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ABSTRACT

Multilabel classification is the task of assigning relevant labels to an instance, and it has received con-
siderable attention in recent years. This task can be performed by extending a single-label classifier,
such as the naive Bayes classifier, to utilize the useful relations among labels for achieving better mul-
tilabel classification accuracy. However, the conventional multilabel naive Bayes classifier treats each
label independently and hence neglects the relations among labels, resulting in degenerated accuracy.
We propose a new multilabel naive Bayes classifier that considers the relations or dependence among
labels. Experimental results show that the proposed method outperforms conventional multilabel clas-

sifiers.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Multilabel classification is the task of mapping multiple rel-
evant labels to a given instance, and it is a core technique for
well-known applications such as text categorization (Elghazel
et al., 2016), image annotation (Wu et al., 2015), and music tag
classification (Lee et al., 2019). As multilabel classification can
be regarded a generalization of the single-label classification
problem, numerous multilabel classifiers have been extended
from single-label classifiers (Zhang and Zhou, 2014). For ex-
ample, the naive Bayes classifier, which is one of the most rep-
resentative classifiers (Li and Yang, 2018), was extended to the
multilabel naive Bayes classifier (Zhang et al., 2009).

The dependence among labels can be used to improve the
accuracy of multilabel classification (Huang et al., 2015; Zhang
and Zhou, 2014). For example, in the weather classification
problem, the label raining is likely to be coupled with the la-
bel cloudy and unlikely to be coupled with the label sunny.
However, conventional multilabel naive Bayes classification
neglects the dependence among labels because it treats each la-
bel independently. Thus, unobserved label combinations can
be assigned, thereby degenerating multilabel classification ac-
curacy.

In this paper, we propose a new multilabel naive Bayes algo-
rithm that considers the dependence among labels for the classi-
fication process, named MLNB-LD. To achieve this, we derive

**Corresponding author: Tel.: +82-02-820-5468;
e-mail:  curseor@cau.ac.kr (Jaesung Lee)

a new posterior probability estimation method for a multilabel
problem based on Bayes’ theorem with the strong independence
assumption. Experimental results indicate that, MLNB-LD out-
performs the multilabel naive Bayes classifier and other con-
ventional multilabel classifiers.

2. Related works

In multilabel classification studies, the methods that utilize
label dependence can be broadly divided into three groups ac-
cording to how many labels are considered concurrently (Zhang
and Zhou, 2014). The first group of classifiers treats each la-
bel independently by inferencing a mapping function for each
label. For example, Zhang and Zhou (2007) proposed a mul-
tilabel k-nearest neighbor classifier that identifies k similar in-
stances from a training set and then determines the relevance of
each label. Vens et al. (2008) proposed new multilabel decision
trees that consider the label hierarchy in a hierarchical multi-
label classification (MLDT). Zhang et al. (2009) extended the
conventional naive Bayes classifier to a multilabel naive Bayes
classifier that estimates the posterior probability for each label
independently. In addition, Zhang and Wu (2015) proposed a
multilabel classifier that selects a subset of relevant features for
each label. Lastly, Luo et al. (2017) introduced a multilabel ker-
nel extreme learning machine (ML-KELM) that calculates the
likelihood of each label based on the random weighting scheme
and radial basis kernel mapping.

In the second group, multilabel classifiers consider the la-
bel dependence between label pairs. For example, Huang et al.
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(2015) proposed a classifier that selects important features for
each label and then calculates the similarity between selected
feature subsets and label pairs. In addition, Huang et al. (2017)
devised a multilabel classifier that uses local positive and neg-
ative pairwise label correlation. Jing et al. (2017) introduced
semisupervised multilabel classification that applies singular
value decomposition for label matrix factorization. Similarly,
Kumar et al. (2018) proposed a hierarchical embedding-based
multilabel classifier that is based on k-means clustering and
low-rank matrix factorization. Zhu et al. (2018) developed mul-
tilabel learning with a global and local label correlation (GLO-
CAL) strategy that used the correlation among labels in the
global and local viewpoints using low-rank matrix factoriza-
tion.

In the third group, the classification process is designed to
consider an arbitrary number of labels concurrently. For ex-
ample, the random k-labelset algorithm creates k label sets by
encoding multiple arbitrarily selected labels into a series of sin-
gle labels. Then, classifiers are trained for each transformed
label (Tsoumakas et al., 2010). After prediction is completed,
the transformed single labels are recovered to the original mul-
tiple labels. The classifier chain approach selects the number
of labels to be considered concurrently and chains the predic-
tion model for each label using the prediction of labels in the
early stage of the chain to labels in the later stage (Read et al.,
2011). This technique was applied to recurrent neural networks
to maximize subset accuracy (Nam et al., 2017). Lastly, the
k-nearest neighbor classifier was extended to a multilabel clas-
sification problem by utilizing fuzzy rough neighborhood con-
sensus and label correlation estimation with the weighted Ham-
ming distance (Vluymans et al., 2018).

