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Abstract

Deep neural networks (DNNs) are vulnerable to adver-
sarial examples generated by adding malicious noise im-
perceptible to a human. The adversarial examples suc-
cessfully fool the models under the white-box setting, but
the performance of attacks under the black-box setting de-
grades significantly, which is known as the low transferabil-
ity problem. Various methods have been proposed to im-
prove transferability, yet they are not effective against ad-
versarial training and defense models. In this paper, we in-
troduce two new methods termed Lookahead Iterative Fast
Gradient Sign Method (LI-FGSM) and Self-CutMix (SCM)
to address the above issues. LI-FGSM updates adversar-
ial perturbations with the accumulated gradient obtained
by looking ahead. A previous gradient-based attack is used
for looking ahead during N steps to explore the optimal di-
rection at each iteration. It allows the optimization pro-
cess to escape the sub-optimal region and stabilize the up-
date directions. SCM leverages the modified CutMix, which
copies a patch from the original image and pastes it back
at random positions of the same image, to preserve the
internal information. SCM makes it possible to generate
more transferable adversarial examples while alleviating
the overfitting to the surrogate model employed. Our two
methods are easily incorporated with the previous iterative
gradient-based attacks. Extensive experiments on ImageNet
show that our approach acquires state-of-the-art attack suc-
cess rates not only against normally trained models but also
against adversarial training and defense models.

1. Introduction
Since [19] shows the existence of adversarial examples

that mislead deep neural networks, it evokes a great deal
of concern especially in security-sensitive fields, e.g. au-
tonomous driving, medical imaging, and face verification.
Existing numerous attack methods [1, 5, 8, 12] have shown
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satisfactory attack success rates, assuming the white-box
setting where the parameters and architectures of target
models are known. Yet, in the real scenario, they can not
be easily deployed as we usually do not have information
about the target models. This is known as the black-box
setting.

In the [5], they demonstrate that adversarial examples
generated by white-box models can also attack the black-
box models with high success rates, which is referred to
as transferability. There are some approaches to enhance
transferability for black-box attacks. [3, 10] try to improve
the transferability by developing the gradient-based method
with momentum. [4,25] incorporate input transformation in
terms of overfitting to surrogate models. However, they are
not effective against adversarial training and defense mod-
els.

In this work, we propose two new methods, namely
Lookahead Iterative Fast Gradient Sign Method (LI-FGSM)
and Self-CutMix (SCM), to alleviate the above issues.

Motivated by standout results of NI-FGSM [10] that
uses momentum to look ahead, we attempt to develop an
advanced looking ahead method. We suppose that look-
ing ahead only once may hinder the boost in performance.
Therefore, inspired by lookahead optimizer [28], we de-
sign a loop inside MI-FGSM [3] to look ahead more times.
Lookahead optimizer updates parameters by interpolating
initial weights and last weights after looking ahead k steps
at each iteration. It can improve convergence as well as re-
duce the variance. By employing a similar approach, we
expect to stabilize the update directions and escape poor lo-
cal maxima.

SI-NI-FGSM [10] considers that the transferability of
adversarial examples can be equivalent to the generaliza-
tion of deep neural networks from a perspective of training
neural networks. Various input transformations [4, 10, 25]
have been introduced to improve the transferability of ad-
versarial examples, which can be treated as data augmenta-
tion for generalization. Recently, in the classification model
training, CutMix [26], in which patches are cut and pasted
among the training images, is widely used to improve the



generalization of deep learning models. However, applying
CutMix directly as the input transformation may introduce
incorrect update direction for crafting adversaries because
the images with different classes are mixed. Therefore, we
propose a new input transformation method, Self-CutMix,
that performs CutMix in the single image itself while pre-
serving the input information of the image.

Extensive experiments on ImageNet [16] demonstrate
that each method exhibits noticeable results even when used
alone. On seven advanced defense methods, our method
successfully attacks them, thus indicating that our method
is suitable for attacking various defense models.

2. Background
Adversarial examples are generated by maximizing the

loss of classifier w.r.t input images while the perturbation is
constrained by the Lp norm. It can be formulated as fol-
lows.

argmax
xadv

J(xadv, ytrue) s.t. ||xadv − x||p ≤ ϵ (1)

where J is the loss function, x and xadv correspond to
benign and adversarial examples respectively, ytrue is a
ground truth label, ϵ is the maximum perturbation, and ||·||p
denotes the Lp norm.

