
Package ‘GraphAlignment’
February 6, 2026

Version 1.74.0

Date 2013-01-15

Title GraphAlignment

Author Joern P. Meier <mail@ionflux.org>, Michal Kolar, Ville
Mustonen, Michael Laessig, and Johannes Berg.

Maintainer Joern P. Meier <mail@ionflux.org>

Description Graph alignment is an extension package for the R
programming environment which provides functions for finding an
alignment between two networks based on link and node
similarity scores. (J. Berg and M. Laessig, ``Cross-species
analysis of biological networks by Bayesian alignment'', PNAS
103 (29), 10967-10972 (2006))

License file LICENSE

License_restricts_use yes

URL http://www.thp.uni-koeln.de/~berg/GraphAlignment/

biocViews GraphAndNetwork, Network

git_url https://git.bioconductor.org/packages/GraphAlignment

git_branch RELEASE_3_22

git_last_commit 61750ff

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-02-05

Contents
AlignedPairs . 2
AlignNetworks . 3
AnalyzeAlignment . 5
ComputeLinkParameters . 6
ComputeM . 7
ComputeNodeParameters . 8
ComputeScores . 9
CreateScoreMatrix . 10
EncodeDirectedGraph . 11

1

http://www.thp.uni-koeln.de/~berg/GraphAlignment/

2 AlignedPairs

GenerateExample . 12
GetBinNumber . 13
InitialAlignment . 14
InvertPermutation . 15
LinearAssignment . 15
MatrixToBin . 16
Permute . 17
Trace . 18
VectorToBin . 18

Index 20

AlignedPairs Get aligned node pairs

Description

Create a matrix of pairs of aligned nodes from networks A and B using the permutation vector P,
where P is in the format returned by AlignNetworks().

Usage

AlignedPairs(A, B, P)

Arguments

A adjacency matrix for network A

B adjacency matrix for network B

P permutation vector to be used as the alignment

Details

This function creates a matrix containing pairs of aligned nodes from networks A and B using the
permutation vector P, where P is in the format returned by AlignNetworks.

Value

The return value is a matrix with two columns. The number of rows is equal to the number of
aligned node pairs. Each row in the matrix denotes a pair of aligned nodes. In each row, the first
element (index 1) is the label of a node in network A, and the second element (index 2) is the label
of a node in network B.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

AlignNetworks 3

Examples

ex<-GenerateExample(dimA=22, dimB=22, filling=.5, covariance=.6,
symmetric=TRUE, numOrths=10, correlated=seq(1,18))

pinitial<-InitialAlignment(psize=34, r=ex$r, mode="reciprocal")

lookupLink<-seq(-2,2,.5)
linkParams<-ComputeLinkParameters(exa, exb, pinitial, lookupLink)

lookupNode<-c(-.5,.5,1.5)
nodeParams<-ComputeNodeParameters(dimA=22, dimB=22, ex$r,

pinitial, lookupNode)

al<-AlignNetworks(A=ex$a, B=ex$b, R=ex$r, P=pinitial,
linkScore=linkParams$ls,
selfLinkScore=linkParams$ls,
nodeScore1=nodeParams$s1, nodeScore0=nodeParams$s0,
lookupLink=lookupLink, lookupNode=lookupNode,
bStart=.1, bEnd=30,
maxNumSteps=50)

alignedPairs<-AlignedPairs(A=ex$a, B=ex$b, al)

AlignNetworks Align networks

Description

Align networks A and B.

