• Configuring, cross-compiling and installing applications and libraries.
• Concept of build system, and overview of a few common build systems

used by open-source projects: Makefile, autotools, CMake, meson
• Overview of the common issues encountered when cross-compiling.

Lab Cross-compiling applications and
libraries

• Manual cross-compilation of several open-source libraries and applica-
tions for an embedded platform.

• Learning about common pitfalls and issues, and their solutions.
• This includes compiling alsa-utils package, and using its

speaker-test program to test that audio works on the tar-
get.

Day 4 - Afternoon
Lecture Embedded system building tools • Approaches for building embedded Linux systems: build systems and

binary distributions
• Principle of build systems, overview of Yocto Project/OpenEmbedded

and Buildroot.
• Principle of binary distributions and useful tools, focus on De-

bian/Ubuntu
• Specialized software frameworks/distributions: Tizen, AGL, Android

Lab System build with Buildroot • Using Buildroot to rebuild the same basic system plus a sound playing
server (MPD) and a client to control it (mpc).

• Driving music playback, directly from the target, and then remotely
through an MPD client on the host machine.

• Analyzing dependencies between packages.

Lecture Open source licenses and compli-
ance

• Presentation of the most important open-source licenses: GPL, LGPL,
MIT, BSD, Apache, etc.

• Concept of copyleft licenses
• Differences between (L)GPL version 2 and 3
• Compliance with open-source licenses: best practices

Day 5 - Morning
Lecture Overview of major embedded

Linux software stacks
• systemd as an init system
• Hardware management with udev
• Inter-process communication with D-Bus
• The graphics software stack: DRM/KMS, X.org, Wayland, Qt, Gtk,

OpenGL
• The multimedia software stack: Video4Linux, GStreamer, Pulseaudio,

Pipewire

6



Lab Integration of additional software
stacks

• Integration of systemd as an init system
• Use udev built in systemd for automatic module loading

Day 5 - Afternoon
Lecture Application development and de-

bugging
• Programming languages and libraries available.
• Build system for your application, an overview of CMake and meson
• The gdb debugger: remote debugging with gdbserver, post-mortem

debugging with core files
• Performance analysis, tracing and profiling tools, memory checkers:

strace, ltrace, perf, valgrind

Lab Application development and de-
bugging

• Creating an application that uses an I2C-connected joystick to control
an audio player.

• Setting up an IDE to develop and remotely debug an application.
• Using strace, ltrace, gdbserver and perf to debug/investigate buggy

applications on the embedded board.

Lecture Useful resources • Books about embedded Linux and system programming
• Useful online resources
• International conferences

7