Our brief review shows that the multilabel classifiers in the
first group take the simplest approach and conventional single-
label classifiers can be directly used by treating each label as
multiple individual problems. However, this approach inher-
ently neglects the dependence among labels that can be useful
for improving multilabel classification accuracy. The classifiers
in the third group experience difficulty in significance estima-
tion because they consider a large number of labels simulta-
neously based on a limited number of training instances. To
circumvent both drawbacks, we design a method based on the
strategy of the second group, which considers a maximum of
two labels concurrently.

3. Proposed method

First, we describe the notation used for deriving the proposed
posterior probability estimation method for multilabel classifi-
cation. Let X ¢ R" be the input space and £ = {/y,...,[,} be
the finite set of possible labels. Vector x = (x1,...,x;) rep-
resents m features. Vectory = (yy,...,Yy,) represents n labels,
where y; € B is 1 if the i-th label, /;, is related to a given in-
stance; otherwise, it is 0. Then, a set of multilabeled instances,
(x,y), compose dataset D. In addition, we denote Y (|Y| < |D))
as a set of the label vectors that are observed from the dataset.

3.1. Derivation

The goal of the multilabel naive Bayes classifier based on
the maximum a posteriori decision rule is to find a hypothesis,
h : x — y, where h(x) can be defined as follows:

p(X,y)
p(x)

(1)

h(x) = arg max p(y|x) = arg max
yeY yey
where p(y|x) is the conditional probability of y given x. It is
unnecessary to identify the exact value of p(x) because it is the
same for all values of y € Y. Thus, Eq. (1) can be simplified as
follows:

p(x,y)
h(x) = 27577
x) ar% Er;ax )

oc arg max p(X, y) 2)
yey

= argmax p(xi,.
O15eyn)E€Y

..,xm,yl,~"7yn)

Part 1

The direct calculation of Part 1 of Eq. (2) is unreliable owing
to its high dimensionality and a limited number of training in-
stances. Using the chain rule of conditional probability, Part 1
can be rewritten as

PX1seees Xy Vs eesVn)
=p(X11X2s -y Xy V1o e Y)P(X2, + ooy Xty Y1+« + 5 V)
=p(x1lX2, ooy Xy V1o e o5 Y)P(X21X35 - s X, V1 -+ v 5 V)
P, Xy Y15 V) 3)
=p(X1lX2s -y Xy V1o e s V) o PXnlV1s -+ o5 Yn)
POy2, s ¥n) - POn=11yn) Pn)

Based on the naive conditional independence assumption
that all features and labels are mutually independent, con-
ditional on label y,, we have p(XiXit1,...sXm>Vioe-esVn) =
p(xily,). Under this assumption, Eq. (3) can be expressed as

D(X15 ooy Xy Vs e o3 V)

=py)px1lyn) - PGonlyn) -+ - PO1IYR) -+ - POn1lyn) @

m n—1
~pn) [ | pCatyn) [ | pGityn)
i=1 j=1
Eq. (4) can be further simplified as follows:

p(-xla"'axm’yla-"7yn)

m n—1
~pn) [ | pCatyn) [ ] pGityn)
i=1 i=1 (5)

=p(n) ﬁ P(xilyn) ]_[ pGjlyn)

i=1 j=1
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Algorithm 1: MLNB-LD(D, x)

Input : D,X » Training dataset 9, Unseen instances X
Output: Y* > Predicted label vectors for X

1 forall they € Y do

2 fori — ltondo

3 Py, < pO;

4 for k — 1tondo

5 ‘ Py < PO y:')/py;;

6 end

7 forall the x € X do

8 for j — 1tomdo

9 ‘ Pxjlyi < p(xj’yi)/py,-§

10 end

11 end

12 end

13 S(y) « Hzr‘l:l Dy, HT:I Pxjlyi HZ:I Pyilyi for all x € X;

14 end
15 Y « arg max,.y S(y) for all x € X;

which is an estimation of p(x,y) when focusing on y,. In ad-
dition, Eq. (5) indicates that n estimations can be obtained by
considering labels y; through y,; this is written as

p()C1,.. -’yn)