2.1. Gradient-based Attacks

Fast Gradient Sign Method (FGSM) [5] adds gradients
of loss w.r.t benign images after applying sign function for
update based on the linear hypothesis.

xadv = x+ ϵ · sign(▽xJ(x, y
true)) (2)

Iterative-FGSM (I-FGSM) [8] improves FGSM by mod-
ifying to the iterative approach with a clipping function.

xadv
t+1 = xadv

t + Clipϵ{α · sign(▽xJ(x
adv
t , ytrue))} (3)

where α denotes the small step size.
Most attack algorithms including the above methods

achieve noticeable performance, yet low transferability in
the target models. MI-FGSM [3] utilizes momentum to mit-
igate the issue based on I-FGSM. It can deviate the poor lo-
cal maxima by adapting the concept of SGD with momen-
tum [15].

gt+1 = µ · gt +
▽xJ(x

adv
t , ytrue)

|| ▽x J(xadv
t , ytrue)||1

(4)

xadv
t+1 = xadv

t + α · sign(gt+1) (5)

where µ denotes the decay factor.
Further, NI-FGSM [10] leverages Nesterov’s accelerated

gradient [14] so that it can improve transferability. It looks

ahead with the momentum in advance to calculate the gra-
dients represented by

xnes
t = xadv

t + α · µ · gt (6)

Unlike the above methods that utilize momentum, vari-
ance tuning [21] focuses on reducing variance. It tunes
the gradients of the current iteration with variance, which
is calculated by subtracting gradients from averaged gradi-
ents w.r.t neighbors of adversarial example in the previous
iteration.

vt =
1

N

N∑
i=1

▽xJ(x
i
t−1, y

true)−▽xJ(x
adv
t−1, y

true) (7)

gt+1 = µ · gt +
ĝt+1 + vt

||ĝt+1 + vt||1
(8)

where xi
t−1 is a sample neighboring xadv

t−1, ĝt+1 is gradient
at t iteration, and vt is the variance.

Similar to variance tuning, EMI-FGSM [23] gets the av-
erage gradient from the neighbor samples along the gradient
direction of the previous iteration.

x̄adv
t [i] = xadv

t + ci · ḡt−1 (9)

ḡt =
1

N

N∑
i=1

∇x̄adv
t [i]Jf (x̄

adv
t [i], y) (10)

where N is the number of samples and ci is the sampling
coefficient between [−η, η].

2.2. Input Transformations

Various input transformations are adopted to craft the
more transferable adversarial examples.

DIM [25] applies the transformations, which are com-
posed of random resizing and random padding, to the in-
puts. By increasing the input diversity at each iteration,
DIM improves the transferability of adversarial examples.
Further, DIM can be integrated with existing gradient-based
attack methods.

TIM [4] uses a set of translated images to optimize ad-
versarial perturbation. By convolving the gradients of the
untranslated images with a Gaussian kernel, TIM calculates
the derivatives of a loss function efficiently. TIM can also
be integrated with existing gradient-based attack methods.

SIM [10] utilizes the deep learning classifier’s scale-
invariance property. The gradients of a loss function are
calculated for a set of images scaled by 1/2i on the input
image. Likewise, it improves the attack transferability by
being integrated with other existing gradient-based attacks.

Admix [22] applies the input transformation similar with
Mixup [27]. For each input images, a set of images from
other categories are randomly sampled and a minor portion
for each sampled image is mixed with input image to craft
a set of diverse images.



3. Methodology

3.1. Lookahead Iterative Fast Gradient Sign
Method (LI-FGSM)

Unlike the existing approaches, Lookahead Iterative Fast
Gradient Sign Method (LI-FGSM) obtains the gradients
from the inner loop corresponding to looking ahead. In-
puts are optimized by the off-the-shelf gradient-based at-
tack method during N steps in the loop while accumulat-
ing the gradients. The accumulated ones named lookahead
gradients can be a good proxy, which represents optimal di-
rection. After escaping the loop, the normalized lookahead
gradients are adapted to input examples for the updates. We
also use the momentum to inherit the advantages of MI-
FGSM as in Eq. (4) and Eq. (5). Therefore, LI-FGSM can
run away from local maxima, which are suspected as the
cause of overfitting, reduce the variance, and boost trans-
ferability. The algorithm is summarized in Algorithm 1 and
Algorithm 2.

