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Abstract Music categorization based on acoustic features extracted from music clips and
user-defined tags forms the basis of recent music recommendation applications, because
relevant tags can be automatically assigned based on the feature values and their relation
to tags. In practice, especially for handheld lightweight mobile devices, there is a certain
limitation on the computational capacity, owing to consumers’ usage behavior or battery
consumption. This also limits the maximum number of acoustic features to be extracted,
and results in the necessity of identifying a compact feature subset that is used for the
music categorization process. In this study, we propose an approach to compact feature
subset-based multi-label music categorization for mobile music recommendation services.
Experimental results using various multi-labeled music datasets reveal that the proposed
approach yields better performance when compared to conventional approach.

Keywords Music information retrieval - Mobile devices - Multi-label learning -
Hybrid search

1 Introduction

Recently, music recommendation applications, such as playlist recommendations [16], auto-
mated tagging systems [29], and emotion recognition [1], examined the popularity of social
network services and smartphones [7]. One of the most important sub-tasks to realize a
music recommendation service that can attract users is music categorization that identifies
relevant tags or labels, such as genres and moods for each music clip. Additionally, stud-
ies considered applications in mobile situations because most users play music by using
their handheld smartphones. Teng et al. [27] considered music recommendations based on
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features gathered by using built-in sensors of smartphones. Kaminskas et al. [8] devised a
music recommendation for a place of interest. Baltrunas et al. [2] proposed context-aware
recommendations in car driving situations.

In conventional music categorization studies, hundreads of acoustic features including
tempo, rhythm, and harmony, are extracted when a new music clip is detected, and subse-
quently a model that represents the relation between extracted feature values and tags is used
to assign a set of relevant tags. However, especially with respect to applications that are exe-
cuted from lightweight mobile devices, there is a maximum number of allowed features that
are extracted due to low computational capacity [3, 20]. Thus, consumers may suffer from
a low quality of user experience due to unacceptable waiting time or battery consumption if
the model requires excessive acoustic features to identify relevant tags. This disadvantage
can be overcame by building an accurate model that only depends on an acceptable number
of acoustic features (or lower).

To achieve this, we propose an approach to compact feature subset-based multi-label
music categorization. Our contribution is summarized as follows:

—  We formulate this problem as a budgeted feature selection problem [19, 30]. However,
to the best of the authors’ knowledge, there is a paucity of studies that consider multi-
label feature selection with budget constraints.

—  We released 10 new datasets for music categorization studies that were obtained and
validated through the national research projects from Korea.

—  Our mathematical analysis indicates important features can be neglected during the
search when the size of original feature set is excessively high when compared to the
number of features to be selected.

—  We demonstrate the performance of the state-of-the-art multi-label feature wrapper
method on 12 multi-label music datasets.

2 Related work

In the music information retrieval community, modeling music categorization task as a
multi-label learning problem attracted significant scientific interest [23]. In the works
of [12, 13, 37], music emotion categorization is modeled as a multi-label classification
because music datasets from music clips can be associated with multiple concurrent labels
[13]. Further, in the study of [20], multi-label feature selection for music datasets that
have a certain limitation on the maximum feature subset size is considered an impor-
tant issue for the practical applications from mobile devices or for recommending music
clips for users. Let W C R¢ denotes a set of patterns constructed from a set of fea-
tures F. In multi-label datasets, each pattern w; € W where 1 < i < [W]| is
assigned to a certain label subset A; € L, where L = {l1,...,/[}. The task of multi-
label classification in multi-label datasets involves identifying a function that maps given
instances into one of the 2!l label subsets based on input feature values. To enhance
the performance of multi-label classification, a feature selection method is applied to
determine a compact feature subset only contains relevant features [6, 9, 11, 13]. For
this task, an evolutionary algorithm, namely the Genetic Algorithm (GA)-based multi-
label feature selection method exhibits strength in terms of the classification performance
[33].
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In multi-label feature selection studies, one of the simplest method involves transforming
label sets into a single label data, such as a label powerset, and applying the same con-
ventional feature selection method as that of single label data [24, 25]. In addition to the
advantages of the immediate use of conventional methods, they involve side effects [26]
such as an imbalance in transformed single label data. Additionally, they commonly suffer
from low multi-label classification performance due to the lack of interaction with multi-
label classifiers. In the wrapper approach, Zhang et al. [35] proposed a multi-label feature
selection method based on a GA that is the most frequent choice for evolutionary feature
wrapper studies [28]. Specifically, the method combined instance- and label-based eval-
uation measures [34] as a fitness function to consider label dependency. However, in its
original proposal, the maximum allowed number of features to be selected is not consid-
ered from the genetic search process. In the study of [12], the multi-label feature selection
performance was demonstrated for comparison purposes while considering feature subset
size. Specifically, each chromosome randomly selects features less than » in the initializa-
tion stage. During the GA search process, the budget constraint is continuously satisfied by
employing restrictive operators [39].

