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ABSTRACT

Multilabel classification is the task of assigning relevant labels to an instance, and it has received con-
siderable attention in recent years. This task can be performed by extending a single-label classifier,
such as the naı̈ve Bayes classifier, to utilize the useful relations among labels for achieving better mul-
tilabel classification accuracy. However, the conventional multilabel naı̈ve Bayes classifier treats each
label independently and hence neglects the relations among labels, resulting in degenerated accuracy.
We propose a new multilabel naı̈ve Bayes classifier that considers the relations or dependence among
labels. Experimental results show that the proposed method outperforms conventional multilabel clas-
sifiers.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction1

Multilabel classification is the task of mapping multiple rel-2

evant labels to a given instance, and it is a core technique for3

well-known applications such as text categorization (Elghazel4

et al., 2016), image annotation (Wu et al., 2015), and music tag5

classification (Lee et al., 2019). As multilabel classification can6

be regarded a generalization of the single-label classification7

problem, numerous multilabel classifiers have been extended8

from single-label classifiers (Zhang and Zhou, 2014). For ex-9

ample, the naı̈ve Bayes classifier, which is one of the most rep-10

resentative classifiers (Li and Yang, 2018), was extended to the11

multilabel naı̈ve Bayes classifier (Zhang et al., 2009).12

The dependence among labels can be used to improve the13

accuracy of multilabel classification (Huang et al., 2015; Zhang14

and Zhou, 2014). For example, in the weather classification15

problem, the label raining is likely to be coupled with the la-16

bel cloudy and unlikely to be coupled with the label sunny.17

However, conventional multilabel naı̈ve Bayes classification18

neglects the dependence among labels because it treats each la-19

bel independently. Thus, unobserved label combinations can20

be assigned, thereby degenerating multilabel classification ac-21

curacy.22

In this paper, we propose a new multilabel naı̈ve Bayes algo-23

rithm that considers the dependence among labels for the classi-24

fication process, named MLNB-LD. To achieve this, we derive25
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a new posterior probability estimation method for a multilabel 26

problem based on Bayes’ theorem with the strong independence 27

assumption. Experimental results indicate that, MLNB-LD out- 28

performs the multilabel naı̈ve Bayes classifier and other con- 29

ventional multilabel classifiers. 30

2. Related works 31

In multilabel classification studies, the methods that utilize 32

label dependence can be broadly divided into three groups ac- 33

cording to how many labels are considered concurrently (Zhang 34

and Zhou, 2014). The first group of classifiers treats each la- 35

bel independently by inferencing a mapping function for each 36

label. For example, Zhang and Zhou (2007) proposed a mul- 37

tilabel k-nearest neighbor classifier that identifies k similar in- 38

stances from a training set and then determines the relevance of 39

each label. Vens et al. (2008) proposed new multilabel decision 40

trees that consider the label hierarchy in a hierarchical multi- 41

label classification (MLDT). Zhang et al. (2009) extended the 42

conventional naı̈ve Bayes classifier to a multilabel naı̈ve Bayes 43

classifier that estimates the posterior probability for each label 44

independently. In addition, Zhang and Wu (2015) proposed a 45

multilabel classifier that selects a subset of relevant features for 46

each label. Lastly, Luo et al. (2017) introduced a multilabel ker- 47

nel extreme learning machine (ML-kELM) that calculates the 48

likelihood of each label based on the random weighting scheme 49

and radial basis kernel mapping. 50

In the second group, multilabel classifiers consider the la- 51

bel dependence between label pairs. For example, Huang et al. 52
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(2015) proposed a classifier that selects important features for53