~pon) [ [ pibyd) [ [ sty
i=1 j=1

"xm5y19~-

(6)

~
I~

zp(yn) ﬁ p(xilyn) ﬁ P(leyn)

i=1 j=1

To determine the value of p(x,y), we used the geometric
mean for aggregating n estimations. As a result, Eq. (6) can
be aggregated as follows:

PX1seee s Xy Vise ooy Yn)
([ Troo] Joebo ] Tpou ) )
i=1 =1 k=1

Part 2

Part 2 of Eq. (7) indicates that the proposed estimation con-
siders the conditional probability of all label pairs. By replacing
Part 1 of Eq. (2) with Eq. (7), we have the following:

() = arg max []_[ pod [ oo | ] p(yk|y,->]
ye Jj=1 k=1

i=1
n m n (8)
= arg rgax 1_[ pOi) l_[ p(x;ly) l—l Pilyi)
ye i=1 j=1 k=1

Part 3

In conventional naive Bayes classification, Part 3 of Eq. (8)
is considered to determine the relevance of a given instance to

Table 1: Example dataset

Outlook Temper. Humidity | Walk Swim Tenis
X1 X2 X3 Y1 2 V3
Sunny Hot Low 1 0 1
Rainy Hot Low 1 1 0
Sunny Cool Low 0 1 1
Rainy Cool High 0 0 1
Sunny Cool High 1 1 0
Rainy Cool Low 0 1 0
Table 2: p(x|y) for x = (Sunny, Hot, Low)
‘ V1 Y2 )3
PEY) T o T [0 1
x; =Sunny | 2/3 1/3 | 1/2 2/4 | 1/3 2/3
x = Hot 1/3 2/3 | 1/2 174 | 1/3 2/3
x3 = High 1/3 2/3 | 1/2 2/4 | 1/3 1/3
Table 3: Probability values of label-label pairs p(yily;)
- 1 Y2 Y3
Yk = 0 1 0 1 0 1
y1 =0 1 0 1/2 2/4 | 1/3 2/3
yi=1 0 1 1/2 2/4 |2/3 1/3
¥, =0 1/3 1/3 1 0 0 2/3
=1 2/3 2/3 0 1 1 1/3
y3=0 1/3 2/3 0 3/4 1 0
y3 =1 2/3 1/3 1 1/4 0 1

each label; the relevance score is penalized by multiplying p(y;)
and p(x,ly;) terms. Eq. (8) shows that MLNB-LD further pe-
nalizes the relevance score by multiplying the joint probability
value of label pairs conditioned by a label, i.e., p(y|y;) terms,
indicating that the score value will decrease considerably when
a rare label pair is considered.

Algorithm 1 shows the procedure of the proposed MLNB-
LD, which classifies the label set of a given instance set X.
The algorithm computes the marginal probability of each label
(Line 3) for each label vector, y € Y (Line 1). The algorithm
then computes the conditional probabilities of y; (Line 5) given
y; using the already calculated p,,. Next, the algorithm com-
putes the conditional probabilities of x; (Line 9) given y; for
all instances x € X. Finally, S(y), which estimates the pos-
terior probability of y given X, is calculated and stored (Line
13). These procedures are repeated until all values of S(-) are
computed. Finally, based on the maximum a posteriori rule, the
label vector, y, which leads to the maximum value among S(-),
is selected as the predicted label, y* (Line 15).

We analyze the time complexity of MLNB-LD based on Al-
gorithm 1. As most processes involve probability estimation,
we assume the probability estimation of a feature or a label
as a unit cost. For example, the algorithm must incur one
unit cost for calculating p(y;) and two unit costs for calculating
p(i,y;). In Line 3, the algorithm incurs one unit cost for cal-
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culating p(y;) and then computes n joint probability values, 2n
unit cost is incurred to calculate the joint probability between y;
and all label pairs. Then, for all x € X, p(x;,y;), by incurring
a 2m unit cost, we neglect the cost of computing S(-) because
it does not involve a probability estimation, indicating that the
1+2n+2m-|X| unit cost is incurred for computing the posterior
probability of a label set, y € Y. Thus, the algorithm incurs a
(1 +2n+2m-|X]) - |Y| computational cost for instance, set X.

