

Multilabel Naïve Bayes Classification Considering Label Dependence

Hae-Cheon Kim^a, Jin-Hyeong Park^a, Dae-Won Kim^a, Jaesung Lee^{a, **}

^aSchool of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea

ABSTRACT

Multilabel classification is the task of assigning relevant labels to an instance, and it has received considerable attention in recent years. This task can be performed by extending a single-label classifier, such as the naïve Bayes classifier, to utilize the useful relations among labels for achieving better multilabel classification accuracy. However, the conventional multilabel naïve Bayes classifier treats each label independently and hence neglects the relations among labels, resulting in degenerated accuracy. We propose a new multilabel naïve Bayes classifier that considers the relations or dependence among labels. Experimental results show that the proposed method outperforms conventional multilabel classifiers.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Multilabel classification is the task of mapping multiple relevant labels to a given instance, and it is a core technique for well-known applications such as text categorization (Elghazal et al., 2016), image annotation (Wu et al., 2015), and music tag classification (Lee et al., 2019). As multilabel classification can be regarded a generalization of the single-label classification problem, numerous multilabel classifiers have been extended from single-label classifiers (Zhang and Zhou, 2014). For example, the naïve Bayes classifier, which is one of the most representative classifiers (Li and Yang, 2018), was extended to the multilabel naïve Bayes classifier (Zhang et al., 2009).

The dependence among labels can be used to improve the accuracy of multilabel classification (Huang et al., 2015; Zhang and Zhou, 2014). For example, in the weather classification problem, the label *raining* is likely to be coupled with the label *cloudy* and unlikely to be coupled with the label *sunny*. However, conventional multilabel naïve Bayes classification neglects the dependence among labels because it treats each label independently. Thus, unobserved label combinations can be assigned, thereby degenerating multilabel classification accuracy.

In this paper, we propose a new multilabel naïve Bayes algorithm that considers the dependence among labels for the classification process, named MLNB-LD. To achieve this, we derive

a new posterior probability estimation method for a multilabel problem based on Bayes' theorem with the strong independence assumption. Experimental results indicate that, MLNB-LD outperforms the multilabel naïve Bayes classifier and other conventional multilabel classifiers.

2. Related works

In multilabel classification studies, the methods that utilize label dependence can be broadly divided into three groups according to how many labels are considered concurrently (Zhang and Zhou, 2014). The first group of classifiers treats each label independently by inferencing a mapping function for each label. For example, Zhang and Zhou (2007) proposed a multilabel k -nearest neighbor classifier that identifies k similar instances from a training set and then determines the relevance of each label. Vens et al. (2008) proposed new multilabel decision trees that consider the label hierarchy in a hierarchical multilabel classification (MLDT). Zhang et al. (2009) extended the conventional naïve Bayes classifier to a multilabel naïve Bayes classifier that estimates the posterior probability for each label independently. In addition, Zhang and Wu (2015) proposed a multilabel classifier that selects a subset of relevant features for each label. Lastly, Luo et al. (2017) introduced a multilabel kernel extreme learning machine (ML-kELM) that calculates the likelihood of each label based on the random weighting scheme and radial basis kernel mapping.

In the second group, multilabel classifiers consider the label dependence between label pairs. For example, Huang et al.

**Corresponding author: Tel.: +82-02-820-5468;
e-mail: curseor@cau.ac.kr (Jaesung Lee)

53 (2015) proposed a classifier that selects important features for
 54 each label and then calculates the similarity between selected
 55 feature subsets and label pairs. In addition, Huang et al. (2017)
 56 devised a multilabel classifier that uses local positive and neg-
 57 ative pairwise label correlation. Jing et al. (2017) introduced
 58 semisupervised multilabel classification that applies singular
 59 value decomposition for label matrix factorization. Similarly,
 60 Kumar et al. (2018) proposed a hierarchical embedding-based
 61 multilabel classifier that is based on k -means clustering and
 62 low-rank matrix factorization. Zhu et al. (2018) developed mul-
 63 tilabel learning with a global and local label correlation (GLO-
 64 CAL) strategy that used the correlation among labels in the
 65 global and local viewpoints using low-rank matrix factoriza-
 66 tion.

67 In the third group, the classification process is designed to
 68 consider an arbitrary number of labels concurrently. For ex-
 69 ample, the random k -labelset algorithm creates k label sets by
 70 encoding multiple arbitrarily selected labels into a series of sin-
 71 gle labels. Then, classifiers are trained for each transformed
 72 label (Tsoumakas et al., 2010). After prediction is completed,
 73 the transformed single labels are recovered to the original mul-
 74 tiple labels. The classifier chain approach selects the number
 75 of labels to be considered concurrently and chains the predic-
 76 tion model for each label using the prediction of labels in the
 77 early stage of the chain to labels in the later stage (Read et al.,
 78 2011). This technique was applied to recurrent neural networks
 79 to maximize subset accuracy (Nam et al., 2017). Lastly, the
 80 k -nearest neighbor classifier was extended to a multilabel clas-
 81 sification problem by utilizing fuzzy rough neighborhood con-
 82 sensus and label correlation estimation with the weighted Ham-
 83 ming distance (Vluymans et al., 2018).

84 Our brief review shows that the multilabel classifiers in the
 85 first group take the simplest approach and conventional single-
 86 label classifiers can be directly used by treating each label as
 87 multiple individual problems. However, this approach inher-
 88 ently neglects the dependence among labels that can be useful
 89 for improving multilabel classification accuracy. The classifiers
 90 in the third group experience difficulty in significance estima-
 91 tion because they consider a large number of labels simulta-
 92 neously based on a limited number of training instances. To
 93 circumvent both drawbacks, we design a method based on the
 94 strategy of the second group, which considers a maximum of
 95 two labels concurrently.

96 3. Proposed method

97 First, we describe the notation used for deriving the proposed
 98 posterior probability estimation method for multilabel classifi-
 99 cation. Let $\mathcal{X} \subset \mathbb{R}^m$ be the input space and $\mathcal{L} = \{l_1, \dots, l_n\}$ be
 100 the finite set of possible labels. Vector $\mathbf{x} = (x_1, \dots, x_m)$ rep-
 101 resents m features. Vector $\mathbf{y} = (y_1, \dots, y_n)$ represents n labels,
 102 where $y_i \in \mathbb{B}$ is 1 if the i -th label, l_i , is related to a given in-
 103 stance; otherwise, it is 0. Then, a set of multilabeled instances,
 104 (\mathbf{x}, \mathbf{y}) , compose dataset \mathcal{D} . In addition, we denote \mathcal{Y} ($|\mathcal{Y}| \leq |\mathcal{D}|$)
 105 as a set of the label vectors that are observed from the dataset.