each label and then calculates the similarity between selected54

feature subsets and label pairs. In addition, Huang et al. (2017)55

devised a multilabel classifier that uses local positive and neg-56

ative pairwise label correlation. Jing et al. (2017) introduced57

semisupervised multilabel classification that applies singular58

value decomposition for label matrix factorization. Similarly,59

Kumar et al. (2018) proposed a hierarchical embedding-based60

multilabel classifier that is based on k-means clustering and61

low-rank matrix factorization. Zhu et al. (2018) developed mul-62

tilabel learning with a global and local label correlation (GLO-63

CAL) strategy that used the correlation among labels in the64

global and local viewpoints using low-rank matrix factoriza-65

tion.66

In the third group, the classification process is designed to67

consider an arbitrary number of labels concurrently. For ex-68

ample, the random k-labelset algorithm creates k label sets by69

encoding multiple arbitrarily selected labels into a series of sin-70

gle labels. Then, classifiers are trained for each transformed71

label (Tsoumakas et al., 2010). After prediction is completed,72

the transformed single labels are recovered to the original mul-73

tiple labels. The classifier chain approach selects the number74

of labels to be considered concurrently and chains the predic-75

tion model for each label using the prediction of labels in the76

early stage of the chain to labels in the later stage (Read et al.,77

2011). This technique was applied to recurrent neural networks78

to maximize subset accuracy (Nam et al., 2017). Lastly, the79

k-nearest neighbor classifier was extended to a multilabel clas-80

sification problem by utilizing fuzzy rough neighborhood con-81

sensus and label correlation estimation with the weighted Ham-82

ming distance (Vluymans et al., 2018).83

Our brief review shows that the multilabel classifiers in the84

first group take the simplest approach and conventional single-85

label classifiers can be directly used by treating each label as86

multiple individual problems. However, this approach inher-87

ently neglects the dependence among labels that can be useful88

for improving multilabel classification accuracy. The classifiers89

in the third group experience difficulty in significance estima-90

tion because they consider a large number of labels simulta-91

neously based on a limited number of training instances. To92

circumvent both drawbacks, we design a method based on the93

strategy of the second group, which considers a maximum of94

two labels concurrently.95

3. Proposed method96

First, we describe the notation used for deriving the proposed97

posterior probability estimation method for multilabel classifi-98

cation. Let X ⊂ Rm be the input space and L = {l1, . . . , ln} be99

the finite set of possible labels. Vector x = (x1, . . . , xm) rep-100

resents m features. Vector y = (y1, . . . , yn) represents n labels,101

where yi ∈ B is 1 if the i-th label, li, is related to a given in-102

stance; otherwise, it is 0. Then, a set of multilabeled instances,103

(x, y), compose datasetD. In addition, we denoteY (|Y| ≤ |D|)104

as a set of the label vectors that are observed from the dataset.105

3.1. Derivation 106

The goal of the multilabel naı̈ve Bayes classifier based on 107

the maximum a posteriori decision rule is to find a hypothesis, 108

h : x→ y, where h(x) can be defined as follows: 109

h(x) = arg max
y∈Y

p(y|x) = arg max
y∈Y

p(x, y)
p(x)

(1)

where p(y|x) is the conditional probability of y given x. It is 110

unnecessary to identify the exact value of p(x) because it is the 111

same for all values of y ∈ Y. Thus, Eq. (1) can be simplified as 112

follows: 113

h(x) = arg max
y∈Y

p(x, y)
p(x)

∝ arg max
y∈Y

p(x, y)

= arg max
(y1,...,yn)∈Y

p(x1, . . . , xm, y1, . . . , yn)︸                        ︷︷                        ︸
Part 1

(2)

The direct calculation of Part 1 of Eq. (2) is unreliable owing 114

to its high dimensionality and a limited number of training in- 115

stances. Using the chain rule of conditional probability, Part 1 116

can be rewritten as 117

p(x1, . . . , xm, y1, . . . , yn)
=p(x1|x2, . . . , xm, y1, . . . , yn)p(x2, . . . , xm, y1, . . . , yn)
=p(x1|x2, . . . , xm, y1, . . . , yn)p(x2|x3, . . . , xm, y1, . . . , yn)

p(x3, . . . , xm, y1, . . . , yn)
= . . .

=p(x1|x2, . . . , xm, y1, . . . , yn) · · · p(xm|y1, . . . , yn)
p(y1|y2, . . . , yn) · · · p(yn−1|yn)p(yn)

(3)

Based on the naı̈ve conditional independence assumption 118

that all features and labels are mutually independent, con- 119

ditional on label yn, we have p(xi|xi+1, . . . , xm, y1, . . . , yn) ≈ 120

p(xi|yn). Under this assumption, Eq. (3) can be expressed as 121

p(x1, . . . , xm, y1, . . . , yn)
≈p(yn)p(x1|yn) · · · p(xm|yn) · · · p(y1|yn) · · · p(yn−1|yn)

≈p(yn)
m∏

i=1

p(xi|yn)
n−1∏
j=1

p(y j|yn)
(4)

Eq. (4) can be further simplified as follows: 122

p(x1, . . . , xm, y1, . . . , yn)

≈p(yn)
m∏

i=1

p(xi|yn)
n−1∏
j=1

p(y j|yn)

=p(yn)
m∏

i=1

p(xi|yn)
n∏

j=1

p(y j|yn)

(5)
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Algorithm 1: MLNB-LD(D, x)
Input :D,X . Training datasetD, Unseen instances X
Output: Y∗ . Predicted label vectors for X

1 forall the y ∈ Y do
2 for i← 1 to n do
3 pyi ← p(yi);
4 for k ← 1 to n do
5 pyk |yi ← p(yk, yi)/pyi ;
6 end
7 forall the x ∈ X do
8 for j← 1 to m do
9 px j |yi ← p(x j, yi)/pyi ;

10 end
11 end
12 end
13 S(y)←

∏n
i=1 pyi

∏m
j=1 px j |yi

∏n
k=1 pyk |yi for all x ∈ X;

14 end
15 Y∗ ← arg maxy∈Y S(y) for all x ∈ X;

which is an estimation of p(x, y) when focusing on yn. In ad-123

dition, Eq. (5) indicates that n estimations can be obtained by124

considering labels y1 through yn; this is written as125

p(x1, . . . , xm, y1, . . . , yn)

≈p(y1)
m∏

i=1

p(xi|y1)
n∏

j=1

p(y j|y1)

≈
...

