H EtG P U : The pursuit of making binary compatibility towards GPUs

Yiwei Yang

https://arxiv.org/abs/2506.15993

Background & Motivation

e GPU ecosystems fragmented across NVIDIA, AMD, Intel,
Tenstorrent

e High-level frameworks (OpenCL, SYCL, HIP) only solve
source-level portability

e No “compile once, run anywhere” for binaries — limits
heterogeneous scheduling and live migration

Key Challenges

1. Execution Model Divergence: SIMT (NVIDIA/AMD) vs. MIMD
(Tenstorrent)

2. ISA Differences: PTX/SASS vs. GCN/RDNA vs. RISC-V Vector
3. Memory & Consistency: Hardware shared memory vs. explicit DMA

4. State Capture & Migration: Abstracting registers, program counters,
shared state across ISAs

System Overview

e Portable IR (ptx subset): Virtual GPU instruction set
e Compiler Toolchain: CUDA C++ — LLVM IR — ptx

e Runtime & Abstraction Layer: JIT translation, unified API, cross-device
scheduling

e State Management: Barrier-based cooperative checkpoint and restore

hetlR Design Highlights

e SPMD Model: Threads in a block treated independently—no built-in warp size

e Explicit Sync & Predication: barrier(), set_predicate(), predicated
blocks

e Virtualized Special Ops: VOTE_ANY, SHUFFLE, atomics, etc.

e Unified Memory Ops: LD_GLOBAL/ST_GLOBAL, LD_SHARED/ST_SHARED

Compiler Frontend & Backends

e Frontend: Clang/LLVM with custom hetIR intrinsics
e Backend Outputs:

o PTX — NVIDIA JIT (cuModuleLoadDataEXx)

o SPIR-V — AMD/OpenCL & Intel/Level Zero

o Metalium — Tenstorrent TT-MLIR — assembler

Runtime System

e Device detection and on-demand JIT with kernel caching
e Unified APIs: gpuMalloc, gpuMemcpy, streams, events
e SIMT—MIMD mapping strategies on Tenstorrent:

o Single-Core Vector Mode (warp emulation)

o Multi-Core Partitioning (split block across cores)

Checkpointing & Live Migration

e Cooperative Checkpoint at hetIR barriers via pause_flag
e State Snapshot: per-thread registers, program counters, shared memory

e Segmented Restart: split kernel by barriers, resume next segment on target
GPU

e Data Transfer: host-mediated or peer-to-peer copy

Preliminary Evaluation

e Functional Portability: 10+ kernels validated across NVIDIA, AMD, Intel,
Tenstorrent

e Performance Overhead:
o Compute-bound < 10% slowdown
o Memory-bound < 5%
o JIT latency 10—-200 ms on first launch

e Live Migration Demo: 30 s job with 2.2 s total downtime

Gemini integration

e WorkFlow: MILR -> TOSA to Linalg -> Linalg Gemmini Dialect -> Gemmini->spike

e Progress:
o Setup up the workflow in HetGPU
o 25/100 tests passes, mostly gemm related

e Next Week Job:
o Finish the remaining job.
o Get Multi-NPU framework planned.
o Target kodiak.

Conclusion & Future Work

e Achieved true “compile once, run anywhere” for GPU binaries
e Bridges SIMT and MIMD, supports heterogeneous live migration
e Next Steps:

o Architecture-aware optimizations (e.g., Tensor Core support)

o Leverage unified memory / pre-copy to minimize downtime