Usage

AlignNetworks(A, B, R, P, linkScore, selfLinkScore, nodeScore1,
nodeScore0, lookupLink, lookupNode, bStart, bEnd, maxNumSteps, clamp=TRUE,
directed=FALSE)

Arguments

A adjacency matrix for network A

B adjacency matrix for network B

R node similarity matrix

P permutation vector to be used as the initial alignment (see InitialAlignment)

linkScore link score matrix (see ComputeLinkParameters)

selfLinkScore self link score matrix (see ComputeLinkParameters)

nodeScore1 node score vector (s1) (see ComputeNodeParameters)

nodeScore0 node score vector for unaligned nodes (s0) (see ComputeNodeParameters)

lookupLink link bin lookup table (see GetBinNumber)

lookupNode node bin lookup table (see GetBinNumber)

bStart start scaling value for simulated annealing

4 AlignNetworks

bEnd end scaling value for simulated annealing

maxNumSteps maximum number of steps

clamp clamp values to range when performing bin lookups

directed whether input networks should be treated as directed graphs

Details

This function finds an alignment between the two input networks, specified in the form of adjacency
matrices, by repeatedly calling ComputeM and LinearAssignment, up to maxNumSteps times. Sim-
ulated annealing is performed if a range is specified in the bStart and bEnd arguments. This simple
procedure is described in detail in [Berg, Laessig 2006]. Different procedures can easily be imple-
mented by the user.

In each step, the matrix M is calculated from the scoring parameters and the current permutation
vector P. The result is then normalized to the range [-1, 1] and, if simulated annealing is enabled,
a random matrix depending on the current simulated annealing parameters is added. The linear
assignment routine is used to calculate the value of P which is used to compute M in the next step.

If the flag directed is set, directed binary networks are encoded by suitable symmetric matrices
using EncodeDirectedGraph. The corresponding 3x3 matrices of the link score are computed from
the 2x2 matrices given as input.

Simulated annealing is enabled if bStart differs from bEnd. In this case, a value bStep = bEnd -
bStart) / (maxNumSteps - 1) is calculated. In step n, the random matrix which is added to M is
scaled by the factor 1 / [bStart + (n - 1) * bStep].

Value

The return value is a permutation vector p which aligns nodes from network a with nodes from
network B (including dummy nodes). The returned permutation should be read in the following
way: the node i in the network A is aligned to that node in the network B which label is at the i-th
position of the permutation vector p. If the label at this position is larger than the size of the network
B, the node i is not aligned.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

References

Berg, J. & Laessig, M. (2006) Proc. Natl. Acad. Sci. USA 103, 10967-10972.

Examples

ex<-GenerateExample(dimA=22, dimB=22, filling=.5, covariance=.6,
symmetric=TRUE, numOrths=10, correlated=seq(1,18))

pinitial<-InitialAlignment(psize=34, r=ex$r, mode="reciprocal")

lookupLink<-seq(-2,2,.5)
linkParams<-ComputeLinkParameters(exa, exb, pinitial, lookupLink)

lookupNode<-c(-.5,.5,1.5)
nodeParams<-ComputeNodeParameters(dimA=22, dimB=22, ex$r,

pinitial, lookupNode)

AnalyzeAlignment 5

al<-AlignNetworks(A=ex$a, B=ex$b, R=ex$r, P=pinitial,
linkScore=linkParams$ls,
selfLinkScore=linkParams$ls,
nodeScore1=nodeParams$s1, nodeScore0=nodeParams$s0,
lookupLink=lookupLink, lookupNode=lookupNode,
bStart=.1, bEnd=30,
maxNumSteps=50)

AnalyzeAlignment Analyze an alignment

Description

Analyze an alignment between two networks.

Usage

AnalyzeAlignment(A, B, R, P, lookupNode, epsilon, clamp)

Arguments

A adjacency matrix for network A

B adjacency matrix for network B

R node similarity matrix

P permutation vector

lookupNode node bin lookup vector

epsilon node similarity threshold

clamp clamp values to range when performing bin lookups

Details

This function analyzes an alignment and returns various characteristics.