≈p(yn)
m∏

i=1

p(xi|yn)
n∏

j=1

p(y j|yn)

(6)

To determine the value of p(x, y), we used the geometric126

mean for aggregating n estimations. As a result, Eq. (6) can127

be aggregated as follows:128

p(x1, . . . , xm, y1, . . . , yn)

≈

( n∏
i=1

p(yi)
m∏

j=1

p(x j|yi)
n∏

k=1

p(yk |yi)︸       ︷︷       ︸
Part 2

) 1
n

(7)

Part 2 of Eq. (7) indicates that the proposed estimation con-129

siders the conditional probability of all label pairs. By replacing130

Part 1 of Eq. (2) with Eq. (7), we have the following:131

h(x) = arg max
y∈Y

 n∏
i=1

p(yi)
m∏

j=1

p(x j|yi)
n∏

k=1

p(yk |yi)


1
n

= arg max
y∈Y

n∏
i=1

p(yi)
m∏

j=1

p(x j|yi)︸                    ︷︷                    ︸
Part 3

n∏
k=1

p(yk |yi)
(8)

In conventional naı̈ve Bayes classification, Part 3 of Eq. (8)132

is considered to determine the relevance of a given instance to133

Table 1: Example dataset

Outlook Temper. Humidity Walk Swim Tenis
x1 x2 x3 y1 y2 y3

Sunny Hot Low 1 0 1
Rainy Hot Low 1 1 0
Sunny Cool Low 0 1 1
Rainy Cool High 0 0 1
Sunny Cool High 1 1 0
Rainy Cool Low 0 1 0

Table 2: p(x|y) for x = (Sunny,Hot,Low)

p(x|y) y1 y2 y3
0 1 0 1 0 1

x1 = Sunny 2/3 1/3 1/2 2/4 1/3 2/3
x2 = Hot 1/3 2/3 1/2 1/4 1/3 2/3
x3 = High 1/3 2/3 1/2 2/4 1/3 1/3

Table 3: Probability values of label–label pairs p(yk |yl)

aaaaaaa
yk →

yl → y1 y2 y3
0 1 0 1 0 1

y1 = 0 1 0 1/2 2/4 1/3 2/3
y1 = 1 0 1 1/2 2/4 2/3 1/3
y2 = 0 1/3 1/3 1 0 0 2/3
y2 = 1 2/3 2/3 0 1 1 1/3
y3 = 0 1/3 2/3 0 3/4 1 0
y3 = 1 2/3 1/3 1 1/4 0 1

each label; the relevance score is penalized by multiplying p(yi) 134

and p(x j|yi) terms. Eq. (8) shows that MLNB-LD further pe- 135

nalizes the relevance score by multiplying the joint probability 136

value of label pairs conditioned by a label, i.e., p(yk |yi) terms, 137

indicating that the score value will decrease considerably when 138

a rare label pair is considered. 139

Algorithm 1 shows the procedure of the proposed MLNB- 140

LD, which classifies the label set of a given instance set X. 141

The algorithm computes the marginal probability of each label 142

(Line 3) for each label vector, y ∈ Y (Line 1). The algorithm 143

then computes the conditional probabilities of yk (Line 5) given 144

yi using the already calculated pyi . Next, the algorithm com- 145

putes the conditional probabilities of x j (Line 9) given yi for 146

all instances x ∈ X. Finally, S(y), which estimates the pos- 147

terior probability of y given x, is calculated and stored (Line 148

13). These procedures are repeated until all values of S(·) are 149

computed. Finally, based on the maximum a posteriori rule, the 150

label vector, y, which leads to the maximum value among S(·), 151

is selected as the predicted label, y∗ (Line 15). 152

We analyze the time complexity of MLNB-LD based on Al- 153

gorithm 1. As most processes involve probability estimation, 154

we assume the probability estimation of a feature or a label 155

as a unit cost. For example, the algorithm must incur one 156

unit cost for calculating p(yi) and two unit costs for calculating 157

p(yi, y j). In Line 3, the algorithm incurs one unit cost for cal- 158
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culating p(yi) and then computes n joint probability values, 2n159