3.2. Toy example

We used the example dataset shown in Table 1 to under-
stand the underlying mechanism of MLNB-LD. This dataset
is composed of six instances, three features (Outlook, Tem-
perature, and Humidity), and three labels (Walk, Swim, and
Tennis, which are implementable exercises). Specifically, three
labels are encoded to the binary label vector (i, y2,y3). Sup-
pose that we have an unseen instance, x = (Sunny, Hot, High).
Here, MLNB-LD must compute a series of probability values
to identify the most probable label set. For example, based
on the example data, p(y; = 0) = 1/2, p(y; = 1) = 1/2,
p2 = 0) = 2/3, p» = 1) = 1/3, plys = 0) = 1/2,
and p(y3 = 1) = 1/2. Tables 2 and 3 show the joint prob-
ability values between the feature—label and label-label pairs.
In this example, Y contains five label vector elements, Y =
{(0,0,1),(0,1,0),(0,1,1),(1,0, 1), (1, 1,0)}.

Based on Algorithm 1, MLNB-LD computes S(-), where la-
bel (y1,y2,y3) = (0,0, 1) given x as follows:

p(y1 =0,y, =0,y3 = l|x; = Sunny, x, = Hot, x3 = High)
ocp(x; = Sunny, x, = Hot, x3 = High,y; =0,y, =0,y3 = 1)

Thus, S(0, 0, 1) is calculated as follows:

p(x; = Sunny, x, = Hot, x3 = High,y; =0,y, =0,y3 = 1)
~p(x; = Sunnyly; = 0)p(x, = Hotly; = 0)p(x3 = Highly; = 0)
PO =0)p(y1 = Oly1 = 0)p(y2 = 0ly; = 0)p(ys = ly; = 0)
p(x1 = Sunnyly, = 0)p(x, = Hotly, = 0)p(x3 = Highly, = 0)
P2 = 0)p(y1 = 0ly2 = 0)p(y2 = Oly2 = 0)p(y3 = 1ly2 = 0)
p(x1 = Sunnyly; = 1)p(x = Hotly; = 1)p(x3 = Highly; = 1)
p(ys = Dp(y1 =0lys = Dp(y2 = 0lys = Dp(ys = 1lys = 1)

1 211 _ 12 1 1111

= - .- .—=.]-=.=. i — == 1-1
2 333 33 3 2222
S~ —— Y—— Y—
po1=0)  p&xlyi=0)  py1=0) p(=0) p&ly2=0)  p(yly2=0)
1 2 2 12 2

-6
—_— L 0 —
p(y3=1)
Here, S(-) for a label set can be calculated as zero if any
p(x;ly;) = 0, which is known as the zero-frequency problem. A
smoothing technique, such as add-one smoothing, can be used
to solve this problem in the real world (Zhang et al., 2009).
Finally, (Walk, Swim, Tennis) = (Yes, Yes, No) is selected as
the most probable label set for x = (Sunny, Hot, High) because
S(0,1,0) = 793 x 1077, S(0,1,1) ~ 1.41 x 107°, 8(1,0, 1) ~
2.82 x 107, and S(1, 1,0) ~ 1.52 x 107*.

p(xlys=1)  p(ylys=1)

4. Experimental results

4.1. Experimental settings

To conduct the empirical experiments, we used 14 publicly
available multilabel datasets that are frequently used in multi-
label classification studies (Zhang and Zhou, 2014). The Art,
Education, Entertain, Health, Recreation, Reference, Science,
Social, and Society datasets (Ueda and Saito, 2003) were ob-
tained from the Yahoo text data collection after removing un-
necessary features (Zhang and Wu, 2015). In addition, the Bib-
tex (Tsoumakas et al., 2010), Enron, and Slashdot (Zhang and
Wu, 2015) datasets were obtained for the text categorization
tasks. The CorelSk (Zhang and Wu, 2015) dataset was created
from annotated images, each containing multiple object seg-
ments. The Emotions (Trohidis et al., 2011) dataset was cre-
ated for the music emotion recognition task. Table 4 presents
the characteristics of each dataset. In the first row, Instances,
Features, and Labels denote the number of instances, features,
and labels, respectively. Cardinality and Density indicate the
average number of labels assigned to each instance and the av-
erage occurrences of each label, respectively. Distinct denotes
the number of unique label sets.