Value

The return value is a list containing the results. Defined values are:

na - number of aligned node pairs

nb - number of aligned node pairs where neither partner has appreciable sequence similarity with
any node in the other network. Appreciable sequence similarity means that r>epsilon. Formally,
this is the number of aligned node pairs (ia, ib), where no jb exists such that R[ia, jb] > epsilon and
no ja such that R[ja, ib] > epsilon.

nc - number of aligned node pairs, where the partners have no appreciable sequence similarity, but
one or both of them has appreciable sequence similarity with some other node in the other network.
Formally, this is the number of aligned node pairs (ia, ib) with R[ia, ib] < epsilon but jb or ja exists,
such that R[ia, jb] > epsilon or R[ja, ib] > epsilon.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

6 ComputeLinkParameters

Examples

ex<-GenerateExample(dimA=22, dimB=22, filling=.5, covariance=.6,
symmetric=TRUE, numOrths=10, correlated=seq(1,18))

pinitial<-InitialAlignment(psize=34, r=ex$r, mode="reciprocal")

lookupLink<-seq(-2,2,.5)
linkParams<-ComputeLinkParameters(exa, exb, pinitial, lookupLink)

lookupNode<-c(-.5,.5,1.5)
nodeParams<-ComputeNodeParameters(dimA=22, dimB=22, ex$r,

pinitial, lookupNode)

al<-AlignNetworks(A=ex$a, B=ex$b, R=ex$r, P=pinitial,
linkScore=linkParams$ls,
selfLinkScore=linkParams$ls,
nodeScore1=nodeParams$s1, nodeScore0=nodeParams$s0,
lookupLink=lookupLink, lookupNode=lookupNode,
bStart=.1, bEnd=30,
maxNumSteps=50)

AnalyzeAlignment(A=ex$a, B=ex$b, R=ex$r, P=al, lookupNode,
epsilon=.5)

ComputeLinkParameters Compute link parameters

Description

Compute the optimal scoring parameters (link score) for a given alignment.

Usage

ComputeLinkParameters(A, B, P, lookupLink, clamp=TRUE)

Arguments

A adjacency matrix for network A

B adjacency matrix for network B

P permutation vector (see InitialAlignment, AlignNetworks)

lookupLink link bin lookup table (see GetBinNumber)

clamp clamp values to range when performing bin lookups

Details

This function computes optimal link score parameters for use with ComputeM and AlignNetworks.
It takes two matrices as well as an initial alignment P and the lookup table for link binning, looku-
pLink, as parameters.

Value

The return value is a list containing the self link score matrix (lsSelf) and the link score matrix (ls).

ComputeM 7

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

ex<-GenerateExample(dimA=22, dimB=22, filling=.5, covariance=.6,
symmetric=TRUE, numOrths=10, correlated=seq(1,18))

pinitial<-InitialAlignment(psize=34, r=ex$r, mode="reciprocal")

lookupLink<-seq(-2,2,.5)
linkParams<-ComputeLinkParameters(exa, exb, pinitial, lookupLink)

ComputeM Compute score matrix M

Description

Compute the score matrix M.

Usage

ComputeM(A, B, R, P, linkScore, selfLinkScore, nodeScore1,
nodeScore0, lookupLink, lookupNode, clamp=TRUE)

Arguments

A adjacency matrix for network A

B adjacency matrix for network B

R node similarity matrix

P permutation vector to be used as the initial alignment (see InitialAlignment)

linkScore link score matrix (see ComputeLinkParameters)

selfLinkScore self link score matrix (see ComputeLinkParameters)

nodeScore1 node score vector (s1) (see ComputeNodeParameters)

nodeScore0 node score vector for unaligned nodes (s0) (see ComputeNodeParameters)

lookupLink link bin lookup table (see GetBinNumber)

lookupNode node bin lookup table (see GetBinNumber)

clamp clamp values to range when performing bin lookups

Details

This function computes the score Matrix M from the network adjacency matrices A and B, the node
similarity matrix R, an alignment P (given as a permutation vector) and the node and link scores with
their associated binning information. The alignment P is either generated by the previous iterative
step, or, initially, by using InitialAlignment. The matrix M is then given to the linear assignment
solver to compute the new alignment.