Any kind of iterative gradient-based attack methods, e.g.
M(N)I-FGSM, can be leveraged for looking ahead. In this
work, we utilize VNI-FGSM [21] that exhibits the highest
performance among others in the experiments discussed in
the supplementary material.

Algorithm 1 LI-FGSM: Inner Loop
Input: A classifier f with loss function J ; an example xadv

t

at step t with ground truth label ytrue

Input: The maximum perturbation ϵ and decay factor µ
Input: The number of looking ahead steps N , the number
of mixed copies c
Output: A lookahead gradient l

1: α = ϵ/T ; xadv
0 = xadv

t ; l = 0; g0 = 0
2: for n = 0 to N − 1 do
3: Get xnes

n by Eq. (6)
4: Get average gradients as ĝn+1 = 1

c+1 · ĝ
5: Calculate variance vn by Eq. (7)
6: Update gn+1 by Eq. (8)
7: Accumulate the gradients as l = l + gn+1

8: Update xadv
n+1 by Eq. (5)

9: end for
10: return l

3.2. Self-CutMix (SCM)

Let x ∈ RW×H×C be an input image of width W , height
H , and channel C. B = (rx, ry , Wp, Hp) denotes a bounding
box where rx and ry are the coordinates of top-left corner
and Wp and Hp are the copied (pasted) patch size. The goal
of Self-CutMix is to generate a new sample by cropping a
patch from the input image itself and then pasting it back
into the original image. We introduce two variants of SCM.

Algorithm 2 LI-FGSM
Input: A classifier f with loss function J ; a benign exam-
ple x with ground truth label ytrue

Input: The maximum perturbation ϵ, the number of itera-
tion T , and decay factor µ
Output: An adversarial example xadv

1: α = ϵ/T ; xadv
0 = x; g0 = 0

2: for t = 0 to T − 1 do
3: Get Lookahead gradients ĝ by Algorithm 1
4: Update gt+1 by gt+1 = µ · gt + ĝ

||ĝ||1
5: Update xadv

t+1 by Eq. (5)
6: end for
7: return xadv = xadv

T

SCM-P We first sample bounding box coordinates B1
= (rx1, ry1, Wp, Hp). The region matched to B1 is copied
from the input image x. To paste the copied patch back
to the original image, we sample another bounding box B2
= (rx2, ry2, Wp, Hp). The region matched to B2 on input
image x is removed and filled with the region B1. While the
CutMix replaces the image region with a patch from another
image belonging to a different class, the major difference is
that SCM-P replaces the image region with a copied patch
from the input image itself.

SCM-R SCM-R is a variant of SCM. The difference
with SCM-P is that the entire image is cloned to preserve
the global information of the input image. We sample the
bounding box B2 = (rx2, ry2, Wp, Hp) on the input image.
Then, we resize the copied image into size (Wp, Hp) and
insert the resized image at the region matched to B2 on the
input image.

With the above input transformation methods, we pro-
pose the SCM attack method that can improve the trans-
ferability of the adversarial examples, which optimizes the
perturbation over a set of mixed images SCM(x).

ĝt+1 = ▽xJ(x
adv
t , ytrue)+

c∑
i=1

▽xJ(si·SCM(xadv
t ), ytrue)

(11)
where the c denotes the number of the mixed images, si ∈
(0, 1] denotes the scale factor of mixed image SCM(xadv

t ).
Since we implement the input transformation in the same

image, we do not mix the labels. In both SCM-P and SCM-
R, the patch size can be fixed or chosen randomly. In our
experiments, we uniformly sample the bounding box coor-
dinates according to

rx ∼ Unif(0,W −Wp), Wp ∼ Unif(P,W ) (12)

ry ∼ Unif(0, H −Hp), Hp ∼ Unif(P,H) (13)

where the Unif denotes the uniform distribution, P denotes
the minimum patch size. Experiments according to varying
patch sizes are reported in the supplementary material.