We used four conventional multilabel classifiers to validate
the superiority of MLNB-LD against conventional methods.
MLNB is an extension of the conventional naive Bayes clas-
sifier, where each label is learned individually (Zhang et al.,
2009). In our experiments, the multinomial model was applied
after numerical features were categorized by a supervised dis-
cretization method (Cano et al., 2016). MLDT adapts predic-
tive clustering trees to induce a single-tree structure for hier-
archical multilabel classification (Vens et al., 2008). In our
experiments, we used the MLDT with no binary split and the
minimum weighted fraction set to two at the whole leaf nodes.
The ML-KELM is a single-layered feedforward neural network
with random projection and kernel mapping (Luo et al., 2017).
Specifically, radial basis kernel mapping based on a Gaussian
distribution is used, where the kernel and cost parameter are
setas o = 272 and C = [29,2!,22, 23], respectively. Finally,
the multilabel learning approach named GLOCAL that utilizes
the correlation among labels from the global and local view-
points using low-rank matrix factorization is used (Zhu et al.,
2018). In our experiments, the threshold values were set as
0.5 and the matrix factorization and cost parameter were set as
k =1[5,10,15,20,25] and A = 1, respectively.

We used three evaluation measures to compare the quality of
multilabel classification results, i.e., Macro F;, Micro F;, and
Multilabel accuracy. Suppose that a multilabel classifier can
output a predicted label vector, § = h(x), for a test instance, X €
7 ,where § = (4, -+, ¥,). Then, statistics can be obtained from
a contingency table established based on the ground truth for
the i-th label, y; € B, and the prediction, y; € B. For example,
the true positive for the i-th label can be indicated by

TP; =y - i

Similarly, the false positive, true negative, and false nega-
tive for the i-th label can be indicated by FP; = (1 —y;) - y;,
TN; = (1 —y;) - (1 =¥, and FN; = y; - (1 — ¥;), respectively.
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Table 4: Standard characteristics of used datasets

Name Domain Instances Features Labels Cardinality Density Distinct
Arts Text 7,484 1,157 26 1.654 0.064 599
Education  Text 12,030 1,377 33 1.463 0.044 511
Entertain Text 12,730 1,600 21 1.414 0.067 337
Health Text 9,205 1,530 32 1.644 0.051 335
Recreation  Text 12,828 1,516 22 1.429 0.065 530
Reference  Text 8,027 1,984 33 1.174 0.036 275
Science Text 6,428 1,859 40 1.45 0.036 457
Social Text 12,111 2,618 39 1.279 0.033 361
Society Text 14,512 1,590 27 1.67 0.062 1,054
Bibtex Text 7,395 1,836 159 2.402 0.015 2,856
CorelSk Image 5,000 499 374 3.522 0.009 3,175
Enron Text 1,702 1,001 53 3.378 0.064 753
Emotions  Music 593 72 6 1.868 0.311 27
Slashdot Text 3,782 1,079 22 1.181 0.054 156
Table 5: Comparison results in terms of Macro F| measure
Dataset Proposed MLNB MLDT ML-KELM GLOCAL
Arts 0.233+0.011v"  0.225+0.005 0.216+0.024 0.146+0.01 0.057+0.022
Education 0.157+0.009v  0.144+0.005 0.132+0.028 0.139+0.012  0.059+0.019
Entertain 0.266+0.015v  0.251+0.008 0.266+0.013 0.185+0.007  0.097+0.02
Health 0.227+0.01v 0.199+0.005 0.176+0.037 0.181+£0.012  0.143+0.021
Recreation  0.322+0.012v"  0.279+0.009 0.283+0.013 0.225+0.007  0.079+0.021
Reference 0.131+0.006v" 0.127+0.005 0.122+0.035 0.088+0.004 0.072+0.026
Science 0.147+0.009v  0.13+0.005 0.137+0.022 0.085+0.005 0.082+0.054
Social 0.153+0.01v 0.121+0.004 0.147+0.025 0.094+0.003  0.04+0.004
Society 0.164+0.008 0.159+0.004 0.187+0.017v"  0.119+0.005 0.031+0.01
Bibtex 0.23+0.011v 0.184+0.005 0.155+0.01 0.158+0.01 0.071+0.007
CorelSk 0.213+0.015v"  0.017+0.007 0.141+0.013 0.033+0.011  0.185+0.056
Enron 0.255+0.028v" 0.104+0.031 0.223+0.028 0.109+0.015  0.198+0.011
Emotions 0.642+0.031 0.666+0.024v 0.653+0.037 0.589+0.029 0.641+0.028
Slashdot 0.302+0.012v"  0.29+0.008 0.301+0.023 0.143+£0.015 0.275+0.025
Avg. Rank. 1.214 2.714 2.643 3.929 4.5

In addition, the Macro F; value for measuring the quality of
multilabel classification on 7~ can be calculated as

1 1 1 ZTP,‘
Macro Fy = ﬁ;;r ;;m)

where Macro F| evaluates how accurately the classifier can pre-
dict the ground truth on average for each test instance. Next,
Micro F; can be calculated as

23", TP,

1
Micro Fj = —
een |¢|,§.2z;’=1 TP, + X, FN; + X7, FP;

where Micro F; evaluates how accurately the classifier predict
the ground truth on average for each label. Multilabel accuracy
(Mlacc) can be calculated as

n

1 1 TP;
Mlacc = — Z - Z - L
71 £\ n &4 TP, + FN; + FP;

where Mlacc outputs the ratio of true positive and the summa-
tion of the ground truth and positively-predicted labels.