Another method that considers the number of features to be selected is multi-objective
evolutionary algorithm based feature selection [31, 36, 37]. This approach treats a reduc-
tion in the number of features for selection as another objective in the search process.
Given more than one objective, a specifically-designed ranking method was proposed for
a multi-objective problem, and this is termed as a non-dominated sort [5]. The rank of
each chromosome is measured by the number of times the chromosome dominates other
chromosomes in all objectives. The most common approach in multi-objective evolutionary
algorithm is NSGA-II [17] although it was employed in other evolutionary search methods
such as Particle Swarm Optimization (PSO) [37]. A common disadvantage of them is that
solutions may not satisfy budget constraints.

3 Proposed approach

Conventional multi-label feature wrappers can fail to find an optimal solutions because
they neglect important features during the genetic search process, and thereby result-
ing in the low performance of multi-label classification. We first demonstrate why an
additional component is employed for multi-label feature selection with the budget con-
straint especially when n < |F|, and then explain our approach. A conventional GA
is composed of four components, namely initialization, natural selection, genetic opera-
tion, and evaluation. Among them, new feature subsets are generated through initialization
and genetic operation including crossover and mutation. However, conventional crossover
mechanisms such as single-point, two-point, and uniform crossovers [18] do not intro-
duce new features into the population because their algorithms involve two selected
chromosomes producing offspring by swapping their parts between selected crossover
points. Thus, if two ancestors do not activate important features then there is no prob-
ability of activation. Therefore, the GA must introduce new albeit important features
by using the initialization and mutation. However, the algorithm naturally involves a
low probability when the maximum number of feature subset is bounded to a low
value.

Let n be the maximum allowed number of features that is selected from a set of fea-
tures F where |F| = d. Each chromosome is allowed to randomly select n or lesser
features in the initialization stage. Thus, if there is an important but unselected feature f that
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Fig. 1 Probability of neglecting an important feature in 20 chromosomes when maximum allowed number
of features is limited to 10

significantly affects the performance of multi-label classification, then the probability x that
a chromosome selects f is formulated as follows:

oyt (00 o

N
k=1 " ( k )
The probability y that all m chromosomes are not selected f is as follows:
y=00-x)" @)

Figure 1 shows the probability of not selecting an important feature f in 20 chromosomes
when the maximum feature subset size is 10. If d > 350, then the probability y exceeds
50%.1f d > 1, 000, then the probability exceeds 80%. The figure indicates that it is difficult
to introduce an important feature f into the current population without a specific procedure.
Therefore, an efficient component should be employed to identify and introduce important
features by considering their impact on the final multi-label categorization accuracy.