3.1. Derivation

106 The goal of the multilabel naïve Bayes classifier based on
 107 the maximum a posteriori decision rule is to find a hypothesis,
 108 $h : \mathbf{x} \rightarrow \mathbf{y}$, where $h(\mathbf{x})$ can be defined as follows:

$$h(\mathbf{x}) = \arg \max_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{y}|\mathbf{x}) = \arg \max_{\mathbf{y} \in \mathcal{Y}} \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x})} \quad (1)$$

110 where $p(\mathbf{y}|\mathbf{x})$ is the conditional probability of \mathbf{y} given \mathbf{x} . It is
 111 unnecessary to identify the exact value of $p(\mathbf{x})$ because it is the
 112 same for all values of $\mathbf{y} \in \mathcal{Y}$. Thus, Eq. (1) can be simplified as
 113 follows:

$$\begin{aligned} h(\mathbf{x}) &= \arg \max_{\mathbf{y} \in \mathcal{Y}} \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x})} \\ &\propto \arg \max_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{x}, \mathbf{y}) \\ &= \arg \max_{(y_1, \dots, y_n) \in \mathcal{Y}} \underbrace{p(x_1, \dots, x_m, y_1, \dots, y_n)}_{\text{Part 1}} \end{aligned} \quad (2)$$

114 The direct calculation of Part 1 of Eq. (2) is unreliable owing
 115 to its high dimensionality and a limited number of training in-
 116 stances. Using the chain rule of conditional probability, Part 1
 117 can be rewritten as

$$\begin{aligned} &p(x_1, \dots, x_m, y_1, \dots, y_n) \\ &= p(x_1|x_2, \dots, x_m, y_1, \dots, y_n)p(x_2, \dots, x_m, y_1, \dots, y_n) \\ &= p(x_1|x_2, \dots, x_m, y_1, \dots, y_n)p(x_2|x_3, \dots, x_m, y_1, \dots, y_n) \\ &\quad p(x_3, \dots, x_m, y_1, \dots, y_n) \\ &= \dots \\ &= p(x_1|x_2, \dots, x_m, y_1, \dots, y_n) \cdots p(x_m|y_1, \dots, y_n) \\ &\quad p(y_1|y_2, \dots, y_n) \cdots p(y_{n-1}|y_n)p(y_n) \end{aligned} \quad (3)$$

118 Based on the naïve conditional independence assumption
 119 that all features and labels are mutually independent, condi-
 120 tional on label y_n , we have $p(x_i|x_{i+1}, \dots, x_m, y_1, \dots, y_n) \approx$
 121 $p(x_i|y_n)$. Under this assumption, Eq. (3) can be expressed as

$$\begin{aligned} &p(x_1, \dots, x_m, y_1, \dots, y_n) \\ &\approx p(y_n)p(x_1|y_n) \cdots p(x_m|y_n) \cdots p(y_1|y_n) \cdots p(y_{n-1}|y_n) \\ &\approx p(y_n) \prod_{i=1}^m p(x_i|y_n) \prod_{j=1}^{n-1} p(y_j|y_n) \end{aligned} \quad (4)$$

122 Eq. (4) can be further simplified as follows:

$$\begin{aligned} &p(x_1, \dots, x_m, y_1, \dots, y_n) \\ &\approx p(y_n) \prod_{i=1}^m p(x_i|y_n) \prod_{j=1}^{n-1} p(y_j|y_n) \\ &= p(y_n) \prod_{i=1}^m p(x_i|y_n) \prod_{j=1}^n p(y_j|y_n) \end{aligned} \quad (5)$$

Algorithm 1: MLNB-LD(\mathcal{D}, \mathbf{x})

Input : \mathcal{D}, \mathbf{X} \triangleright Training dataset \mathcal{D} , Unseen instances \mathbf{X}
Output: \mathbf{Y}^* \triangleright Predicted label vectors for \mathbf{X}

```

1 forall the  $\mathbf{y} \in \mathcal{Y}$  do
2   for  $i \leftarrow 1$  to  $n$  do
3      $p_{y_i} \leftarrow p(y_i);$ 
4     for  $k \leftarrow 1$  to  $n$  do
5        $p_{y_k|y_i} \leftarrow p(y_k, y_i) / p_{y_i};$ 
6     end
7     forall the  $\mathbf{x} \in \mathbf{X}$  do
8       for  $j \leftarrow 1$  to  $m$  do
9          $p_{x_j|y_i} \leftarrow p(x_j, y_i) / p_{y_i};$ 
10      end
11    end
12  end
13   $\mathcal{S}(\mathbf{y}) \leftarrow \prod_{i=1}^n p_{y_i} \prod_{j=1}^m p_{x_j|y_i} \prod_{k=1}^n p_{y_k|y_i}$  for all  $\mathbf{x} \in \mathbf{X};$ 
14 end
15  $\mathbf{Y}^* \leftarrow \arg \max_{\mathbf{y} \in \mathcal{Y}} \mathcal{S}(\mathbf{y})$  for all  $\mathbf{x} \in \mathbf{X};$ 

```

123 which is an estimation of $p(\mathbf{x}, \mathbf{y})$ when focusing on y_n . In addition, Eq. (5) indicates that n estimations can be obtained by
124 considering labels y_1 through y_n ; this is written as
125

$$\begin{aligned}
& p(x_1, \dots, x_m, y_1, \dots, y_n) \\
& \approx p(y_1) \prod_{i=1}^m p(x_i|y_1) \prod_{j=1}^n p(y_j|y_1) \\
& \quad \vdots \\
& \approx p(y_n) \prod_{i=1}^m p(x_i|y_n) \prod_{j=1}^n p(y_j|y_n)
\end{aligned} \tag{6}$$