unit cost is incurred to calculate the joint probability between yi160

and all label pairs. Then, for all x ∈ X, p(x j, yi), by incurring161

a 2m unit cost, we neglect the cost of computing S(·) because162

it does not involve a probability estimation, indicating that the163

1+2n+2m · |X| unit cost is incurred for computing the posterior164

probability of a label set, y ∈ Y. Thus, the algorithm incurs a165

(1 + 2n + 2m · |X|) · |Y| computational cost for instance, set X.166

3.2. Toy example167

We used the example dataset shown in Table 1 to under-168

stand the underlying mechanism of MLNB-LD. This dataset169

is composed of six instances, three features (Outlook, Tem-170

perature, and Humidity), and three labels (Walk, Swim, and171

Tennis, which are implementable exercises). Specifically, three172

labels are encoded to the binary label vector (y1, y2, y3). Sup-173

pose that we have an unseen instance, x = (Sunny,Hot,High).174

Here, MLNB-LD must compute a series of probability values175

to identify the most probable label set. For example, based176

on the example data, p(y1 = 0) = 1/2, p(y1 = 1) = 1/2,177

p(y2 = 0) = 2/3, p(y2 = 1) = 1/3, p(y3 = 0) = 1/2,178

and p(y3 = 1) = 1/2. Tables 2 and 3 show the joint prob-179

ability values between the feature–label and label–label pairs.180

In this example, Y contains five label vector elements, Y =181

{(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.182

Based on Algorithm 1, MLNB-LD computes S(·), where la-183

bel (y1, y2, y3) = (0, 0, 1) given x as follows:184

p(y1 = 0, y2 = 0, y3 = 1|x1 = Sunny, x2 = Hot, x3 = High)
∝p(x1 = Sunny, x2 = Hot, x3 = High, y1 = 0, y2 = 0, y3 = 1)

Thus, S(0, 0, 1) is calculated as follows:185

p(x1 = Sunny, x2 = Hot, x3 = High, y1 = 0, y2 = 0, y3 = 1)
≈p(x1 = Sunny|y1 = 0)p(x2 = Hot|y1 = 0)p(x3 = High|y1 = 0)

p(y1 = 0)p(y1 = 0|y1 = 0)p(y2 = 0|y1 = 0)p(y3 = 1|y1 = 0)
p(x1 = Sunny|y2 = 0)p(x2 = Hot|y2 = 0)p(x3 = High|y2 = 0)

p(y2 = 0)p(y1 = 0|y2 = 0)p(y2 = 0|y2 = 0)p(y3 = 1|y2 = 0)
p(x1 = Sunny|y3 = 1)p(x2 = Hot|y3 = 1)p(x3 = High|y3 = 1)

p(y3 = 1)p(y1 = 0|y3 = 1)p(y2 = 0|y3 = 1)p(y3 = 1|y3 = 1)

=
1
2︸︷︷︸

p(y1=0)

·
2
3
·

1
3
·

1
3︸    ︷︷    ︸

p(x|y1=0)

· 1 ·
1
3
·

2
3︸   ︷︷   ︸

p(y|y1=0)

·
1
3︸︷︷︸

p(y2=0)

·
1
2
·

1
2
·

1
2︸    ︷︷    ︸

p(x|y2=0)

·
1
2
· 1 · 1︸  ︷︷  ︸

p(y|y2=0)

·

1
2︸︷︷︸

p(y3=1)

·
2
3
·

2
3
·

1
3︸    ︷︷    ︸

p(x|y3=1)

·
2
3
·

2
3
· 1︸   ︷︷   ︸

p(y|y3=1)