Algorithm 1 Compact feature subset selection

1: procedure FEATURE WRAPPER(v, m)
2 t<0,u<0 > ¢-th generation
3 initializing P (t) > population P of 7-th generation
4: evaluating P (¢)
5 while u < v do > if spent FFC u is less than v
6 create N (f) using genetic operators and feature filter > offspring set N ()
7 evaluate N (¢) using a multi-label classifier
8 add N(r) to P(¢t)
9: t<—t+1
10: select P(¢t) from P(t — 1) > natural selection
11: u<«m-+|N@)| -t > update u based on spent FFC

12: end while
13: end procedure
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Table 1 Notations used in the

design of the proposed approach Terms Meanings
t Number of generations
P(t) The population at the 7-th generation
m The size of the population, |P(t)| = m
c A chromosome in P (t)
Se A selected feature subset represented by ¢
N(t) A set of newly created solutions from P (¢)
v Maximum number of allowed fitness function calls (FFCs)
u Number of spent FFCs, u = m +2 - |G(t)| - t
n Maximum number of allowed features selected by S,

Algorithm 1 outlines the procedures used in our approach. The terms used to describe the
algorithm are summarized in Table 1. The representation of each chromosome is a binary
string, and each bit represents an individual feature wherein those with values of one are
selected and zero are unselected. In line 3 of the initialization stage, the algorithm gen-
erates m choromosomes by randomly selecting features less than n. Each chromosome is
evaluated by using a fitness function, and we used a multi-label classification error to eval-
uate the fitness of selected chromosomes. To evaluate m chromosomes, and thus m Fitness
Function Calls (FFCs) are spent from line 4. After performing the initialization process,
offspring are reproduced. In our approach, the algorithm creates the offspring set N(¢) by
using three mechanisms, namely restrictive crossover, restrictive mutation [38], and a con-
ventional multi-label feature filter. The detailed procedure of the restrictive crossover and
mutation can be described as follows:

— Restrictive crossover first selects two chromosomes c¢1 and ¢2 in P(t). Let k =
min(|Sc1l, |Sc2]), where |S¢1| < n and |Ss2| < n. Subsequently, two offspring are cre-
ated by the swapping features selected by ¢ and c¢; for k times with the probability of
0.5.

— Restrictive mutation selects one chromosome c1. Subsequently, it creates a new chro-
mosome by flipping the bit for the corresponding feature |S.1| times iteratively from
selected to unselected, or unselected to selected. If |S.;| becomes larger than n, it
chooses the n — | S| selected features and changes them to be unselected.

From the restrictive crossover and mutation, a set of features are randomly discarded to
regulate the budget constraint if the offspring activates excessive features. However, the
analysis indicated that important features are missed if the algorithm only exploits the con-
ventional genetic operators. In order to achieve this, a state-of-the-art multi-label feature
filter is employed to introduce unselected albeit important features into the current popula-
tion [13]. Let S, be a feature subset that is selected by a chromosome ¢ € N (¢). With respect
to an unselected feature subset {FF — S.}, the algorithm creates new chromosomes by iter-
atively selecting a feature f; that satisfies the following criterion until a new chromosome
contains |S,| features to regulate the budget constraint. This is expressed as follows:

M(fi;l
max | mon— Y YIS Dy )
fietb=S 17 resaier HUD
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where M(x;y) = H(x) — H(x,y) + H(y) denotes the mutual information between
variables x and y, and H(x) = — > P(x)log P(x) denotes the joint entropy with their
probability functions P(x), P(y), and P(x, y). The algorithm repeats additional offspring
creation with respect to each chromosome created by genetic operators to ensure a balance
between a stochastic global search and local search [12].

To explain how the employed feature filter effectively introduces the novel features into
the population, we demonstrate a step-by-step computation of the feature filter using a
toy dataset presented in Table 2. The dataset is composed of eight patterns, six features
{fas---, fr}, and two labels {I,, [5}. Although we created the toy dataset using categor-
ical features for simplicity. Numeric features are also included in the dataset. For such
cases, the entropy calculation for scoring the feature importance can be performed using
the probability density function [22] or after discretization of numeric features [4]. Sup-
pose a chromosome activates two features f, and f; then, S. = {f», fr}. The goal of the
employed feature filter is to identify the important features from {F —S.} = { fa, fc, fa, fe}
for creating a new feature subset S,, where |S,| = |S,|. Starting from Sy = {0}, the feature
filter should calculate the mutual information value of each feature in {F — S.}. Here, we
focus on the calculation of f,. This can be calculated as

> Mian- Y Y LM

1e{ly,lp) Fel@ylella.lp) H(fa)