8 ComputeNodeParameters

Value

The return value is the score matrix M.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

ex<-GenerateExample(dimA=22, dimB=22, filling=.5, covariance=.6,
symmetric=TRUE, numOrths=10, correlated=seq(1,18))

pinitial<-InitialAlignment(psize=34, r=ex$r, mode="reciprocal")

lookupLink<-seq(-2,2,.5)
linkParams<-ComputeLinkParameters(exa, exb, pinitial, lookupLink)

lookupNode<-c(-.5,.5,1.5)
nodeParams<-ComputeNodeParameters(dimA=22, dimB=22, ex$r,

pinitial, lookupNode)

ComputeM(A=ex$a, B=ex$b, R=ex$r, P=pinitial,
linkScore=linkParams$ls,
selfLinkScore=linkParams$ls,
nodeScore1=nodeParams$s1, nodeScore0=nodeParams$s0,
lookupLink=lookupLink, lookupNode=lookupNode)

ComputeNodeParameters Compute node parameters

Description

Compute the optimal scoring parameters (node score) for a given alignment.

Usage

ComputeNodeParameters(dimA, dimB, R, P, lookupNode, clamp=TRUE)

Arguments

dimA size of network A

dimB size of network B

R node similarity score matrix

P permutation vector (see InitialAlignment, AlignNetworks)

lookupNode node bin lookup table (see GetBinNumber)

clamp clamp values to range when performing bin lookups

Details

This function computes optimal node score parameters for use with ComputeM and AlignNetworks.
It takes the size of the networks, a matrix of node similarities R, an initial alignment P, and the
lookup table for node binning, lookupNode, as parameters.

ComputeScores 9

Value

The return value is list containing the node score vectors s0 and s1.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

ex<-GenerateExample(dimA=22, dimB=22, filling=.5, covariance=.6,
symmetric=TRUE, numOrths=10, correlated=seq(1,18))

pinitial<-InitialAlignment(psize=34, r=ex$r, mode="reciprocal")

lookupNode<-c(-.5,.5,1.5)
nodeParams<-ComputeNodeParameters(dimA=22, dimB=22, ex$r,

pinitial, lookupNode)

ComputeScores Compute scores

Description

Compute scores.

Usage

ComputeScores(A, B, R, P, linkScore, selfLinkScore, nodeScore1,
nodeScore0, lookupLink, lookupNode, symmetric=TRUE, clamp=TRUE)

Arguments

A adjacency matrix for network A

B adjacency matrix for network B

R node similarity matrix

P permutation vector to be used as the initial alignment (see InitialAlignment)

linkScore link score matrix (see ComputeLinkParameters)

selfLinkScore self link score matrix (see ComputeLinkParameters)

nodeScore1 node score vector (s1) (see ComputeNodeParameters)

nodeScore0 node score vector for unaligned nodes (s0) (see ComputeNodeParameters)

lookupLink link bin lookup table (see GetBinNumber)

lookupNode node bin lookup table (see GetBinNumber)

symmetric network symmetry flag

clamp clamp values to range when performing bin lookups

10 CreateScoreMatrix

Details

This function computes log-likelihood scores for an alignment using the specified scoring tables,
two networks A and B and their alignment P. The total score of the alignment has two contributions,
the first coming from the sequence homology (node similarity, sn) and the second from the similarity
of interaction networks (sl).

Value

The return value is a list containing the link score (sl) and the node score (sn).