≈ 5.64 × 10−6

Here, S(·) for a label set can be calculated as zero if any186

p(x j|yi) = 0, which is known as the zero-frequency problem. A187

smoothing technique, such as add-one smoothing, can be used188

to solve this problem in the real world (Zhang et al., 2009).189

Finally, (Walk, Swim, Tennis) = (Yes, Yes, No) is selected as190

the most probable label set for x = (Sunny,Hot,High) because191

S(0, 1, 0) ≈ 7.93 × 10−7, S(0, 1, 1) ≈ 1.41 × 10−6, S(1, 0, 1) ≈192

2.82 × 10−6, and S(1, 1, 0) ≈ 1.52 × 10−4.193

4. Experimental results 194

4.1. Experimental settings 195

To conduct the empirical experiments, we used 14 publicly 196

available multilabel datasets that are frequently used in multi- 197

label classification studies (Zhang and Zhou, 2014). The Art, 198

Education, Entertain, Health, Recreation, Reference, Science, 199

Social, and Society datasets (Ueda and Saito, 2003) were ob- 200

tained from the Yahoo text data collection after removing un- 201

necessary features (Zhang and Wu, 2015). In addition, the Bib- 202

tex (Tsoumakas et al., 2010), Enron, and Slashdot (Zhang and 203

Wu, 2015) datasets were obtained for the text categorization 204

tasks. The Corel5k (Zhang and Wu, 2015) dataset was created 205

from annotated images, each containing multiple object seg- 206

ments. The Emotions (Trohidis et al., 2011) dataset was cre- 207

ated for the music emotion recognition task. Table 4 presents 208

the characteristics of each dataset. In the first row, Instances, 209

Features, and Labels denote the number of instances, features, 210

and labels, respectively. Cardinality and Density indicate the 211

average number of labels assigned to each instance and the av- 212

erage occurrences of each label, respectively. Distinct denotes 213

the number of unique label sets. 214

We used four conventional multilabel classifiers to validate 215

the superiority of MLNB-LD against conventional methods. 216

MLNB is an extension of the conventional naı̈ve Bayes clas- 217

sifier, where each label is learned individually (Zhang et al., 218

2009). In our experiments, the multinomial model was applied 219

after numerical features were categorized by a supervised dis- 220

cretization method (Cano et al., 2016). MLDT adapts predic- 221

tive clustering trees to induce a single-tree structure for hier- 222

archical multilabel classification (Vens et al., 2008). In our 223

experiments, we used the MLDT with no binary split and the 224

minimum weighted fraction set to two at the whole leaf nodes. 225

The ML-kELM is a single-layered feedforward neural network 226

with random projection and kernel mapping (Luo et al., 2017). 227

Specifically, radial basis kernel mapping based on a Gaussian 228

distribution is used, where the kernel and cost parameter are 229

set as σ = 2−2 and C = [20, 21, 22, 23], respectively. Finally, 230

the multilabel learning approach named GLOCAL that utilizes 231

the correlation among labels from the global and local view- 232

points using low-rank matrix factorization is used (Zhu et al., 233

2018). In our experiments, the threshold values were set as 234

0.5 and the matrix factorization and cost parameter were set as 235

k = [5, 10, 15, 20, 25] and λ = 1, respectively. 236

We used three evaluation measures to compare the quality of 237

multilabel classification results, i.e., Macro F1, Micro F1, and 238

Multilabel accuracy. Suppose that a multilabel classifier can 239

output a predicted label vector, ŷ = h(x), for a test instance, x ∈ 240

T , where ŷ = (ŷ1, · · · , ŷn). Then, statistics can be obtained from 241

a contingency table established based on the ground truth for 242

the i-th label, yi ∈ B, and the prediction, ŷi ∈ B. For example, 243

the true positive for the i-th label can be indicated by 244

TPi = yi · ŷi

Similarly, the false positive, true negative, and false nega- 245

tive for the i-th label can be indicated by FPi = (1 − yi) · ŷi, 246

TNi = (1 − yi) · (1 − ŷi), and FNi = yi · (1 − ŷi), respectively. 247
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Table 4: Standard characteristics of used datasets

Name Domain Instances Features Labels Cardinality Density Distinct

Arts Text 7,484 1,157 26 1.654 0.064 599
Education Text 12,030 1,377 33 1.463 0.044 511
Entertain Text 12,730 1,600 21 1.414 0.067 337
Health Text 9,205 1,530 32 1.644 0.051 335
Recreation Text 12,828 1,516 22 1.429 0.065 530
Reference Text 8,027 1,984 33 1.174 0.036 275
Science Text 6,428 1,859 40 1.45 0.036 457
Social Text 12,111 2,618 39 1.279 0.033 361
Society Text 14,512 1,590 27 1.67 0.062 1,054
Bibtex Text 7,395 1,836 159 2.402 0.015 2,856
Corel5k Image 5,000 499 374 3.522 0.009 3,175
Enron Text 1,702 1,001 53 3.378 0.064 753
Emotions Music 593 72 6 1.868 0.311 27
Slashdot Text 3,782 1,079 22 1.181 0.054 156

Table 5: Comparison results in terms of Macro F1 measure

Dataset Proposed MLNB MLDT ML-kELM GLOCAL

Arts 0.233±0.011X 0.225±0.005 0.216±0.024 0.146±0.01 0.057±0.022
Education 0.157±0.009X 0.144±0.005 0.132±0.028 0.139±0.012 0.059±0.019
Entertain 0.266±0.015X 0.251±0.008 0.266±0.013 0.185±0.007 0.097±0.02
Health 0.227±0.01X 0.199±0.005 0.176±0.037 0.181±0.012 0.143±0.021
Recreation 0.322±0.012X 0.279±0.009 0.283±0.013 0.225±0.007 0.079±0.021
Reference 0.131±0.006X 0.127±0.005 0.122±0.035 0.088±0.004 0.072±0.026
Science 0.147±0.009X 0.13±0.005 0.137±0.022 0.085±0.005 0.082±0.054
Social 0.153±0.01X 0.121±0.004 0.147±0.025 0.094±0.003 0.04±0.004
Society 0.164±0.008 0.159±0.004 0.187±0.017X 0.119±0.005 0.031±0.01
Bibtex 0.23±0.011X 0.184±0.005 0.155±0.01 0.158±0.01 0.071±0.007
Corel5k 0.213±0.015X 0.017±0.007 0.141±0.013 0.033±0.011 0.185±0.056
Enron 0.255±0.028X 0.104±0.031 0.223±0.028 0.109±0.015 0.198±0.011
Emotions 0.642±0.031 0.666±0.024X 0.653±0.037 0.589±0.029 0.641±0.028
Slashdot 0.302±0.012X 0.29±0.008 0.301±0.023 0.143±0.015 0.275±0.025