We used the hold-out cross-validation strategy to simulate the
real-world performance of each classifier. In a given dataset,
80% of the instances were randomly selected as the training
set O, and the remaining 20% were selected as the test set
7. The experiment was repeated 30 times for each classifier
and dataset, and the average value of each evaluation measure
was reported as the multilabel classification performance for
comparison. In addition, we used the widely-used Friedman
test to compare the performance of multiple classifiers. Based
on the average rank of each classifier, the null hypothesis that
all classifiers perform equally well was either rejected or ac-
cepted. When the null hypothesis was rejected, we performed
the Bonferroni—-Dunn test to analyze the relative performance
among the classifiers. For the Bonferroni—Dunn test, the per-
formances of MLNB-LD and conventional classifiers were re-
garded as statistically different in 95% if their average ranks
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Table 6: Comparison results in terms of Micro F; measure

Dataset Proposed MLNB MLDT ML-KELM GLOCAL
Arts 0.423+0.01v 0.353+0.008  0.333+0.011 0.258+0.011  0.156=+0.055
Education  0.421+0.01/ 0.336+0.008  0.37+0.008 0.316+£0.007 0.254+0.08
Entertain 0.442+0.011v° 0.377+0.011  0.433+0.008 0.323+0.009 0.261+0.044
Health 0.576+0.009v  0.48+0.008 0.545+0.009 0.456+0.013  0.521+0.066
Recreation  0.441+0.01/ 0.371+£0.012  0.412+0.008 0.297+0.007 0.143+0.038
Reference  0.45+0.014v 0.303+0.008  0.428+0.011 0.267+0.013  0.423+0.086
Science 0.304+0.013v  0.219+0.006  0.225+0.013 0.159+0.008 0.285+0.111
Social 0.532+0.008v"  0.346+0.006  0.519+0.01 0.314+£0.009 0.456+0.043
Society 0.301+0.007 0.239+0.003  0.352+0.008v" 0.27+0.006  0.23+0.041
Bibtex 0.315+0.011v" 0.198+0.006  0.179+0.01 0.237+0.012  0.242+0.013
CorelSk 0.266+0.008v 0.097+0.016  0.147+0.005 0.03+0.01 0.244+0.009
Enron 0.504+0.016v" 0.24+0.08 0.469+0.015 0.128+0.028 0.415+0.009
Emotions 0.677+0.029 0.68+0.025v" 0.668+0.033 0.608+0.026  0.657+0.028
Slashdot 0.57+0.016v 0.557+£0.013  0.47+0.015 0.291+0.015 0.444+0.044
Avg. Rank. 1.143 3.357 2.5 4.5 3.429
Table 7: Comparison results in terms of Multilabel accuracy measure
Dataset Proposed MLNB MLDT ML-KELM GLOCAL
Arts 0.405+0.01v 0.328+0.007 0.319+0.011 0.222+0.01 0.106+0.04
Education  0.376+0.01 0.32+0.008  0.323+0.007 0.24+0.006  0.169+0.066
Entertain 0.397+0.008v"  0.348+0.008 0.35+0.007 0.303+£0.007 0.182+0.029
Health 0.52+0.009v 0.476+0.006 0.518+0.01 0.438+0.011 0.458+0.079
Recreation  0.411+0.01 0.343+0.011  0.412+0.007v" 0.261+0.006 0.091+0.026
Reference  0.446+0.014v" 0.388+0.02  0.427+0.012 0.388+0.015 0.325+0.103
Science 0.267+0.012v" 0.215+0.006 0.221+0.013 0.182+0.009 0.209=+0.101
Social 0.544+0.009v" 0.516+0.009 0.539+0.011 0.454+0.012  0.364+0.047
Society 0.261+0.007 0.202+0.004  0.31+0.008v 0.265+0.007 0.184+0.037
Bibtex 0.248+0.008v" 0.192+0.007 0.23+0.011 0.185+0.008 0.192+0.013
CorelSk 0.181+0.006v" 0.08+0.03 0.102+0.004 0.02+0.008  0.144+0.005
Enron 0.356+0.015 0.207+£0.094  0.359+0.015v" 0.076+0.04  0.292+0.009
Emotions 0.569+0.031v" 0.559+0.03 0.456+0.033 0.493+0.027 0.532+0.035
Slashdot 0.554+0.017v" 0.445+0.014 0.458+0.016 0.25+0.013  0.382+0.036
Avg. Rank. 1.214 3.143 2.143 4.357 4.143
over all datasets were larger than one critical difference (CD). Table 8: Friedman statistics and critical value
In our experiments, the CD is 1.6125 (Demsar, 2006).
Evaluation Friedman Critical value
measure statistics  (a = 0.05)
4.2. Experimental results
Macro Fy 41.5
Tables 5-7 show the experimental results obtained using Micro F 24.9 14.9