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

ex<-GenerateExample(dimA=22, dimB=22, filling=.5, covariance=.6,
symmetric=TRUE, numOrths=10, correlated=seq(1,18))

pinitial<-InitialAlignment(psize=34, r=ex$r, mode="reciprocal")

lookupLink<-seq(-2,2,.5)
linkParams<-ComputeLinkParameters(exa, exb, pinitial, lookupLink)

lookupNode<-c(-.5,.5,1.5)
nodeParams<-ComputeNodeParameters(dimA=22, dimB=22, ex$r,

pinitial, lookupNode)

al<-AlignNetworks(A=ex$a, B=ex$b, R=ex$r, P=pinitial,
linkScore=linkParams$ls,
selfLinkScore=linkParams$ls,
nodeScore1=nodeParams$s1, nodeScore0=nodeParams$s0,
lookupLink=lookupLink, lookupNode=lookupNode,
bStart=.1, bEnd=30,
maxNumSteps=50)

ComputeScores(A=ex$a, B=ex$b, R=ex$r, P=al,
linkScore=linkParams$ls,
selfLinkScore=linkParams$ls,
nodeScore1=nodeParams$s1, nodeScore0=nodeParams$s0,
lookupLink=lookupLink, lookupNode=lookupNode,
symmetric=TRUE)

CreateScoreMatrix Create score matrix

Description

Create a score matrix from two lookup vectors.

Usage

CreateScoreMatrix(lookupX, lookupY)

EncodeDirectedGraph 11

Arguments

lookupX x lookup vector

lookupY y lookup vector

Details

This function creates a very simple score matrix containing the product of lookup table values for
each row and column as its elements. This can be used for testing purposes.

Value

The return value is a matrix of link scores.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

lookupLink <- 0.1*(-10:10)
CreateScoreMatrix(lookupLink, lookupLink)

EncodeDirectedGraph Encode directed graph

Description

Encode an adjacency matrix for a directed graph into a symmetric matrix.

Usage

EncodeDirectedGraph(matrix, P)

Arguments

matrix square matrix

P permutation vector

Details

This function encodes an adjacency matrix for a directed graph into a symmetric matrix. Currently
only binary directed graphs are implemented. The adjacency matrix of a binary directed graph has
elements 0, 1. The same graph can be represented by a symmetric adjacency matrix with elements
-1, 0, 1, with the sign of the entry indicating the direction of the link. The result is obtained by
setting entries (i, j) and (j, i) of the target matrix m’ to 1 if entry m[i, j] = 1 and P[i] > P[j] and to -1
if m[i, j] = 1 and P[j] > P[i].

Value

The return value is a symmetric matrix representing the encoded input matrix.

12 GenerateExample

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

dg <- matrix(c(0, 1, 0, 0, 1, 1, 1, 0, 1), 3, 3)
EncodeDirectedGraph(dg, 1:dim(dg)[1])

GenerateExample Generate example input data

Description

Generate input data which can be used as an example.

Usage

GenerateExample(dimA, dimB, filling, covariance, symmetric = FALSE,
numOrths = 0, correlated = NA, distribution = "normal")

Arguments

dimA size of network A

dimB size of network B

filling fraction of entries which are not explicitly set to zero

covariance covariance of correlated rows and columns

symmetric generate symmetric matrices

numOrths number of diagonal elements to set to 1 in example matrix R

correlated indices of correlated rows and columns

distribution from which distribution are the values drawn ("normal" or "uniform")

Details

Symmetric example matrices A, B can be generated by specifying TRUE as the ’symmetric’ argu-
ment. If the ’numOrths’ argument is specified, a number of diagonal elements of R equal to the
value will be set to 1. If a vector is specified as the ’correlated’ argument, the specified rows and
columns will be set to correlated values. Leaving this argument blank will result in pairwise corre-
lations of all entries in A, B (or, if the matrices are of different rank, all elements of the smaller on
will be correlated with the corresponding parts of the larger matrix).

Value

The return value is a list containing example matrices A (a), B (b) and R (r).