126 To determine the value of $p(\mathbf{x}, \mathbf{y})$, we used the geometric
127 mean for aggregating n estimations. As a result, Eq. (6) can
128 be aggregated as follows:

$$\begin{aligned}
& p(x_1, \dots, x_m, y_1, \dots, y_n) \\
& \approx \left(\prod_{i=1}^n p(y_i) \prod_{j=1}^m p(x_j|y_i) \underbrace{\prod_{k=1}^n p(y_k|y_i)}_{\text{Part 2}} \right)^{\frac{1}{n}}
\end{aligned} \tag{7}$$

129 Part 2 of Eq. (7) indicates that the proposed estimation
130 considers the conditional probability of all label pairs. By replacing
131 Part 1 of Eq. (2) with Eq. (7), we have the following:

$$\begin{aligned}
h(\mathbf{x}) &= \arg \max_{\mathbf{y} \in \mathcal{Y}} \left(\prod_{i=1}^n p(y_i) \prod_{j=1}^m p(x_j|y_i) \prod_{k=1}^n p(y_k|y_i) \right)^{\frac{1}{n}} \\
&= \arg \max_{\mathbf{y} \in \mathcal{Y}} \underbrace{\prod_{i=1}^n p(y_i) \prod_{j=1}^m p(x_j|y_i)}_{\text{Part 3}} \prod_{k=1}^n p(y_k|y_i)
\end{aligned} \tag{8}$$

132 In conventional naïve Bayes classification, Part 3 of Eq. (8)
133 is considered to determine the relevance of a given instance to

Table 1: Example dataset

Outlook	Temper.	Humidity	Walk	Swim	Tenis
x_1	x_2	x_3	y_1	y_2	y_3
Sunny	Hot	Low	1	0	1
Rainy	Hot	Low	1	1	0
Sunny	Cool	Low	0	1	1
Rainy	Cool	High	0	0	1
Sunny	Cool	High	1	1	0
Rainy	Cool	Low	0	1	0

Table 2: $p(\mathbf{x}|y)$ for $\mathbf{x} = (\text{Sunny}, \text{Hot}, \text{Low})$

$p(\mathbf{x} \mathbf{y})$	y_1		y_2		y_3	
	0	1	0	1	0	1
$x_1 = \text{Sunny}$	2/3	1/3	1/2	2/4	1/3	2/3
$x_2 = \text{Hot}$	1/3	2/3	1/2	1/4	1/3	2/3
$x_3 = \text{High}$	1/3	2/3	1/2	2/4	1/3	1/3

Table 3: Probability values of label-label pairs $p(y_k|y_i)$

$y_k \rightarrow$	$y_l \rightarrow$	y_1		y_2		y_3	
		0	1	0	1	0	1
$y_1 = 0$		1	0	1/2	2/4	1/3	2/3
$y_1 = 1$		0	1	1/2	2/4	2/3	1/3
$y_2 = 0$		1/3	1/3	1	0	0	2/3
$y_2 = 1$		2/3	2/3	0	1	1	1/3
$y_3 = 0$		1/3	2/3	0	3/4	1	0
$y_3 = 1$		2/3	1/3	1	1/4	0	1

each label; the relevance score is penalized by multiplying $p(y_i)$ and $p(x_j|y_i)$ terms. Eq. (8) shows that MLNB-LD further penalizes the relevance score by multiplying the joint probability value of label pairs conditioned by a label, i.e., $p(y_k|y_i)$ terms, indicating that the score value will decrease considerably when a rare label pair is considered.

Algorithm 1 shows the procedure of the proposed MLNB-LD, which classifies the label set of a given instance set \mathbf{X} . The algorithm computes the marginal probability of each label (Line 3) for each label vector, $\mathbf{y} \in \mathcal{Y}$ (Line 1). The algorithm then computes the conditional probabilities of y_k (Line 5) given y_i using the already calculated p_{y_i} . Next, the algorithm computes the conditional probabilities of x_j (Line 9) given y_i for all instances $\mathbf{x} \in \mathbf{X}$. Finally, $\mathcal{S}(\mathbf{y})$, which estimates the posterior probability of \mathbf{y} given \mathbf{x} , is calculated and stored (Line 13). These procedures are repeated until all values of $\mathcal{S}(\cdot)$ are computed. Finally, based on the maximum a posteriori rule, the label vector, \mathbf{y} , which leads to the maximum value among $\mathcal{S}(\cdot)$, is selected as the predicted label, \mathbf{y}^* (Line 15).

We analyze the time complexity of MLNB-LD based on Algorithm 1. As most processes involve probability estimation, we assume the probability estimation of a feature or a label as a unit cost. For example, the algorithm must incur one unit cost for calculating $p(y_i)$ and two unit costs for calculating $p(y_i, y_j)$. In Line 3, the algorithm incurs one unit cost for cal-

159 calculating $p(y_i)$ and then computes n joint probability values, $2n$
 160 unit cost is incurred to calculate the joint probability between y_i
 161 and all label pairs. Then, for all $\mathbf{x} \in \mathbf{X}$, $p(x_j, y_i)$, by incurring
 162 a $2m$ unit cost, we neglect the cost of computing $\mathcal{S}(\cdot)$ because
 163 it does not involve a probability estimation, indicating that the
 164 $1 + 2n + 2m \cdot |\mathbf{X}|$ unit cost is incurred for computing the posterior
 165 probability of a label set, $\mathbf{y} \in \mathcal{Y}$. Thus, the algorithm incurs a
 166 $(1 + 2n + 2m \cdot |\mathbf{X}|) \cdot |\mathcal{Y}|$ computational cost for instance, set \mathbf{X} .

167 3.2. Toy example

168 We used the example dataset shown in Table 1 to understand the
 169 underlying mechanism of MLNB-LD. This dataset is composed of six
 170 instances, three features (Outlook, Temperature, and Humidity), and three labels (Walk, Swim, and
 171 Tennis, which are implementable exercises). Specifically, three
 172 labels are encoded to the binary label vector (y_1, y_2, y_3) . Suppose
 173 that we have an unseen instance, $\mathbf{x} = (\text{Sunny}, \text{Hot}, \text{High})$.
 174 Here, MLNB-LD must compute a series of probability values
 175 to identify the most probable label set. For example, based
 176 on the example data, $p(y_1 = 0) = 1/2$, $p(y_1 = 1) = 1/2$,
 177 $p(y_2 = 0) = 2/3$, $p(y_2 = 1) = 1/3$, $p(y_3 = 0) = 1/2$,
 178 and $p(y_3 = 1) = 1/2$. Tables 2 and 3 show the joint prob-
 179 ability values between the feature-label and label-label pairs.
 180 In this example, \mathcal{Y} contains five label vector elements, $\mathcal{Y} =$
 181 $\{(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)\}$.