Avg. Rank. 1.214 2.714 2.643 3.929 4.5

In addition, the Macro F1 value for measuring the quality of248

multilabel classification on T can be calculated as249

Macro F1 =
1
|T |

∑
x∈T

1
n

n∑
i=1

2TPi

2TPi + FNi + FPi


where Macro F1 evaluates how accurately the classifier can pre-250

dict the ground truth on average for each test instance. Next,251

Micro F1 can be calculated as252

Micro F1 =
1
|T |

∑
x∈T

2
∑n

i=1 TPi

2
∑n

i=1 TPi +
∑n

i=1 FNi +
∑n

i=1 FPi

where Micro F1 evaluates how accurately the classifier predict253

the ground truth on average for each label. Multilabel accuracy254

(Mlacc) can be calculated as255

Mlacc =
1
|T |

∑
x∈T

1
n

n∑
i=1

TPi

TPi + FNi + FPi



where Mlacc outputs the ratio of true positive and the summa- 256

tion of the ground truth and positively-predicted labels. 257

We used the hold-out cross-validation strategy to simulate the 258

real-world performance of each classifier. In a given dataset, 259

80% of the instances were randomly selected as the training 260

set D, and the remaining 20% were selected as the test set 261

T . The experiment was repeated 30 times for each classifier 262

and dataset, and the average value of each evaluation measure 263

was reported as the multilabel classification performance for 264

comparison. In addition, we used the widely-used Friedman 265

test to compare the performance of multiple classifiers. Based 266

on the average rank of each classifier, the null hypothesis that 267

all classifiers perform equally well was either rejected or ac- 268

cepted. When the null hypothesis was rejected, we performed 269

the Bonferroni–Dunn test to analyze the relative performance 270

among the classifiers. For the Bonferroni–Dunn test, the per- 271

formances of MLNB-LD and conventional classifiers were re- 272

garded as statistically different in 95% if their average ranks 273
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Table 6: Comparison results in terms of Micro F1 measure

Dataset Proposed MLNB MLDT ML-kELM GLOCAL

Arts 0.423±0.01X 0.353±0.008 0.333±0.011 0.258±0.011 0.156±0.055
Education 0.421±0.01X 0.336±0.008 0.37±0.008 0.316±0.007 0.254±0.08
Entertain 0.442±0.011X 0.377±0.011 0.433±0.008 0.323±0.009 0.261±0.044
Health 0.576±0.009X 0.48±0.008 0.545±0.009 0.456±0.013 0.521±0.066
Recreation 0.441±0.01X 0.371±0.012 0.412±0.008 0.297±0.007 0.143±0.038
Reference 0.45±0.014X 0.303±0.008 0.428±0.011 0.267±0.013 0.423±0.086
Science 0.304±0.013X 0.219±0.006 0.225±0.013 0.159±0.008 0.285±0.111
Social 0.532±0.008X 0.346±0.006 0.519±0.01 0.314±0.009 0.456±0.043
Society 0.301±0.007 0.239±0.003 0.352±0.008X 0.27±0.006 0.23±0.041
Bibtex 0.315±0.011X 0.198±0.006 0.179±0.01 0.237±0.012 0.242±0.013
Corel5k 0.266±0.008X 0.097±0.016 0.147±0.005 0.03±0.01 0.244±0.009
Enron 0.504±0.016X 0.24±0.08 0.469±0.015 0.128±0.028 0.415±0.009
Emotions 0.677±0.029 0.68±0.025X 0.668±0.033 0.608±0.026 0.657±0.028
Slashdot 0.57±0.016X 0.557±0.013 0.47±0.015 0.291±0.015 0.444±0.044