Part 1

Because Sy = {@}, Part 1 can be canceled. Thus, the computation can be simplified as

S tetoiy M(fas ) = M(fai la) + M(fa: ly)
= H(fs) = H(fa, lo) + Ha) + H(f2) — H(fa, p) + H(p)

The joint entropy H (f,, l,) is calculated as

H(fa:la) = =Y veqf, 1, P () log P(x)

—P(fa=al,ly =0)1log P(fs =al,l, =0)
—P(fa =a2,1l, =0)1log P(f, =a2,l, =0)
—P(fa=al,l; =1logP(fy =al,l, =1)
—P(fa=a2,l,=1logP(fa =a2,l,=1)

—%log%—%log%—%log%—glog%:2.0

Table 2 A toy dataset for demonstration

Features Labels

Ja fo fe Ja fe fr la Ip
al b2 cl dl el 2 0 1

a2 bl cl dl el 2 0 1

al bl c2 dil el fl 0 0
a2 bl c2 d2 el 2 0 0
al bl cl d2 e2 2 1 0
a2 bl cl d2 e2 2 1 0
al bl c2 d2 e2 2 1 0
a2 bl c2 dl e2 2 1 0
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Similarly, other entropy terms can also be calculated where H(f,) = 1.0, H(l,) =
1.0, H(f4,1lp) = 1.8 and H(lp) = 0.8. Because all the entropy terms that are required
for calculating the importance of f, are in the first iteration, the algorithm is now able to
evaluate the importance of f,. By applying the same procedure, the importance values of
features in { F — S} can also be calculated, where the exact values of importance score for
fa 18 0.0, f.1s 0.3, fz is 0.5 and f, is 1.3. Consequently, f, will be selected at the first
iteration owing to the highest importance score among f,, f¢, f4, and f.. Next, because
|S¢| = 2, the algorithm continues to identify the best feature among f,, f., and f; when
fe is already selected. Considering f, for example, the algorithm evaluates the importance
score of f, as

M(fusl
Ytctodn MUai D) = X pety Zicttpin) Heey M fai f)
= M(fa; la) + M(fa; Ip) — YE2 M (fu; fo) — eI M (fo; 1)

Similarly, the importance values of other features, f. and f; can also be calculated where
the exact values of importance score for f; is 0.0, f. is 0.3, and f; is 0.4. Thus, f; will be
selected at the second iteration owing to the highest importance score among f,, f., and
fa. Subsequently, the filter will set S, = {f4, fe} and a chromosome that activates S, is
created accordingly. This newly created chromosome is included in the offspring set N (7).
It should be noted that different multi-label feature filters can be employed for this purpose
although we select this filter with respect to its robustness to the number of labels that varies
according to the application. Next, the algorithm spends |N(¢)| of FFCs to evaluate the
performance of chromosomes in N (¢) (line 7). Subsequently, N (¢) is added to P(¢) (line
8) and m chromosomes with higher fitness values are selected (line 10). The procedure is
terminated when FFCs spent exceeds allowed FFCs, denoted as v, parameter given by users.

Finally, we conducted a formal analysis on the computational cost of the proposed
method. Let «(S.) be the computation time required to evaluate feature subset S., where
|S¢| < n; S, could contain a maximum of n features in the worst case. The value of «(S,)
can be influenced by the size of the training patterns and the number of given labels; how-
ever, it can be regarded as a constant value because the size of the training patterns and
the number of given labels do not change during the training process. Consequently, the
major factor of «(S,) is the size of S.. The evaluation of a single feature through the spend-
ing of an FFC is called a basic operation, and « (1) for a basic operation is referred to as
the basic time. For a simpler analysis, we assumed that «(S.) & |S.| X o, where o repre-
sents the basic time. Based on these notations, we analyzed the computational complexity of
the proposed method. During the initialization step, the algorithm creates m chromosomes
and evaluates them. Because each solution is allowed to contain a maximum of n fea-
tures, O (mno) computations must be spent for the initialization step. Subsequently, | N (?)|
chromosomes are created using genetic operators and evaluated using the fitness function,
spending O (| N (¢)|no . In the feature filter process for identifying novel unselected features,
|N (t)| chromosomes conveying novel features will be created and evaluated again. This also
consumes O (| N (t)|no) computations because each chromosome only activates a maximum
of | S| < n features. Therefore, the computational cost of each generation is O (2|N(¢)|no).
Because the maximum number of generations is approximately (v —m)/2|N ()|, we obtain
(v —m)no by multiplying (v — m)/2|N(¢)| with 2| N (t)|no. The computational cost of the
proposed method is therefore O (mno + (v — m)no) = O(vno). Because o is constant,
our analysis indicates that the computational cost is influenced by the maximum num-
ber of allowed FFCs v, and the maximum number of allowed features n. The same result
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can be obtained for conventional evolutionary algorithms employed for the performance
comparison in the next section.