182 Based on Algorithm 1, MLNB-LD computes $\mathcal{S}(\cdot)$, where label
 183 $(y_1, y_2, y_3) = (0, 0, 1)$ given \mathbf{x} as follows:

$$p(y_1 = 0, y_2 = 0, y_3 = 1 | x_1 = \text{Sunny}, x_2 = \text{Hot}, x_3 = \text{High}) \\ \approx p(x_1 = \text{Sunny}, x_2 = \text{Hot}, x_3 = \text{High}, y_1 = 0, y_2 = 0, y_3 = 1)$$

185 Thus, $\mathcal{S}(0, 0, 1)$ is calculated as follows:

$$p(x_1 = \text{Sunny}, x_2 = \text{Hot}, x_3 = \text{High}, y_1 = 0, y_2 = 0, y_3 = 1) \\ \approx p(x_1 = \text{Sunny} | y_1 = 0) p(x_2 = \text{Hot} | y_1 = 0) p(x_3 = \text{High} | y_1 = 0) \\ p(y_1 = 0) p(y_1 = 0 | y_1 = 0) p(y_2 = 0 | y_1 = 0) p(y_3 = 1 | y_1 = 0) \\ p(x_1 = \text{Sunny} | y_2 = 0) p(x_2 = \text{Hot} | y_2 = 0) p(x_3 = \text{High} | y_2 = 0) \\ p(y_2 = 0) p(y_2 = 0 | y_2 = 0) p(y_2 = 0 | y_1 = 0) p(y_3 = 1 | y_2 = 0) \\ p(x_1 = \text{Sunny} | y_3 = 1) p(x_2 = \text{Hot} | y_3 = 1) p(x_3 = \text{High} | y_3 = 1) \\ p(y_3 = 1) p(y_3 = 0 | y_3 = 1) p(y_2 = 0 | y_3 = 1) p(y_3 = 1 | y_3 = 1) \\ = \underbrace{\frac{1}{2}}_{p(y_1=0)} \cdot \underbrace{\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}}_{p(x|y_1=0)} \cdot \underbrace{1 \cdot \frac{1}{3} \cdot \frac{2}{3}}_{p(y|y_1=0)} \cdot \underbrace{\frac{1}{3}}_{p(y_2=0)} \cdot \underbrace{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}_{p(x|y_2=0)} \cdot \underbrace{\frac{1}{2}}_{p(y|y_2=0)} \cdot \underbrace{1 \cdot 1 \cdot 1}_{p(y_3=0)} \\ \underbrace{\frac{1}{2}}_{p(y_3=1)} \cdot \underbrace{\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}}_{p(x|y_3=1)} \cdot \underbrace{\frac{2}{3} \cdot \frac{2}{3}}_{p(y|y_3=1)} \cdot 1 \approx 5.64 \times 10^{-6}$$

186 Here, $\mathcal{S}(\cdot)$ for a label set can be calculated as zero if any
 187 $p(x_j | y_i) = 0$, which is known as the zero-frequency problem. A
 188 smoothing technique, such as add-one smoothing, can be used
 189 to solve this problem in the real world (Zhang et al., 2009).
 190 Finally, (Walk, Swim, Tennis) = (Yes, Yes, No) is selected as
 191 the most probable label set for $\mathbf{x} = (\text{Sunny}, \text{Hot}, \text{High})$ because
 192 $\mathcal{S}(0, 1, 0) \approx 7.93 \times 10^{-7}$, $\mathcal{S}(0, 1, 1) \approx 1.41 \times 10^{-6}$, $\mathcal{S}(1, 0, 1) \approx$
 193 2.82×10^{-6} , and $\mathcal{S}(1, 1, 0) \approx 1.52 \times 10^{-4}$.

4. Experimental results

194 4.1. Experimental settings

195 To conduct the empirical experiments, we used 14 publicly
 196 available multilabel datasets that are frequently used in multi-
 197 label classification studies (Zhang and Zhou, 2014). The Art,
 198 Education, Entertain, Health, Recreation, Reference, Science,
 199 Social, and Society datasets (Ueda and Saito, 2003) were ob-
 200 tained from the Yahoo text data collection after removing un-
 201 necessary features (Zhang and Wu, 2015). In addition, the Bib-
 202 tex (Tsoumakas et al., 2010), Enron, and Slashdot (Zhang and
 203 Wu, 2015) datasets were obtained for the text categorization
 204 tasks. The Corel5k (Zhang and Wu, 2015) dataset was created
 205 from annotated images, each containing multiple object seg-
 206 ments. The Emotions (Trohidis et al., 2011) dataset was cre-
 207 ated for the music emotion recognition task. Table 4 presents
 208 the characteristics of each dataset. In the first row, *Instances*,
 209 *Features*, and *Labels* denote the number of instances, features,
 210 and labels, respectively. *Cardinality* and *Density* indicate the
 211 average number of labels assigned to each instance and the av-
 212 erage occurrences of each label, respectively. *Distinct* denotes
 213 the number of unique label sets.

214 We used four conventional multilabel classifiers to validate
 215 the superiority of MLNB-LD against conventional methods.
 216 MLNB is an extension of the conventional naïve Bayes clas-
 217 sifier, where each label is learned individually (Zhang et al.,
 218 2009). In our experiments, the multinomial model was applied
 219 after numerical features were categorized by a supervised dis-
 220 cretization method (Cano et al., 2016). MLDT adapts predic-
 221 tive clustering trees to induce a single-tree structure for hier-
 222 archical multilabel classification (Vens et al., 2008). In our
 223 experiments, we used the MLDT with no binary split and the
 224 minimum weighted fraction set to two at the whole leaf nodes.
 225 The ML-kELM is a single-layered feedforward neural network
 226 with random projection and kernel mapping (Luo et al., 2017).
 227 Specifically, radial basis kernel mapping based on a Gaussian
 228 distribution is used, where the kernel and cost parameter are
 229 set as $\sigma = 2^{-2}$ and $C = [2^0, 2^1, 2^2, 2^3]$, respectively. Finally,
 230 the multilabel learning approach named GLOCAL that utilizes
 231 the correlation among labels from the global and local view-
 232 points using low-rank matrix factorization is used (Zhu et al.,
 233 2018). In our experiments, the threshold values were set as
 234 0.5 and the matrix factorization and cost parameter were set as
 235 $k = [5, 10, 15, 20, 25]$ and $\lambda = 1$, respectively.