MLNB-LD and the conventional multilabel classifiers on 14
multilabel datasets. They are represented in terms of the av-
erage performance with the corresponding standard deviations.
The highest performance is shown in bold face and indicated
by a check mark (v'). The term ‘Avg. Rank’ at the bottom of
each table indicates the average rank for each multilabel clas-
sifier over all datasets. Table 8 shows the Friedman statistics
and the corresponding critical values of each evaluation mea-
sure for each multilabel classifier. We set the significance level
as @ = 0.05. In Figs. 1-3, the CD diagrams illustrate the rela-
tive performance of MLNB-LD and the conventional multilabel

Multilabel Accuracy  30.6

classifiers. Herein, the average rank of each multilabel classi-
fier is marked along the upper axis, with the higher ranks placed
on the left side. We also present the CD from the perspective
of MLNB-LD above the graph. This implies that the multilabel
classifiers outside the range are significantly different from each
other.

From the results shown in Tables 5-7, it is evident that
MLNB-LD outperforms the conventional multilabel classifiers
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Table 9: Comparison results of Proposed and MMSE in terms of three evaluation measures

Dataset Macro F Micro F; Multilabel accuracy
Proposed MMSE Proposed MMSE Proposed MMSE
Arts 0.233+0.011v"  0.105+0.005 0.423+0.01v"  0.306+0.011 0.405+0.01v"  0.308+0.013
Education  0.157+£0.009v" 0.105+0.003  0.421+0.01 0.349+0.01  0.376+0.01v  0.322+0.009
Entertain 0.266+0.015v"  0.172+0.007 0.442+0.011v" 0.361+0.013  0.397+0.008v"  0.339+0.01
Health 0.227+0.01v"  0.125+0.007 0.576+0.009v" 0.464+0.01  0.52+0.009v"  0.418+0.012
Recreation  0.324+0.012v" 0.184+0.006 0.441+0.01v"  0.339+0.01  0.411+0.01v"  0.333+0.011
Reference  0.131+0.006v" 0.042+0.003 0.45+0.014v"  0.364+0.011 0.446+0.014v" 0.358+0.011
Science 0.147+0.009v  0.047+0.003  0.304+0.013v" 0.208+0.01 0.267+0.012v"  0.21+0.011
Social 0.153+0.01v 0.043+0.001  0.532+0.008v" 0.45+0.01 0.544+0.009v 0.463+0.01
Society 0.164+0.008v"  0.084+0.005 0.301+0.007v" 0.254+0.008 0.261+0.007v"  0.247+0.007
Bibtex 0.23+0.011v"  0.154+0.005 0.315+0.011v" 0.247+0.01  0.248+0.008v 0.197+0.003
Corel5k 0.213+0.015v°  0.013+0.001  0.266+0.008v"  0.09+0.005  0.181+0.006v" 0.06+0.007
Enron 0.255+0.028v"  0.117+0.008  0.504+0.016v" 0.385+0.012  0.356+0.015v" 0.267+0.009
Emotions 0.642+0.031v"  0.636+0.027 0.677+0.029v" 0.665+0.026  0.569+0.031v" 0.554+0.029
Slashdot 0.302+0.012 0.32+0.01v" 0.57+0.016v"  0.567+0.015 0.554+0.017v" 0.525+0.016
Avg. Rank. 1.071 1.929 1 2 1 2
CD Macro F, the highest performance on 86% of the datasets in terms of
e | Macro F; and Micro F;, and 79% of the datasets in terms of
1 2 3 4 3 the multilabel accuracy. Consequently, MLNB-LD consistently
l | | | | achieves the highest average rank during all experiments. As
' " shown in Fig. 1 and Fig. 2, MLNB-LD significantly outper-
Proposed J L GLOCAL forms MLNB, MLDT, ML-kELM, and GLOCAL in terms of
MLNB Macro F and Micro F;. In addition, Fig. 3 show that MLNB-
ML-KkELM LD significantly outperforms MLDT, ML-KELM, and GLO-
MLDT CAL in terms of Macro F}.
Fig. 1: Result of Bonferroni-Dunn test of Macro Fy MLNB-LD uses the geometric mean to determine the final
score, as shown in Eq. (7), instead of using a classical Bayesian
cD Micro P estimation such as the minimum mean square error (MMSE)
" " ! estimator, which may lead to a better classification perfor-
mance. To verify this possibility, we conducted additional ex-
1 2 3 4 5 periments by comparing the performances of two MLNB-LD
l : : : l variations with different aggregation processes: the geometric
Proposed _'_| GLOCAL mean and an MMSE estimation (MMSE). Table 9 shows that
MLNB-LD provides a significantly better classification perfor-
MLNB P ¢ Y P
ML-KELM mance than its counterpart for most of the datasets. In ad-
MLDT dition, we observed that both Friedman test and Bonferroni—