SCM can be integrated with other input transformations,
e.g. DIM, TIM, and SIM. Furthermore, SCM increases the
variance of the input distribution, while maintaining an
identity of inputs and thus avoiding overfitting to white-box
models. Consequently, it makes the adversarial examples
more transferable.

4. Experiments
4.1. Experimental Setup

We consider untargeted L∞ attacks on image classifiers.
For the dataset, we evaluate our method by randomly choos-
ing 1,000 clean images belonging to the 1,000 classes from
the ImageNet validation set [16] provided by [10]. And
those images are almost accurately classified by all the test-
ing models as in [3, 10].

We choose four normally trained models, i.e. Inception-
v3 [18], Inception-v4, Inception-Resnet-v2 [17], and
Resnet-v2-101 [6] as source models. To demonstrate the ef-
fectiveness of our attack method, we adopt three adversari-
ally trained models, i.e. Inc-v3ens3, Inc-v3ens4, and IncRes-
v2ens [20]. Additionally, we consider seven advanced de-
fense models which are robust against adversarial attacks on
ImageNet [16], i.e. HGD [9], R&P [24], NIPS-r31, FD [11],
Comdefend [7], RS [2], and NRP [13].

For comparison with the proposed method, we take four
momentum-based iterative attack methods, i.e. MI-FGSM
[3], NI-FGSM [10], VM(N)I-FGSM [21], and EMI-FGSM
[23], and adopt four input transformation methods, i.e. DIM
[25], TIM [4], SIM [10], and Admix [22] as our baselines.
Implementation details are described in the supplementary
material.

4.2. Attacking a Single Network

We evaluate the attack success rates of the proposed
methods, SCM-P(R) and LI-FGSM, with other baselines
under a single model. We craft the adversaries on the four
normally trained models and validate the performance on
the seven neural networks. We first compare the attack
success rates of our proposed SCM-P(R) with other input
transformations. As shown in Tab. 1, SCM-P(R) outper-
form the baselines by a large margin on all models under
the black-box setting. Specifically, SCM-P(R) exhibit better
transferability on adversarially trained models and achieves
nearly 100% success rates on the white-box models. It is be-
cause SCM-P(R) increase the variance of the input distribu-
tion and alleviates overfitting to the source model, thereby
enhancing transferability. We also compare LI-FGSM and
other gradient-based attacks without any input transforma-
tion to demonstrate the effectiveness of our method. In
Tab. 2, we observe that LI-FGSM surpasses other gradient-
based attacks in terms of attack success rates. It indicates

1https://github.com/anlthms/nips-2017/tree/master/mmd

that advanced looking ahead may help to stabilize the up-
date directions.

4.3. Attacking Defense Models

To show the strong transferability of adversarial exam-
ples generated by our methods, we additionally evaluate
the performance on seven advanced defense models. We
attack the defense methods under a single model setting,
not an ensemble model setting to clarify the effectiveness
of the proposed methods. As shown in Tab. 3, LI-CT-
FGSM shows outstanding performance, compared to other
gradient-based attacks. In addition, we compare the per-
formance while adding Admix, a state-of-the-art transfor-
mation, and the proposed SCM-P(R) to MI-CT-FGSM. MI-
SCM-P-CT-FGSM achieves comparable performance and
MI-SCM-R-CT-FGSM outperforms MI-Admix-CT-FGSM
on seven defense methods. It shows that our methods can
fool the defense methods successfully and will be an attrac-
tive option to attack the defense methods.

4.4. Discussion

Stabilize Update Directions The normalized cosine
similarity of the gradients between adjacent iterations might
be a proxy metric to measure the degree of stabilization. As
shown in Fig. 1a, LI-FGSM has a higher value than others
in the entire process. From the result, we suppose that stabi-
lized update direction contributes to our outstanding attack
performance. The most curious part is that VM(N)I-FGSM
and EMI-FGSM exhibit higher attack success rates than
M(N)I-FGSM, yet, they show lower similarity than others
even they try to reduce the variance. We conjecture that
neighborhood sampling can be considered input transfor-
mation that impose randomness. Accordingly, it may con-
fuse the stabilization but can get good performance. Our
method utilizing VNI-FGSM has the effects of stabilization
and uniform noise. Consequently, it surpasses the others.