236 We used three evaluation measures to compare the quality of
 237 multilabel classification results, i.e., Macro F_1 , Micro F_1 , and
 238 Multilabel accuracy. Suppose that a multilabel classifier can
 239 output a predicted label vector, $\hat{\mathbf{y}} = h(\mathbf{x})$, for a test instance, $\mathbf{x} \in$
 240 \mathcal{T} , where $\hat{\mathbf{y}} = (\hat{y}_1, \dots, \hat{y}_n)$. Then, statistics can be obtained from
 241 a contingency table established based on the ground truth for
 242 the i -th label, $y_i \in \mathbb{B}$, and the prediction, $\hat{y}_i \in \mathbb{B}$. For example,
 243 the *true positive* for the i -th label can be indicated by

$$TP_i = y_i \cdot \hat{y}_i$$

244 Similarly, the *false positive*, *true negative*, and *false nega-*
 245 *tive* for the i -th label can be indicated by $FP_i = (1 - y_i) \cdot \hat{y}_i$,
 246 $TN_i = (1 - y_i) \cdot (1 - \hat{y}_i)$, and $FN_i = y_i \cdot (1 - \hat{y}_i)$, respectively.

Table 4: Standard characteristics of used datasets

Name	Domain	Instances	Features	Labels	Cardinality	Density	Distinct
Arts	Text	7,484	1,157	26	1.654	0.064	599
Education	Text	12,030	1,377	33	1.463	0.044	511
Entertain	Text	12,730	1,600	21	1.414	0.067	337
Health	Text	9,205	1,530	32	1.644	0.051	335
Recreation	Text	12,828	1,516	22	1.429	0.065	530
Reference	Text	8,027	1,984	33	1.174	0.036	275
Science	Text	6,428	1,859	40	1.45	0.036	457
Social	Text	12,111	2,618	39	1.279	0.033	361
Society	Text	14,512	1,590	27	1.67	0.062	1,054
Bibtex	Text	7,395	1,836	159	2.402	0.015	2,856
Corel5k	Image	5,000	499	374	3.522	0.009	3,175
Enron	Text	1,702	1,001	53	3.378	0.064	753
Emotions	Music	593	72	6	1.868	0.311	27
Slashdot	Text	3,782	1,079	22	1.181	0.054	156

Table 5: Comparison results in terms of Macro F_1 measure

Dataset	Proposed	MLNB	MLDT	ML-kELM	GLOCAL
Arts	0.233±0.011✓	0.225±0.005	0.216±0.024	0.146±0.01	0.057±0.022
Education	0.157±0.009✓	0.144±0.005	0.132±0.028	0.139±0.012	0.059±0.019
Entertain	0.266±0.015✓	0.251±0.008	0.266±0.013	0.185±0.007	0.097±0.02
Health	0.227±0.01✓	0.199±0.005	0.176±0.037	0.181±0.012	0.143±0.021
Recreation	0.322±0.012✓	0.279±0.009	0.283±0.013	0.225±0.007	0.079±0.021
Reference	0.131±0.006✓	0.127±0.005	0.122±0.035	0.088±0.004	0.072±0.026
Science	0.147±0.009✓	0.13±0.005	0.137±0.022	0.085±0.005	0.082±0.054
Social	0.153±0.01✓	0.121±0.004	0.147±0.025	0.094±0.003	0.04±0.004
Society	0.164±0.008	0.159±0.004	0.187±0.017✓	0.119±0.005	0.031±0.01
Bibtex	0.23±0.011✓	0.184±0.005	0.155±0.01	0.158±0.01	0.071±0.007
Corel5k	0.213±0.015✓	0.017±0.007	0.141±0.013	0.033±0.011	0.185±0.056
Enron	0.255±0.028✓	0.104±0.031	0.223±0.028	0.109±0.015	0.198±0.011
Emotions	0.642±0.031	0.666±0.024✓	0.653±0.037	0.589±0.029	0.641±0.028
Slashdot	0.302±0.012✓	0.29±0.008	0.301±0.023	0.143±0.015	0.275±0.025
Avg. Rank.	1.214	2.714	2.643	3.929	4.5

248 In addition, the Macro F_1 value for measuring the quality of
249 multilabel classification on \mathcal{T} can be calculated as

$$\text{Macro } F_1 = \frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} \left(\frac{1}{n} \sum_{i=1}^n \frac{2\text{TP}_i}{2\text{TP}_i + \text{FN}_i + \text{FP}_i} \right)$$

250 where Macro F_1 evaluates how accurately the classifier can pre-
251 dict the ground truth on average for each test instance. Next,
252 Micro F_1 can be calculated as

$$\text{Micro } F_1 = \frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} \frac{2 \sum_{i=1}^n \text{TP}_i}{2 \sum_{i=1}^n \text{TP}_i + \sum_{i=1}^n \text{FN}_i + \sum_{i=1}^n \text{FP}_i}$$

253 where Micro F_1 evaluates how accurately the classifier predict
254 the ground truth on average for each label. Multilabel accuracy
255 (Mlacc) can be calculated as

$$\text{Mlacc} = \frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} \left(\frac{1}{n} \sum_{i=1}^n \frac{\text{TP}_i}{\text{TP}_i + \text{FN}_i + \text{FP}_i} \right)$$

where Mlacc outputs the ratio of *true positive* and the summation of the ground truth and positively-predicted labels.