Avg. Rank. 1.143 3.357 2.5 4.5 3.429

Table 7: Comparison results in terms of Multilabel accuracy measure

Dataset Proposed MLNB MLDT ML-kELM GLOCAL

Arts 0.405±0.01X 0.328±0.007 0.319±0.011 0.222±0.01 0.106±0.04
Education 0.376±0.01X 0.32±0.008 0.323±0.007 0.24±0.006 0.169±0.066
Entertain 0.397±0.008X 0.348±0.008 0.35±0.007 0.303±0.007 0.182±0.029
Health 0.52±0.009X 0.476±0.006 0.518±0.01 0.438±0.011 0.458±0.079
Recreation 0.411±0.01 0.343±0.011 0.412±0.007X 0.261±0.006 0.091±0.026
Reference 0.446±0.014X 0.388±0.02 0.427±0.012 0.388±0.015 0.325±0.103
Science 0.267±0.012X 0.215±0.006 0.221±0.013 0.182±0.009 0.209±0.101
Social 0.544±0.009X 0.516±0.009 0.539±0.011 0.454±0.012 0.364±0.047
Society 0.261±0.007 0.202±0.004 0.31±0.008X 0.265±0.007 0.184±0.037
Bibtex 0.248±0.008X 0.192±0.007 0.23±0.011 0.185±0.008 0.192±0.013
Corel5k 0.181±0.006X 0.08±0.03 0.102±0.004 0.02±0.008 0.144±0.005
Enron 0.356±0.015 0.207±0.094 0.359±0.015X 0.076±0.04 0.292±0.009
Emotions 0.569±0.031X 0.559±0.03 0.456±0.033 0.493±0.027 0.532±0.035
Slashdot 0.554±0.017X 0.445±0.014 0.458±0.016 0.25±0.013 0.382±0.036

Avg. Rank. 1.214 3.143 2.143 4.357 4.143

over all datasets were larger than one critical difference (CD).274

In our experiments, the CD is 1.6125 (Demšar, 2006).275

4.2. Experimental results276

Tables 5–7 show the experimental results obtained using277

MLNB-LD and the conventional multilabel classifiers on 14278

multilabel datasets. They are represented in terms of the av-279

erage performance with the corresponding standard deviations.280

The highest performance is shown in bold face and indicated281

by a check mark (X). The term ‘Avg. Rank’ at the bottom of282

each table indicates the average rank for each multilabel clas-283

sifier over all datasets. Table 8 shows the Friedman statistics284

and the corresponding critical values of each evaluation mea-285

sure for each multilabel classifier. We set the significance level286

as α = 0.05. In Figs. 1–3, the CD diagrams illustrate the rela-287

tive performance of MLNB-LD and the conventional multilabel288

Table 8: Friedman statistics and critical value

Evaluation Friedman Critical value
measure statistics (α = 0.05)

Macro F1 41.5
14.9Micro F1 24.9

Multilabel Accuracy 30.6

classifiers. Herein, the average rank of each multilabel classi- 289

fier is marked along the upper axis, with the higher ranks placed 290

on the left side. We also present the CD from the perspective 291

of MLNB-LD above the graph. This implies that the multilabel 292

classifiers outside the range are significantly different from each 293

other. 294

From the results shown in Tables 5–7, it is evident that 295

MLNB-LD outperforms the conventional multilabel classifiers 296
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Table 9: Comparison results of Proposed and MMSE in terms of three evaluation measures

Dataset Macro F1 Micro F1 Multilabel accuracy
Proposed MMSE Proposed MMSE Proposed MMSE

Arts 0.233±0.011X 0.105±0.005 0.423±0.01X 0.306±0.011 0.405±0.01X 0.308±0.013
Education 0.157±0.009X 0.105±0.003 0.421±0.01 0.349±0.01 0.376±0.01X 0.322±0.009
Entertain 0.266±0.015X 0.172±0.007 0.442±0.011X 0.361±0.013 0.397±0.008X 0.339±0.01
Health 0.227±0.01X 0.125±0.007 0.576±0.009X 0.464±0.01 0.52±0.009X 0.418±0.012
Recreation 0.324±0.012X 0.184±0.006 0.441±0.01X 0.339±0.01 0.411±0.01X 0.333±0.011
Reference 0.131±0.006X 0.042±0.003 0.45±0.014X 0.364±0.011 0.446±0.014X 0.358±0.011
Science 0.147±0.009X 0.047±0.003 0.304±0.013X 0.208±0.01 0.267±0.012X 0.21±0.011
Social 0.153±0.01X 0.043±0.001 0.532±0.008X 0.45±0.01 0.544±0.009X 0.463±0.01
Society 0.164±0.008X 0.084±0.005 0.301±0.007X 0.254±0.008 0.261±0.007X 0.247±0.007
Bibtex 0.23±0.011X 0.154±0.005 0.315±0.011X 0.247±0.01 0.248±0.008X 0.197±0.003
Corel5k 0.213±0.015X 0.013±0.001 0.266±0.008X 0.09±0.005 0.181±0.006X 0.06±0.007
Enron 0.255±0.028X 0.117±0.008 0.504±0.016X 0.385±0.012 0.356±0.015X 0.267±0.009
Emotions 0.642±0.031X 0.636±0.027 0.677±0.029X 0.665±0.026 0.569±0.031X 0.554±0.029
Slashdot 0.302±0.012 0.32±0.01X 0.57±0.016X 0.567±0.015 0.554±0.017X 0.525±0.016