4 Experimental results

We experimented with 12 music datasets that were collected through a national research
project in Korea with the exception of CAL500 and Emotions. The CAL500 and Emotions
datasets are generated from a music tag annotation application in which the music retrieval
system learns a relation between acoustic features and words from a dataset of annotated
audio tracks [21]. The remaining ten datasets were not publicized in the music information
retrieval community, and thus we summarize their details as follows:

Audionautix: Audionautix dataset contains 308 non-vocal music clips composed for
the background music of games, and each music clip is assigned to 68 music genres
annotated by its composer. The acoustic features are extracted by the MIR toolbox [10].
Unnecessary features are discarded such as features with zero variance.

Bugs2664 and BugsEmo: Bugs2664 dataset is created by gathering 2,664 music clips
from an online music streaming service in Korea, and most of them correspond to
K-pop music. Specifically, each music clip is assigned to 40 musical tags that are cat-
egorized into seasons, emotions, usage, and places. BugsEmo dataset is created by
subsampling a Bugs2664 dataset by only considering seven emotion tags. The acoustic
features of these two datasets are extracted by the MIR toolbox.

China3004: China3004 dataset contains 3,004 music clips gathered from online music
websites in China, and each music clip is assigned to a set of 28 musical styles provided
by an online system. The acoustic features of the China3004 dataset are extracted by
the MIR toolbox.

Style812, Genre3, and Highlight: In the Style812 dataset, 812 music clips are labeled to
three music styles including Rhythmic, Romantic, and Melancholy. The Genre3 dataset
is created by extracting acoustic features from 812 music clips that correspond to the
same music clips in the Style812 dataset. The dataset is created to identify time-variant
musical themes including genres, highlights, or emotions. Thus, it contains all the music
pieces as opposed to simply selecting a representative piece for each music clip. Sim-
ilarly, the Highlight dataset is created by using the same procedure as that for Genre3
although the label indicates that each piece is the highlight of corresponding music
clips. The acoustic features of all three datasets are extracted by the MIR toolbox.
KOCCA40: This dataset is created for the education of music information retrieval
from the undergraduate classes. In order to encourage students, 40 music clips that are
confirmed as easily trained by a machine learning algorithm are selected. Each music
clip is assigned to four different labels Passionate, Breezy, Depressed, and Peaceful.
The acoustic features of the KOCCA40 dataset are extracted by the MIR toolbox.
MusicEmo-A and MusicEmo-B: In MusicEmo-A, 864 acoustic features are extracted
by the MIR toolbox from 100 collected music clips and approximately labeled 500
times through an on-line annotation system. In MusicEmo-B, 346 audio features are
extracted by the MIR toolbox from 565 music clips and labeled approximately 3600
times. Each music clip is assigned to relevant tags including Excitement, Distress,
Depression, and Contentment. Earlier versions of these two datasets has been publi-
cized from our previous study [14]. In the current study, 21 errors of feature values are
corrected.
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The acoustic features of all datasets are extracted from music chunks starting from 0 s
and ending at 40 s, which can be categorized into dynamics, fluctuation, rhythm, spectral,
and tonal features. All the datasets are able to download from our website: http://mi.cau.ac.
kr/?f=teaching&m=prog_amc.