We used the hold-out cross-validation strategy to simulate the real-world performance of each classifier. In a given dataset, 80% of the instances were randomly selected as the training set \mathcal{D} , and the remaining 20% were selected as the test set \mathcal{T} . The experiment was repeated 30 times for each classifier and dataset, and the average value of each evaluation measure was reported as the multilabel classification performance for comparison. In addition, we used the widely-used Friedman test to compare the performance of multiple classifiers. Based on the average rank of each classifier, the null hypothesis that all classifiers perform equally well was either rejected or accepted. When the null hypothesis was rejected, we performed the Bonferroni–Dunn test to analyze the relative performance among the classifiers. For the Bonferroni–Dunn test, the performances of MLNB-LD and conventional classifiers were regarded as statistically different in 95% if their average ranks

Table 6: Comparison results in terms of Micro F_1 measure

Dataset	Proposed	MLNB	MLDT	ML-kELM	GLOCAL
Arts	0.423±0.01✓	0.353±0.008	0.333±0.011	0.258±0.011	0.156±0.055
Education	0.421±0.01✓	0.336±0.008	0.37±0.008	0.316±0.007	0.254±0.08
Entertain	0.442±0.011✓	0.377±0.011	0.433±0.008	0.323±0.009	0.261±0.044
Health	0.576±0.009✓	0.48±0.008	0.545±0.009	0.456±0.013	0.521±0.066
Recreation	0.441±0.01✓	0.371±0.012	0.412±0.008	0.297±0.007	0.143±0.038
Reference	0.45±0.014✓	0.303±0.008	0.428±0.011	0.267±0.013	0.423±0.086
Science	0.304±0.013✓	0.219±0.006	0.225±0.013	0.159±0.008	0.285±0.111
Social	0.532±0.008✓	0.346±0.006	0.519±0.01	0.314±0.009	0.456±0.043
Society	0.301±0.007	0.239±0.003	0.352±0.008✓	0.27±0.006	0.23±0.041
Bibtex	0.315±0.011✓	0.198±0.006	0.179±0.01	0.237±0.012	0.242±0.013
Corel5k	0.266±0.008✓	0.097±0.016	0.147±0.005	0.03±0.01	0.244±0.009
Enron	0.504±0.016✓	0.24±0.08	0.469±0.015	0.128±0.028	0.415±0.009
Emotions	0.677±0.029	0.68±0.025✓	0.668±0.033	0.608±0.026	0.657±0.028
Slashdot	0.57±0.016✓	0.557±0.013	0.47±0.015	0.291±0.015	0.444±0.044
Avg. Rank.	1.143	3.357	2.5	4.5	3.429

Table 7: Comparison results in terms of Multilabel accuracy measure

Dataset	Proposed	MLNB	MLDT	ML-kELM	GLOCAL
Arts	0.405±0.01✓	0.328±0.007	0.319±0.011	0.222±0.01	0.106±0.04
Education	0.376±0.01✓	0.32±0.008	0.323±0.007	0.24±0.006	0.169±0.066
Entertain	0.397±0.008✓	0.348±0.008	0.35±0.007	0.303±0.007	0.182±0.029
Health	0.52±0.009✓	0.476±0.006	0.518±0.01	0.438±0.011	0.458±0.079
Recreation	0.411±0.01	0.343±0.011	0.412±0.007✓	0.261±0.006	0.091±0.026
Reference	0.446±0.014✓	0.388±0.02	0.427±0.012	0.388±0.015	0.325±0.103
Science	0.267±0.012✓	0.215±0.006	0.221±0.013	0.182±0.009	0.209±0.101
Social	0.544±0.009✓	0.516±0.009	0.539±0.011	0.454±0.012	0.364±0.047
Society	0.261±0.007	0.202±0.004	0.31±0.008✓	0.265±0.007	0.184±0.037
Bibtex	0.248±0.008✓	0.192±0.007	0.23±0.011	0.185±0.008	0.192±0.013
Corel5k	0.181±0.006✓	0.08±0.03	0.102±0.004	0.02±0.008	0.144±0.005
Enron	0.356±0.015	0.207±0.094	0.359±0.015✓	0.076±0.04	0.292±0.009
Emotions	0.569±0.031✓	0.559±0.03	0.456±0.033	0.493±0.027	0.532±0.035
Slashdot	0.554±0.017✓	0.445±0.014	0.458±0.016	0.25±0.013	0.382±0.036
Avg. Rank.	1.214	3.143	2.143	4.357	4.143

274 over all datasets were larger than one critical difference (CD).
275 In our experiments, the CD is 1.6125 (Demšar, 2006).

276 4.2. Experimental results

277 Tables 5–7 show the experimental results obtained using
278 MLNB-LD and the conventional multilabel classifiers on 14
279 multilabel datasets. They are represented in terms of the average
280 performance with the corresponding standard deviations.
281 The highest performance is shown in bold face and indicated
282 by a check mark (✓). The term ‘Avg. Rank’ at the bottom of
283 each table indicates the average rank for each multilabel classifier
284 over all datasets. Table 8 shows the Friedman statistics and the
285 corresponding critical values of each evaluation measure for each
286 multilabel classifier. We set the significance level
287 as $\alpha = 0.05$. In Figs. 1–3, the CD diagrams illustrate the relative
288 performance of MLNB-LD and the conventional multilabel

Table 8: Friedman statistics and critical value

Evaluation measure	Friedman statistics	Critical value ($\alpha = 0.05$)
Macro F_1	41.5	
Micro F_1	24.9	14.9
Multilabel Accuracy	30.6	

289 classifiers. Herein, the average rank of each multilabel classifier
290 is marked along the upper axis, with the higher ranks placed
291 on the left side. We also present the CD from the perspective
292 of MLNB-LD above the graph. This implies that the multilabel
293 classifiers outside the range are significantly different from each
294 other.

