
HetGPU: The pursuit of making binary compatibility towards GPUs

Yiwei Yang

https://arxiv.org/abs/2506.15993


 Background & Motivation

● GPU ecosystems fragmented across NVIDIA, AMD, Intel, 
Tenstorrent

● High-level frameworks (OpenCL, SYCL, HIP) only solve 
source-level portability

● No “compile once, run anywhere” for binaries → limits 
heterogeneous scheduling and live migration



Key Challenges

1. Execution Model Divergence: SIMT (NVIDIA/AMD) vs. MIMD 
(Tenstorrent)

2. ISA Differences: PTX/SASS vs. GCN/RDNA vs. RISC-V Vector

3. Memory & Consistency: Hardware shared memory vs. explicit DMA

4. State Capture & Migration: Abstracting registers, program counters, 
shared state across ISAs



System Overview

● Portable IR (ptx subset): Virtual GPU instruction set

● Compiler Toolchain: CUDA C++ → LLVM IR → ptx

● Runtime & Abstraction Layer: JIT translation, unified API, cross-device 
scheduling

● State Management: Barrier-based cooperative checkpoint and restore



hetIR Design Highlights

● SPMD Model: Threads in a block treated independently—no built-in warp size

● Explicit Sync & Predication: barrier(), set_predicate(), predicated 
blocks

● Virtualized Special Ops: VOTE_ANY, SHUFFLE, atomics, etc.

● Unified Memory Ops: LD_GLOBAL/ST_GLOBAL, LD_SHARED/ST_SHARED



Compiler Frontend & Backends

● Frontend: Clang/LLVM with custom hetIR intrinsics

● Backend Outputs:

○ PTX → NVIDIA JIT (cuModuleLoadDataEx)

○ SPIR-V → AMD/OpenCL & Intel/Level Zero

○ Metalium → Tenstorrent TT-MLIR → assembler



 Runtime System

● Device detection and on-demand JIT with kernel caching

● Unified APIs: gpuMalloc, gpuMemcpy, streams, events

● SIMT→MIMD mapping strategies on Tenstorrent:

○ Single-Core Vector Mode (warp emulation)

○ Multi-Core Partitioning (split block across cores)



Checkpointing & Live Migration

● Cooperative Checkpoint at hetIR barriers via pause_flag

● State Snapshot: per-thread registers, program counters, shared memory

● Segmented Restart: split kernel by barriers, resume next segment on target 
GPU

● Data Transfer: host-mediated or peer-to-peer copy



 Preliminary Evaluation

● Functional Portability: 10+ kernels validated across NVIDIA, AMD, Intel, 
Tenstorrent

● Performance Overhead:

○ Compute-bound < 10% slowdown

○ Memory-bound < 5%

○ JIT latency 10–200 ms on first launch

● Live Migration Demo: 30 s job with 2.2 s total downtime



Gemini integration

● WorkFlow: MILR -> TOSA to Linalg -> Linalg Gemmini Dialect -> Gemmini->spike

● Progress:
○ Setup up the workflow in HetGPU
○ 25/100 tests passes, mostly gemm related

● Next Week Job: 
○ Finish the remaining job.
○ Get Multi-NPU framework planned.
○ Target kodiak.



Conclusion & Future Work

● Achieved true “compile once, run anywhere” for GPU binaries

● Bridges SIMT and MIMD, supports heterogeneous live migration

● Next Steps:

○ Architecture-aware optimizations (e.g., Tensor Core support)

○ Leverage unified memory / pre-copy to minimize downtime