Table 3 lists the standard statistics of the music multi-label datasets employed in our
experiments where | W| denotes the number of patterns in the dataset, | F'| denotes the num-
ber of features, and |L| denotes the number of labels. The label cardinality Card represents
the average number of labels for each instance. The label density Den denotes the label car-
dinality with respect to the total number of labels. The number of distinct label sets Distinct
indicates the number of unique label subsets in L. Subject represents the applications that
the label of each dataset is related to. Our problem is that the maximum feature subset size
is bounded, and thus we compared the proposed approach with GA with restrictive genetic
operators [38] (RGA) which satisfies the problem constraints. The proposed approach and
the RGA’s maximum feature subset size are set as 10. In order to evaluate the quality of
a feature subset obtained through each method, we considered a conventional multi-label
classifiers, namely the Multi-label Naive Bayes (MLNB) classifier [35]. For fairness, we
conducted a holdout cross-validation for each experiment [12]; 80% of the patterns in a
given dataset were randomly chosen as the training set for multi-label feature selection and
classifier training, and the remaining 20% of the patterns was used as the test set to obtain
the multi-label classification performance that is reported. With respect to the RGA, and
the proposed approach, we set the size of population as 20, and the maximum number of
allowed fitness function calls was set as 100. Each experiment was repeated 10 times, and
the average value was used to represent the classification performance according to each
feature selection method.

To measure the performance, we employed the following four evaluation measures:
Hamming loss, Multi-label accuracy, Ranking loss, and Normalized coverage. It is assumed
that T = {(T;, A;)|1 <i < |T|}is agiven test set where A; C L denotes a correct label sub-
set. According to a test pattern 7;, a classifier, such as MLNB, outputs a set of confidence
values 0 < ;; < 1 for each label I € L. If confidence value v;; exceeds a predefined
threshold value, such as 0.5, then the corresponding label / is included in the predicted
label subset Y;. Based on the ground truth %;, confidence values ¥; ;, and predicted label

Table 3 Standard characteristics of the employed datasets

Dataset [W| |F| |L| Card. Den. Distinct. Subject
Audionautix 308 376 68 4.731 0.070 254 Genre
Bugs2664 2664 137 40 1.917 0.048 666 Tag
BugsEmo 753 109 7 1.000 0.143 7 Emotion
CAL500 502 68 174 26.044 0.150 502 Tag
China3004 3004 345 28 1.000 0.036 28 Style
Emotions 593 72 6 1.868 0.311 27 Emotion
Genre3 2597 365 3 1.000 0.333 3 Genre
Highlight 2597 365 2 1.000 0.500 2 Highlight
KOCCA40 40 123 4 1.000 0.250 4 Emotion
MusicEmo-A 100 864 4 1.530 0.383 11 Emotion
MusicEmo-B 565 346 4 1.292 0.323 9 Emotion
Style812 812 348 3 1.000 0.333 3 Style
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subset Y;, the multi-label classification performance is measured according to each evalua-
tion measure [15, 25, 32]. Hamming loss is defined as follows:

7| 1

1
hloss(T) = |Ai AY]
Ik Z |L|

where A denotes the symmetric difference between two sets. Multi-label accuracy is defined

as follows:
IT|

1 |A; N Y]

[ T _—

mlace) =177 . Z i U Y|

Ranking loss is defined as follows:
L (@@, b)la € i, b € 2y Yia < i
, , < Yis}|
rloss(T) = d AR :
IT] - Z |Aill%i]

where A; denotes a complementary set of A;. Thus, Ranking loss measures the average
fraction of (a, b) pairs with respect to ¥; , < V; , against all possible relevant and irrelevant
label pairs. Normalized coverage is defined as follows:

7]
1 1
ncov(T) = |L| |T| Zmax rank(l) — 1

where rank(-) returns the rank of the corresponding relevant label I € A; according to v;
in non-increasing order. Thus, Normalized coverage measures the number of labels that
should be determined as positive for all the relevant labels to be positive. Lower values of
Hamming loss, Ranking loss, and Normalized coverage, and higher value of Multi-label
accuracy indicate good classification performance.