295 From the results shown in Tables 5–7, it is evident that
296 MLNB-LD outperforms the conventional multilabel classifiers

Table 9: Comparison results of Proposed and MMSE in terms of three evaluation measures

Dataset	Macro F_1	MMSE	Micro F_1	MMSE	Multilabel accuracy	
	Proposed		Proposed		Proposed	MMSE
Arts	0.233±0.011✓	0.105±0.005	0.423±0.01✓	0.306±0.011	0.405±0.01✓	0.308±0.013
Education	0.157±0.009✓	0.105±0.003	0.421±0.01	0.349±0.01	0.376±0.01✓	0.322±0.009
Entertain	0.266±0.015✓	0.172±0.007	0.442±0.011✓	0.361±0.013	0.397±0.008✓	0.339±0.01
Health	0.227±0.01✓	0.125±0.007	0.576±0.009✓	0.464±0.01	0.52±0.009✓	0.418±0.012
Recreation	0.324±0.012✓	0.184±0.006	0.441±0.01✓	0.339±0.01	0.411±0.01✓	0.333±0.011
Reference	0.131±0.006✓	0.042±0.003	0.45±0.014✓	0.364±0.011	0.446±0.014✓	0.358±0.011
Science	0.147±0.009✓	0.047±0.003	0.304±0.013✓	0.208±0.01	0.267±0.012✓	0.21±0.011
Social	0.153±0.01✓	0.043±0.001	0.532±0.008✓	0.45±0.01	0.544±0.009✓	0.463±0.01
Society	0.164±0.008✓	0.084±0.005	0.301±0.007✓	0.254±0.008	0.261±0.007✓	0.247±0.007
BibTex	0.23±0.011✓	0.154±0.005	0.315±0.011✓	0.247±0.01	0.248±0.008✓	0.197±0.003
Corel5k	0.213±0.015✓	0.013±0.001	0.266±0.008✓	0.09±0.005	0.181±0.006✓	0.06±0.007
Enron	0.255±0.028✓	0.117±0.008	0.504±0.016✓	0.385±0.012	0.356±0.015✓	0.267±0.009
Emotions	0.642±0.031✓	0.636±0.027	0.677±0.029✓	0.665±0.026	0.569±0.031✓	0.554±0.029
Slashdot	0.302±0.012	0.32±0.01✓	0.57±0.016✓	0.567±0.015	0.554±0.017✓	0.525±0.016
Avg. Rank.	1.071	1.929	1	2	1	2

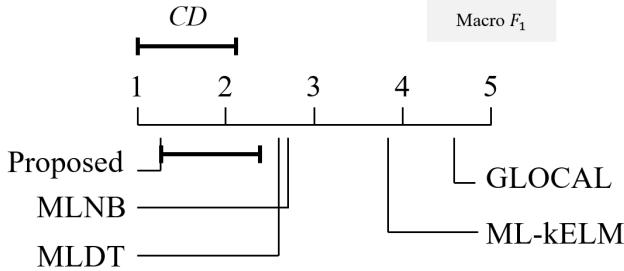
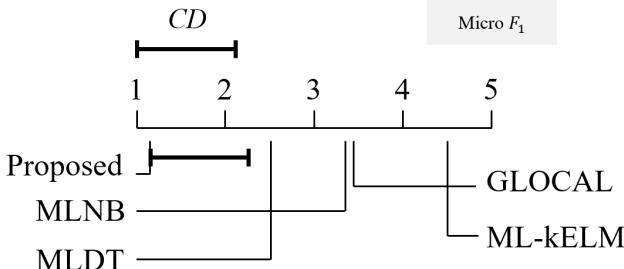
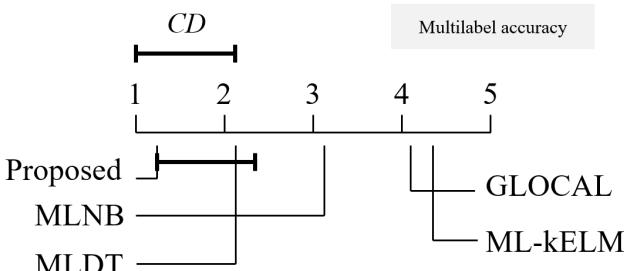
Fig. 1: Result of Bonferroni–Dunn test of Macro F_1 Fig. 2: Result of Bonferroni–Dunn test of Micro F_1 

Fig. 3: Result of Bonferroni–Dunn test of Multilabel accuracy

297 for most multilabel datasets. Specifically, MLNB-LD achieves

298 the highest performance on 86% of the datasets in terms of
299 Macro F_1 and Micro F_1 , and 79% of the datasets in terms of
300 the multilabel accuracy. Consequently, MLNB-LD consistently
301 achieves the highest average rank during all experiments. As
302 shown in Fig. 1 and Fig. 2, MLNB-LD significantly outper-
303 forms MLNB, MLDT, ML-kELM, and GLOCAL in terms of
304 Macro F_1 and Micro F_1 . In addition, Fig. 3 show that MLNB-
305 LD significantly outperforms MLDT, ML-kELM, and GLO-
306 CAL in terms of Macro F_1 .

307 MLNB-LD uses the geometric mean to determine the final
308 score, as shown in Eq. (7), instead of using a classical Bayesian
309 estimation such as the minimum mean square error (MMSE)
310 estimator, which may lead to a better classification per-
311 formance. To verify this possibility, we conducted additional
312 experiments by comparing the performances of two MLNB-LD
313 variations with different aggregation processes: the geo-
314 metric mean and an MMSE estimation (MMSE). Table 9 shows
315 that MLNB-LD provides a significantly better classification per-
316 formance than its counterpart for most of the datasets. In
317 addition, we observed that both Friedman test and Bonferroni-
318 Dunn test also confirmed the statistical superiority of MLNB-
319 LD over MMSE. A possible reason for this result may be the
320 sensitivity of the geometric mean regarding outlier values of
321 $p(y_i) \prod_{j=1}^m p(x_j|y_i) \prod_{k=1}^n p(y_k|y_i)$ owing to the label sparsity of
322 most of the multilabel dataset (Lee and Kim, 2016).

323 In a real-world situation, the multi-label classification prob-
324 lem may become more complicated by missing labels, indicat-
325 ing that the classifier may have to output label sets that are un-
326 observed from the training process. To achieve this problem,
327 MLNB-LD must be modified to consider all possible label sets
328 instead of \mathcal{Y} . Although the computational cost can be increased
329 exponentially owing to exhaustive multilabel learning setting,
330 the classification performance may be varied. To show this
331 aspect, we conducted the last experiments by comparing two
332 variations with a different label set consideration; one is the label
333 sets in \mathcal{Y} (proposed), and the other is all possible label sets

Table 10: Comparison results of Proposed and EML on Emotions dataset

Evaluation measure	Proposed	EML
Macro F_1	0.6412±0.0267✓	0.6409±0.0271
Micro F_1	0.6711±0.0258✓	0.6708±0.0261
Multilabel Accuracy	0.5609±0.0247✓	0.5597±0.0252

(EML). Owing to the computational burden of the EML, we chose the Emotions dataset, which is composed of six labels. Thus, the EML must compute the possibility of $2^6 = 64$ label sets for each test instance despite there being only 27 distinct label sets in total. Table 10 summarizes the multilabel classification performance between MLNB-LD and EML in terms of three evaluation measures. The experimental results indicate that MLNB-LD can provide a similar multilabel classification performance without considering all possible label sets.