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

GetBinNumber 13

Examples

ex <- GenerateExample(dimA = 170, dimB = 140, filling = 0.75,
covariance = 0.4, symmetric = TRUE, numOrths = 90,
correlated = 1:90, distribution = "normal")

##-- edge weight correlation
image(cor(ex$a[1:140, 1:140], ex$b))
hist(diag(cor(ex$a[1:140, 1:140], ex$b))[1:90])

##-- edge weight distribution
hist(ex$a[ex$a != 0]);
hist(ex$b[ex$b != 0]);

GetBinNumber Get bin number

Description

Get the bin number for the argument using the specified lookup vector.

Usage

GetBinNumber(x, lookup, clamp=TRUE)

Arguments

x value to be binned

lookup lookup vector

clamp clamp value to lookup range

Details

The lookup vector defines the lower and upper boundaries for each bin. The first entry in the lookup
vector is the lower boundary of the first bin, while the last value in the lookup vector is the upper
boundary of the last bin. For all other entries, entry i of the lookup vector defines the upper boundary
of the (i-1)-th bin and the lower boundary of the i-th bin. The number of bins is therefore n-1, where
n is the length of the lookup vector. A lookup vector must have at least two elements.

If clamping is enabled (clamp=TRUE), arguments which fall below the lower boundary of the first
bin are treated as if they are actually in the first bin. Likewise, values which are above the upper
boundary of the last bin are treated as if they are actually in the last bin. If clamping is disabled
(clamp=FALSE), values outside the lookup range cause an error.

Value

This function returns the bin number corresponding to the input value. The bin number is obtained
by performing a lookup in the specified lookup vector.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

14 InitialAlignment

Examples

lookup <- c(-1, 0, 1)
GetBinNumber(-0.5, lookup)
GetBinNumber(0.5, lookup)

InitialAlignment Create initial alignment

Description

Create a permutation for an initial alignment. Either "random" or "reciprocal" may be specified as
the mode argument.

Usage

InitialAlignment(psize, r=NA, mode="random")

Arguments

psize size of the alignment

r node similarity score matrix (required for mode ’reciprocal’)

mode type of initial alignment

Details

To create a random initial alignment of size psize, the InitialAlignment function can be used with the
mode argument set to "random". If mode is set to "reciprocal", a reciprocal best match algorithm
is applied to the input matrix R to find an initial alignment. This mode requires that the psize
argument is sufficiently large to allow for the addition of dummy nodes to which unaligned nodes
can formally be aligned.

Value

The return value is a permutation vector of the specified size.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

ex<-GenerateExample(dimA=22, dimB=22, filling=.5, covariance=.6,
symmetric=TRUE, numOrths=10, correlated=seq(1,18))

pinitial<-InitialAlignment(psize=34, r=ex$r, mode="reciprocal")

InvertPermutation 15

InvertPermutation Invert permutation

Description

Invert the permutation defined by the specified vector.

Usage

InvertPermutation(p)

Arguments

p permutation vector

Details

The return value is a permutation vector equal to the inverse of the input permutation.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

p <- rank(rnorm(10))
pInv <- InvertPermutation(p)

LinearAssignment Solve linear assignment problem

Description

Solve the linear assignment problem specified by the cost matrix.

Usage

LinearAssignment(matrix)

Arguments

matrix cost matrix

Details

This function solves the linear assignment problem defined by the input matrix. [Jonker, Volgenant
1987]

16 MatrixToBin

Value

The return value is a permutation vector equal to the solution of the linear assignment problem
specified by the cost matrix. The result is the permutation P for which MP is minimal (where M is
the cost matrix).

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

References

Jonker, R & Volgenant, A. (1987) Computing 38, 325–340.

Examples

m <- matrix(rnorm(25), 5, 5)
px <- LinearAssignment(round(-1000 * (m / max(abs(m)))))
m[px,]

MatrixToBin Convert matrix to bin representation

Description

Convert a matrix of real numbers to a vector of integer bin numbers according to the specified
lookup vector.