Tables 4 and 5 list the experimental results for the proposed approach and RGA on 12
multi-label datasets, presented as the average performances for holdout cross-validation
with corresponding standard deviations. Table 4 contains the performance results for multi-
label accuracy and hamming loss, and Table 5 contains the performance results for ranking
loss and normalized coverage. The better performance between the two approaches is indi-
cated with a bold font and a v'symbol. Based on the experimental results, we summarize
our observations as follows:

— In terms of the Multi-label accuracy performance, the proposed approach exhibited
better performances with the exception of KOCCA40 dataset.

— In terms of the Hamming loss performance, the proposed approach achieved better
performances for BugsEmo, CAL500, Emotions, Genre3, KOCCA40, MusicEmo-A,
MusicEmo-B, and Style812 datasets.

— In terms of the ranking loss performance, the proposed approach exhibited better per-
formances than conventional approach for nine datasets. Excpetions are Audionautix,
CALS500, and Highlight datasets.

— In terms of the normalized coverage performance, better performances were achieved
by the proposed approach for eight datasets. Exceptions are Bugs2664, BugsEmo,
CALS500, and Highlight datasets.

— In the experiments of Emotions, Genre3, MusicEmo-A, MusicEmo-B, and Style812
datasets, the proposed approach always yields better performances with respect to all
the evaluation measures.
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Table 4 Comparison results for multi-label feature selection methods in terms of the multi-label accuracy
and Hamming loss (mean = std. deviation)

Evaluation measure Multi-label accuracy Hamming loss

Methods Proposed RGA Proposed RGA
Audionautix 0.190 £ 0.025 0.189 £ 0.034 0.070 £ 0.004 0.070 £ 0.003v
Bugs2664 0.053 £+ 0.013v 0.031 £ 0.005 0.048 £ 0.001 0.048 £ 0.001v
BugsEmo 0.371 + 0.040v 0.323 £ 0.044 0.126 + 0.006v 0.127 4 0.008
CALS500 0.193 + 0.012v 0.192 £ 0.011 0.137 & 0.003v 0.137 £+ 0.003
China3004 0.063 + 0.014 0.017 £+ 0.007 0.036 £ 0.000 0.035 + 0.000v
Emotions 0.480 + 0.046v 0.475 + 0.041 0.229 + 0.024v 0.245 +0.014
Genre3 0.917 & 0.013v 0.912 +£0.018 0.041 £ 0.008v 0.058 +0.010
Highlight 0.735 £ 0.017v 0.734 £ 0.017 0.266 £ 0.017 0.266 £ 0.017
KOCCA40 0.588 £+ 0.156 0.656 + 0.165v 0.150 + 0.084v 0.169 £ 0.075
MusicEmo-A 0.624 £ 0.058v 0.514 £ 0.082 0.245 £ 0.056v 0.264 £ 0.048
MusicEmo-B 0.568 + 0.064v 0.567 £+ 0.052 0.216 + 0.028v 0.219 + 0.031
Style812 0.826 + 0.017v 0.812 + 0.031 0.097 &+ 0.016v 0.111 +£0.023

The v symbol indicates the method that achieves better performance for each dataset

Finally, to indicate the efficiency of our proposed approach for mobile devices, we
checked the average prediction time and data size for prediction for the MusicEmo-B
dataset. In Fig. 2a, the plot indicates the average prediction time for 100 music clips, and in
Fig. 2b, the plot indicates the data size that was used for training and prediction. We com-
pared these parameters for the complete feature set, shown as “Complete” in both plots,
and the feature subset, where the number of employed features by the model obtained by

Table 5 Comparison results for multi-label feature selection methods in terms of the ranking loss and

normalized coverage (mean =+ std. deviation)