Avg. Rank. 1.071 1.929 1 2 1 2

Fig. 1: Result of Bonferroni–Dunn test of Macro F1

Fig. 2: Result of Bonferroni–Dunn test of Micro F1

Fig. 3: Result of Bonferroni–Dunn test of Multilabel accuracy

for most multilabel datasets. Specifically, MLNB-LD achieves297

the highest performance on 86% of the datasets in terms of 298

Macro F1 and Micro F1, and 79% of the datasets in terms of 299

the multilabel accuracy. Consequently, MLNB-LD consistently 300

achieves the highest average rank during all experiments. As 301

shown in Fig. 1 and Fig. 2, MLNB-LD significantly outper- 302

forms MLNB, MLDT, ML-kELM, and GLOCAL in terms of 303

Macro F1 and Micro F1. In addition, Fig. 3 show that MLNB- 304

LD significantly outperforms MLDT, ML-kELM, and GLO- 305

CAL in terms of Macro F1. 306

MLNB-LD uses the geometric mean to determine the final 307

score, as shown in Eq. (7), instead of using a classical Bayesian 308

estimation such as the minimum mean square error (MMSE) 309

estimator, which may lead to a better classification perfor- 310

mance. To verify this possibility, we conducted additional ex- 311

periments by comparing the performances of two MLNB-LD 312

variations with different aggregation processes: the geometric 313

mean and an MMSE estimation (MMSE). Table 9 shows that 314

MLNB-LD provides a significantly better classification perfor- 315

mance than its counterpart for most of the datasets. In ad- 316

dition, we observed that both Friedman test and Bonferroni– 317

Dunn test also confirmed the statistical superiority of MLNB- 318

LD over MMSE. A possible reason for this result may be the 319

sensitivity of the geometric mean regarding outlier values of 320

p(yi)
∏m

j=1 p(x j|yi)
∏n

k=1 p(yk |yi) owing to the label sparsity of 321

most of the multilabel dataset (Lee and Kim, 2016). 322

In a real-world situation, the multi-label classification prob- 323

lem may become more complicated by missing labels, indicat- 324

ing that the classifier may have to output label sets that are un- 325

observed from the training process. To achieve this problem, 326

MLNB-LD must be modified to consider all possible label sets 327

instead ofY. Although the computational cost can be increased 328

exponentially owing to exhaustive multilabel learning setting, 329

the classification performance may be varied. To show this as- 330

pect, we conducted the last experiments by comparing two vari- 331

ations with a different label set consideration; one is the label 332

sets in Y (proposed), and the other is all possible label sets 333
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Table 10: Comparison results of Proposed and EML on Emotions dataset

Evaluation measure Proposed EML

Macro F1 0.6412±0.0267X 0.6409±0.0271
Micro F1 0.6711±0.0258X 0.6708±0.0261
Multilabel Accuracy 0.5609±0.0247X 0.5597±0.0252

(EML). Owing to the computational burden of the EML, we334

chose the Emotions dataset, which is composed of six labels.335

Thus, the EML must compute the possibility of 26 = 64 label336

sets for each test instance despite there being only 27 distinct337

label sets in total. Table 10 summarizes the multilabel classifi-338

cation performance between MLNB-LD and EML in terms of339

three evaluation measures. The experimental results indicate340

that MLNB-LD can provide a similar multilabel classification341

performance without considering all possible label sets.342

5. Conclusion343

We presented a multilabel naı̈ve Bayes classifier that con-344

siders the dependence among labels during classification. The345

proposed method utilizes the dependence between label pairs346

for determining the most probable label set for a given un-347

seen instance. Our comprehensive experiments demonstrate348

that multilabel classification performance can be significantly349

improved by the proposed method. A comparison of the re-350

sults obtained on 14 real-world datasets obtained from different351

domains shows the advantages of the proposed method com-352

pared with the four conventional multilabel classifiers in terms353

of three evaluation measures, i.e., Macro F1, Micro F1, and354

Multilabel accuracy. Thus, considering the dependence among355

labels is effective for solving the multilabel classification prob-356

lem.357

Future work should include the study of computational ef-358

ficiency for utilizing label dependence in the multilabel clas-359

sification process. In this study, the dependence between all360

label pairs is considered for identifying the most probable label361

set. This indicates that multilabel classification performance362

may be further improved if unnecessary or noisy information363

is removed. In addition, the experimental results demonstrate364

that the proposed method is computationally efficient because365

it identifies the most probable label set without considering all366

of the possible label sets. However, in the multilabel learning367

case in which the ground truth label set is partially given, the368

proposed method can be used to output the novel label sets by369

computing the score of the label sets that are unobserved from370

the training process. Furthermore, the proposed method uses371

the geometric mean for aggregating the score values obtained372

by conditioning each label. Although this demonstrates a supe-373

rior multilabel classification performance, a different estimation374

or heuristic method can be considered to improve the multilabel375

classification performance. We intend to investigate this further376

in future work.377
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