The Number of Steps Looking Ahead We experi-
ment with varying the number of steps looking ahead. Only
the empirical results for LI-VNI-FGSM, which shows the
best performance, are included due to space constraints. As
shown in Fig. 1b, the success rate grows rapidly as the num-
ber of steps increases and then converges at about 17 steps.
We use it in all of the experiments in this work.

SCM vs CutMix To show why SCM helps maintain
input information and craft more transferable adversarial
examples, we compare the attack success rates of CutMix
and SCM while varying the pasted patch size. As shown
in Fig. 1c and Fig. 1d, the attack success rates of Cut-
Mix increase until the patch size is around a certain size
and steeply decrease after that. It implies that the increas-
ing patch size from other classes impairs input information,
which leads to less transferable directions. However, the
attack success rates of SCM consistently increase, which



Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3 (ens3) Inc-v3 (ens4) IncRes-v2 (ens)

Inc-v3

DIM 98.72* 64.54 60.46 54.04 19.22 17.96 9.56
TIM 100.00* 48.02 41.28 40.20 24.10 21.34 13.48
SIM 100.00* 69.84 67.86 62.86 32.20 32.47 17.42

Admix 100.00* 82.00 80.07 73.13 39.97 38.70 20.13
SCM-P 100.00* 87.28 85.04 80.92 50.16 45.28 27.36
SCM-R 99.85* 85.90 83.68 81.50 62.58 58.94 36.86

Inc-v4

DIM 72.00 97.70* 64.08 55.68 21.68 20.76 11.44
TIM 57.28 99.66* 47.08 43.38 26.48 22.96 17.42
SIM 80.56 99.88* 74.12 67.94 47.42 44.74 28.62

Admix 88.50 99.83* 84.83 78.47 54.20 50.57 32.60
SCM-P 91.12 99.82* 88.12 83.36 61.52 58.68 40.22
SCM-R 89.44 99.82* 86.96 83.04 70.74 68.96 51.72

IncRes-v2

DIM 70.32 64.26 93.14* 59.16 30.44 25.02 17.32
TIM 62.66 55.48 97.42* 51.10 31.94 27.32 22.24
SIM 84.68 80.48 99.00* 75.86 56.28 49.48 42.28

Admix 89.90 87.00 98.83* 83.63 63.57 56.83 49.40
SCM-P 90.94 88.28 98.88* 85.32 68.90 62.10 53.18
SCM-R 89.52 86.60 98.62* 85.10 75.36 71.16 62.78

Res-101

DIM 74.84 68.88 69.90 98.08* 35.88 32.58 19.78
TIM 59.16 52.30 51.80 99.30* 36.34 31.44 23.10
SIM 74.84 69.16 69.64 99.72* 42.94 38.92 26.38

Admix 81.63 76.50 78.07 99.80* 48.37 42.73 28.40
SCM-P 91.20 88.85 88.34 99.76* 67.64 61.10 44.00
SCM-R 89.22 84.96 87.02 99.78* 74.54 71.04 54.66

Table 1. Attack success rates (%) against seven models under a single model setting with DIM, TIM, SIM, Admix, and SCM. Inc-v3,
Inc-v4, IncRes-v2, and Res-101 using MI-FGSM are adopted as the source model respectively. * indicates that the target model is the same
as the source model.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3 (ens3) Inc-v3 (ens4) IncRes-v2 (ens)

Inc-v3

MI-FGSM 100.00* 45.48 42.48 36.08 13.90 12.50 6.14
NI-FGSM 100.00* 51.36 48.12 41.12 12.62 13.28 6.20

VMI-FGSM 100.00* 76.90 74.30 67.00 36.80 35.60 19.50
VNI-FGSM 100.00* 77.00 75.50 65.30 35.00 32.00 19.40
EMI-FGSM 100.00* 72.63 69.93 59.43 21.00 19.30 10.03
LI-FGSM 100.00* 91.02 88.28 80.66 40.14 38.84 22.00

Inc-v4

MI-FGSM 55.74 99.86* 46.50 41.44 16.94 14.84 7.98
NI-FGSM 63.50 100.00* 52.18 45.50 15.82 13.80 6.72

VMI-FGSM 81.10 99.00* 75.40 66.20 41.18 39.72 25.86
VNI-FGSM 82.88 99.98* 75.96 66.96 40.24 38.34 24.66
EMI-FGSM 87.73 100.00* 76.37 67.83 27.23 25.17 13.00
LI-FGSM 94.00 100.00* 89.18 81.76 48.40 44.20 27.88