Evaluation measure Ranking loss Normalized coverage

Methods Proposed RGA Proposed RGA
Audionautix 0.207 £ 0.016 0.207 & 0.015v 0.472 £+ 0.026v 0.474 £ 0.019
Bugs2664 0.260 £ 0.006v 0.276 £ 0.015 0.353 £ 0.010 0.313 £ 0.009v
BugsEmo 0.196 + 0.016v 0.207 £ 0.013 0.314 £ 0.015 0.313 & 0.009v
CALS500 0.179 £ 0.006 0.177 £+ 0.005v 0.748 £ 0.013 0.746 + 0.013v
China3004 0.217 £+ 0.007 v 0.226 4+ 0.010 0.245 £+ 0.007 v 0.254 4 0.009
Emotions 0.198 + 0.032v 0.215 £ 0.022 0.493 + 0.024v 0.501 &+ 0.026
Genre3 0.026 & 0.007v 0.039 £ 0.012 0.351 & 0.004v 0.360 % 0.005
Highlight 0.266 £ 0.017 0.266 £ 0.017 0.633 & 0.009 0.633 £ 0.009
KOCCA40 0.113 + 0.074v 0.117 £ 0.136 0.356 + 0.063v 0.375 £ 0.072
MusicEmo-A 0.123 £+ 0.030v 0.221 £ 0.052 0.511 + 0.067v 0.558 +0.074
MusicEmo-B 0.175 £+ 0.027 0.196 £ 0.035 0.458 + 0.028v 0.483 4+ 0.030
Style812 0.074 £+ 0.015/ 0.099 £ 0.021 0.382 + 0.010v 0.397 £ 0.018

The v symbol indicates the method that achieves better performance for each dataset

@ Springer



Multimed Tools Appl

0.8 1600
0.7 1400 |
06 1200
s m
2057 < 1000 |
3 8
@ 04F ‘» 800f
< g
© 03 © 6001
= ]
0271 4001
0.1r 200 f
0
Subset Complete Subset Complete
(a) Average prediction time of 100 (b) Data size of MusicEmo-B

music clips in MusicEmo-B

Fig. 2 Comparison results of the average prediction time and data size between the proposed approach
and the conventional complete feature set-based approach (Average multi-label accuracy: 0.565 and 0.514,
respectively)

proposed approach is 5 and is shown as “Subset” in both plots. In Fig. 2a, we checked the
prediction time for 100 music clips in 100 iterations in MATLAB, and calculated the aver-
age. It took 0.083 seconds for predicting 100 music clips using the selected feature subset,
which is approximately 8.5 times faster than that using the complete feature set. In Fig. 2b,
we measured the data size for training and prediction. Using the feature subset, 22.60 kB
of memory was required for training and prediction, which is better than 1563.92 kB when
using the complete feature subset. Futhermore, the average multi-label accuracy of the fea-
ture subset and the complete feature set was 0.565 and 0.514, respectively, which indicates
that the performance of the feature subset is better, and thus, indicates the efficiency of
proposed approach.

5 Conclusion

In this study, we proposed a compact feature subset-based multi-label music categorization
approach for mobile music recommendation services. To circumvent unacceptable power
consumption and memory problem while satisfying consumers’ interest, a model that only
depends on a few acoustic features was considered. Our experiments on 12 real-world
music multi-label datasets demonstrated that the proposed approach is more suitable than
the conventional approach with respect to various measures.

Among 12 datasets, the cardinality of six datasets such as BugsEmo, China3004, Genre3,
Highlight, and KOCCA40 is commonly one, indicating that they can also be regarded as
the datasets of the conventional single-label classification problem, i.e., each music clip
is assigned to only one label. Thus, the classification performance can be improved by
allowing the classifier to select only one label for each unseen pattern. In fact, we have
observed the improvement in accuracy by 15.37% from the additional experiment using the
conventional naive Bayes classifier on the China3004 dataset after transforming it into a
single-label dataset. This means that the additional information on the label space can be
beneficial; the labels are mutually exclusive. In addition, future research may also include
improvements to the categorization accuracy by obtaining a better hybridization of evo-
lutionary search and multi-label feature filter because many evolutionary algorithms and
multi-label feature filter methods are potential candidates for our algorithm. These additions
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and improvements will lead to different results. Therefore, we would like to further study
this issue.
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