5. Conclusion

We presented a multilabel naïve Bayes classifier that considers the dependence among labels during classification. The proposed method utilizes the dependence between label pairs for determining the most probable label set for a given unseen instance. Our comprehensive experiments demonstrate that multilabel classification performance can be significantly improved by the proposed method. A comparison of the results obtained on 14 real-world datasets obtained from different domains shows the advantages of the proposed method compared with the four conventional multilabel classifiers in terms of three evaluation measures, i.e., Macro F_1 , Micro F_1 , and Multilabel accuracy. Thus, considering the dependence among labels is effective for solving the multilabel classification problem.

Future work should include the study of computational efficiency for utilizing label dependence in the multilabel classification process. In this study, the dependence between all label pairs is considered for identifying the most probable label set. This indicates that multilabel classification performance may be further improved if unnecessary or noisy information is removed. In addition, the experimental results demonstrate that the proposed method is computationally efficient because it identifies the most probable label set without considering all of the possible label sets. However, in the multilabel learning case in which the ground truth label set is partially given, the proposed method can be used to output the novel label sets by computing the score of the label sets that are unobserved from the training process. Furthermore, the proposed method uses the geometric mean for aggregating the score values obtained by conditioning each label. Although this demonstrates a superior multilabel classification performance, a different estimation or heuristic method can be considered to improve the multilabel classification performance. We intend to investigate this further in future work.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2019R1C1C1008404).

References

Cano, A., Luna, J.M., Gibaja, E.L., Ventura, S., 2016. LAIM discretization for multi-label data. *Inf. Sci.* 330, 370–384.

Demšar, J., 2006. Statistical Comparisons of Classifiers over Multiple Data Sets. *J. Mach. Learn. Res.* 7, 1–30.

Elghazel, H., Aussem, A., Gharroudi, O., Saadaoui, W., 2016. Ensemble multi-label text categorization based on rotation forest and latent semantic indexing. *Expert Syst. Appl.* 57, 1–11.

Huang, J., Li, G., Huang, Q., Wu, X., 2015. Learning label specific features for multi-label classification, in: Proc. 15th IEEE Int. Conf. Data Mining, Atlantic City, USA. pp. 181–190.

Huang, J., Li, G., Wang, S., Xue, Z., Huang, Q., 2017. Multi-label classification by exploiting local positive and negative pairwise label correlation. *Neurocomputing* 257, 164–174.

Jing, L., Shen, C., Yang, L., Yu, J., Ng, M.K., 2017. Multi-label classification by semi-supervised singular value decomposition. *IEEE Trans. Image Process.* 26, 4612–4625.

Kumar, V., Pujari, A.K., Padmanabhan, V., Sahu, S.K., Kagita, V.R., 2018. Multi-label Classification Using Hierarchical Embedding. *Expert Syst. Appl.* 91, 263–269.

Lee, J., Kim, D.W., 2016. Efficient multi-label feature selection using entropy-based label selection. *Entropy* 18, 40501–40526.

Lee, J., Seo, W., Park, J.H., Kim, D.W., 2019. Compact feature subset-based multi-label music categorization for mobile devices. *Multimedia Tools Appl.* 78, 4869–4883.

Li, X., Yang, B., 2018. A pseudo label based dataless naive bayes algorithm for text classification with seed words, in: Proc. 27th Int. Conf. Computational Linguistics, Santa Fe, USA. pp. 1908–1917.

Luo, F., Guo, W., Yu, Y., Chen, G., 2017. A multi-label classification algorithm based on kernel extreme learning machine. *Neurocomputing* 260, 313–320.

Nam, J., Mencía, E.L., Kim, H.J., Fürnkranz, J., 2017. Maximizing subset accuracy with recurrent neural networks in multi-label classification, in: Proc. 31th Ann. Conf. Neural Information Processing Systems, Long Beach, USA. pp. 5413–5423.

Read, J., Pfahringer, B., Holmes, G., Frank, E., 2011. Classifier chains for multi-label classification. *Mach. Learn.* 85, 333–359.

Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I., 2011. Multi-label classification of music by emotion. *EURASIP J. Audio Speech Music Process.* 2011, 1–9.

Tsoumakas, G., Katakis, I., Vlahavas, I., 2010. Random k-labelsets for multilabel classification. *IEEE Trans. Knowl. Data Eng.* 23, 1079–1089.

Ueda, N., Saito, K., 2003. Parametric mixture models for multi-labeled text, in: Proc. 16th Ann. Conf. Neural Information Processing Systems, Vancouver, Canada. pp. 737–744.

Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H., 2008. Decision trees for hierarchical multi-label classification. *Mach. Learn.* 73, 185.

Vluymans, S., Cornelis, C., Herrera, F., Saeys, Y., 2018. Multi-label classification using a fuzzy rough neighborhood consensus. *Inf. Sci.* 433, 96–114.

Wu, B., Lyu, S., Hu, B.G., Ji, Q., 2015. Multi-label learning with missing labels for image annotation and facial action unit recognition. *Pattern Recognit.* 48, 2279–2289.

Zhang, M.L., Peña, J.M., Robles, V., 2009. Feature selection for multi-label naïve bayes classification. *Inf. Sci.* 179, 3218–3229.

Zhang, M.L., Wu, L., 2015. LIFT: Multi-label learning with label-specific features. *IEEE Trans. Pattern Anal. Mach. Intell.* 37, 107–120.

Zhang, M.L., Zhou, Z.H., 2007. ML-KNN: A lazy learning approach to multi-label learning. *Pattern Recognit.* 40, 2038–2048.

Zhang, M.L., Zhou, Z.H., 2014. A review on multi-label learning algorithms. *IEEE Trans. Knowl. Data Eng.* 26, 1819–1837.

Zhu, Y., Kwok, J.T., Zhou, Z.H., 2018. Multi-label learning with global and local label correlation. *IEEE Trans. Knowl. Data Eng.* 30, 1081–1094.