IncRes-v2

MI-FGSM 59.24 50.96 98.08* 45.58 22.56 16.14 11.50
NI-FGSM 62.88 53.92 99.08* 45.26 19.62 15.56 10.06

VMI-FGSM 79.78 75.18 97.72* 69.70 49.62 42.34 36.88
VNI-FGSM 81.04 76.38 98.36* 69.68 48.16 40.54 34.08
EMI-FGSM 88.07 82.97 99.47* 73.53 37.20 30.80 22.17
LI-FGSM 94.06 91.44 99.84* 86.06 61.52 50.52 42.66

Res-101

MI-FGSM 58.38 51.12 49.12 99.20* 24.56 22.12 12.24
NI-FGSM 64.48 58.90 57.00 99.36* 23.30 20.64 11.72

VMI-FGSM 79.36 73.28 73.32 99.26* 50.16 44.44 34.58
VNI-FGSM 79.20 75.06 73.02 99.58* 45.88 42.88 31.98
EMI-FGSM 82.20 76.37 76.00 100.00* 35.83 31.43 19.13
LI-FGSM 90.90 88.78 88.00 99.42* 59.58 51.86 38.82

Table 2. Attack success rates (%) against seven models. The adversarial examples are generated by Inc-v3, Inc-v4, IncRes-v2, and Res-101
respectively using MI-FGSM, NI-FSGSM, VMI-FGSM, VNI-FGSM, EMI-FGSM, and LI-FGSM. * indicates that the target model is the
same as the source model.



Model Attack HGD R&P NIPS-r3 FD ComDefend RS NRP

Inc-v3

MI-CT-FGSM 57.27 46.63 54.33 73.43 70.73 33.00 39.90

VMI-CT-FGSM 71.50 63.60 69.67 78.80 79.43 37.90 56.73
EMI-CT-FGSM 67.47 58.47 67.37 82.33 82.53 37.93 49.97
LI-CT-FGSM 88.60 79.97 85.17 86.90 92.03 39.97 65.17

MI-Admix-CT-FGSM 66.00 54.23 63.50 77.50 78.10 34.83 47.50
MI-SCM-P-CT-FGSM 65.20 54.43 63.13 76.90 76.07 34.33 45.10
MI-SCM-R-CT-FGSM 67.87 59.67 68.10 80.13 81.27 38.87 52.00

Table 3. Attack success rates (%) against seven defense models. The adversarial examples are generated by Inc-v3 using MI-CT-FSGM,
EMI-CT-FGSM, LI-CT-FGSM, MI-Admix-CT-FGSM, and MI-SCM-P(R)-FGSM, respectively. CT denotes the combination of DIM,
TIM, and SIM.
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Figure 1. (a): The normalized cosine similarity according to the increase of iterations on six gradient-based attack methods. The source
model is Inc-v3 and the cosine similarity is averaged over the first 10 samples of the dataset. (b): Attack success rates (%) according to
varying the number of steps looking ahead on six models except for Inc-v3, which is the source model. (c), (d): Attack success rates (%)
according to varying the patch sizes of CutMix (dashed lines) and SCM (solid lines) against four normally and three adversarially trained
models, respectively. Inc-v3 is used as the source model and SCM refers to SCM-P.

shows that preserving the important features of the input
and increasing variance of input distribution help to craft
transferable adversaries. Therefore, we believe that apply-
ing the transformation that preserves the information of the
input image is necessary for improving the transferability.

5. Conclusion and Future Work

In this paper, we introduce two methods for boosting the
transferability in adversarial attacks, namely Lookahead It-
erative Fast Gradient Sign Method (LI-FGSM) and Self-
CutMix (SCM). LI-FGSM looks ahead during N steps to
explore the optimal direction in advance of updates. Also,

SCM utilizes the input transformation that copies the patch
from the original image and pastes it back at the same one.
They acquires state-of-the-art attack success rates not only
against normally trained models but also against adversarial
training and defense models. Although methods developed
in this work could serve as a potential tool to fool machine
learning models, we hope that our methods will be used as
a practical algorithm to create robust defense models.
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