Usage

MatrixToBin(M, lookup, clamp=TRUE)

Arguments

M input matrix

lookup lookup vector

clamp clamp values to lookup range

Details

This function transforms a matrix of arbitrary values into a matrix of bin numbers corresponding to
the data in the input matrix. Bin numbers are found using the specified lookup table (see GetBin-
Number).

Value

The return value is a matrix containing the bin numbers for the elements of the input matrix.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Permute 17

Examples

m <- matrix(rnorm(25), 5, 5)
lookup <- 0.2*(-5:5)
MatrixToBin(m, lookup)

Permute Permute rows and columns of a matrix

Description

Permute rows and columns of the input matrix.

Usage

Permute(m, p, invertp=FALSE)

Arguments

m matrix

p permutation vector

invertp apply inverse permutation

Details

This function permutes rows and columns of a matrix using the specified permutation vector. The
inverse of the permutation will be applied if the invertp argument is set to TRUE.

Value

The return value is the row- and columnwise Permutation of the elements of the input matrix, so
Permute(m, p)[i, j] is equal to m[p[i], p[j]].

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

example <- GenerateExample(10, 10, 1, 0.5, TRUE, 4)
b <- example$b
p <- rank(rnorm(10))
Permute(b, p, TRUE)

18 VectorToBin

Trace Calculate trace of a matrix

Description

Calculate the trace of a square matrix.

Usage

Trace(m)

Arguments

m square matrix

Details

The return value is the trace of the input matrix.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

m <- matrix(c(1, 0, 0, 1), 2, 2)
Trace(m)

VectorToBin Convert vector to bin representation

Description

Convert a vector of real numbers to a vector of integer bin numbers according to the specified lookup
vector.

Usage

VectorToBin(v, lookup, clamp=TRUE)

Arguments

v input vector

lookup lookup vector

clamp clamp values to lookup range

Details

This function transforms a vector of arbitrary values into a vector of bin numbers corresponding to
the data in the input vector. Bin numbers are found using the specified lookup table (see GetBin-
Number).

VectorToBin 19

Value

The return value is a vector containing the bin numbers for the elements of the input vector.

Author(s)

Joern P. Meier, Michal Kolar, Ville Mustonen, Michael Laessig, and Johannes Berg

Examples

x <- rnorm(10)
lookup <- 0.2*(-5:5)
VectorToBin(x, lookup)

Index

∗ misc
AlignedPairs, 2
AlignNetworks, 3
AnalyzeAlignment, 5
ComputeLinkParameters, 6
ComputeM, 7
ComputeNodeParameters, 8
ComputeScores, 9
CreateScoreMatrix, 10
EncodeDirectedGraph, 11
GenerateExample, 12
GetBinNumber, 13
InitialAlignment, 14
InvertPermutation, 15
LinearAssignment, 15
MatrixToBin, 16
Permute, 17
Trace, 18
VectorToBin, 18

AlignedPairs, 2
AlignNetworks, 2, 3, 6, 8
AnalyzeAlignment, 5

ComputeLinkParameters, 3, 6, 7, 9
ComputeM, 4, 6, 7, 8
ComputeNodeParameters, 3, 7, 8, 9
ComputeScores, 9
CreateScoreMatrix, 10

EncodeDirectedGraph, 4, 11

GenerateExample, 12
GetBinNumber, 3, 6–9, 13, 16, 18

InitialAlignment, 3, 6–9, 14, 14
InvertPermutation, 15

LinearAssignment, 4, 15

MatrixToBin, 16

Permute, 17

Trace, 18

VectorToBin, 18

20

	AlignedPairs
	AlignNetworks
	AnalyzeAlignment
	ComputeLinkParameters
	ComputeM
	ComputeNodeParameters
	ComputeScores
	CreateScoreMatrix
	EncodeDirectedGraph
	GenerateExample
	GetBinNumber
	InitialAlignment
	InvertPermutation
	LinearAssignment
	MatrixToBin
	Permute
	Trace
	VectorToBin
	Index