Fig. 2: Result of Bonferroni—Dunn test of Micro F

CD Multilabel accuracy
—

1 2 3 4 5
J

[ I | l
—l
Proposed i GLOCAL
MLNB ———

ML-kKkELM

MLDT ——

Fig. 3: Result of Bonferroni—-Dunn test of Multilabel accuracy

for most multilabel datasets. Specifically, MLNB-LD achieves

Dunn test also confirmed the statistical superiority of MLNB-
LD over MMSE. A possible reason for this result may be the
sensitivity of the geometric mean regarding outlier values of
pO) I pCejlyd) TTiZ; pOxlys) owing to the label sparsity of
most of the multilabel dataset (Lee and Kim, 2016).

In a real-world situation, the multi-label classification prob-
lem may become more complicated by missing labels, indicat-
ing that the classifier may have to output label sets that are un-
observed from the training process. To achieve this problem,
MLNB-LD must be modified to consider all possible label sets
instead of Y. Although the computational cost can be increased
exponentially owing to exhaustive multilabel learning setting,
the classification performance may be varied. To show this as-
pect, we conducted the last experiments by comparing two vari-
ations with a different label set consideration; one is the label
sets in Y (proposed), and the other is all possible label sets
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Table 10: Comparison results of Proposed and EML on Emotions dataset

Evaluation measure  Proposed EML

Macro F, 0.6412+0.0267v  0.6409+0.0271
Micro F 0.6711+0.0258v 0.6708+0.0261
Multilabel Accuracy  0.5609+0.0247v"  0.5597+0.0252

(EML). Owing to the computational burden of the EML, we
chose the Emotions dataset, which is composed of six labels.
Thus, the EML must compute the possibility of 26 = 64 label
sets for each test instance despite there being only 27 distinct
label sets in total. Table 10 summarizes the multilabel classifi-
cation performance between MLNB-LD and EML in terms of
three evaluation measures. The experimental results indicate
that MLNB-LD can provide a similar multilabel classification
performance without considering all possible label sets.

5. Conclusion

We presented a multilabel naive Bayes classifier that con-
siders the dependence among labels during classification. The
proposed method utilizes the dependence between label pairs
for determining the most probable label set for a given un-
seen instance. Our comprehensive experiments demonstrate
that multilabel classification performance can be significantly
improved by the proposed method. A comparison of the re-
sults obtained on 14 real-world datasets obtained from different
domains shows the advantages of the proposed method com-
pared with the four conventional multilabel classifiers in terms
of three evaluation measures, i.e., Macro Fy, Micro Fy, and
Multilabel accuracy. Thus, considering the dependence among
labels is effective for solving the multilabel classification prob-
lem.

Future work should include the study of computational ef-
ficiency for utilizing label dependence in the multilabel clas-
sification process. In this study, the dependence between all
label pairs is considered for identifying the most probable label
set. This indicates that multilabel classification performance
may be further improved if unnecessary or noisy information
is removed. In addition, the experimental results demonstrate
that the proposed method is computationally efficient because
it identifies the most probable label set without considering all
of the possible label sets. However, in the multilabel learning
case in which the ground truth label set is partially given, the
proposed method can be used to output the novel label sets by
computing the score of the label sets that are unobserved from
the training process. Furthermore, the proposed method uses
the geometric mean for aggregating the score values obtained
by conditioning each label. Although this demonstrates a supe-
rior multilabel classification performance, a different estimation
or heuristic method can be considered to improve the multilabel
classification performance. We intend to investigate this further
in future work.
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