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Abstract

This article demonstrates the use of GNU 3DLDF for
a graphical solution of the problem of constructing
the envelope of an ellipse and an approximation to
the curve itself.

Introduction

Before the universal availability of computers and
graphics software, technical drawings had to be made
by hand by draftsmen and -women, who were skilled
professionals. Making a technical drawing of even
moderate complexity was time-consuming, painstak-
ing and error-prone work, requiring much knowledge
and patience and the ability to endure frustration.
Erasures were difficult and a single error of concep-
tion or execution could render useless the work of
many hours.

Well into the 20th century, graphical methods
for constructing curves were of importance for the
creation of technical drawings. In addition, such con-
structions were of central importance in the mathe-
matics of the ancient Greeks, especially those con-
structions that only made use of a straight edge and
dividers, with the added restriction that the use of
the dividers for measuring lengths was forbidden.

Even today, with computers and 3D graphic
software, graphical methods of constructing geomet-
ric figures retain their fascination and continue to
provide insight and diversion to those who appreci-
ate elegant and ingenious solutions to mathematical
puzzles. In fact, the use of computers greatly in-
creases the pleasure of creating technical drawings,
due to their speed, accuracy and the ease of making
corrections.

This article demonstrates the use of GNU 3D-

LDF for a graphical solution of the problem of con-
structing an ellipse found in Lockwood’s A Book of
Curves, p. 13 [2]. GNU 3DLDF is a package for three-
dimensional drawing with METAPOST and META-
FONT output. It implements a language based on
the METAFONT language with many additional data
types and operations. More information can be found
on the GNU 3DLDF website:
https://www.gnu.org/software/3dldf/LDF.html

The following figures are two-dimensional, so it
would have been possible to create them using META-
POST alone. They do use several features of 3DLDF
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that are not present in METAPOST, but it could
easily be adapted. For example, rotation about the
z-axis could be replaced by calls to reflectedabout.

Constructing an ellipse envelope

Draw a circle c with center C (fig. 1). AA′ is a

diameter of c and S a point on AA′. The distance
CS should be ≥ 3

5CA. Q5, Q10 and Q20 are points
on the perimeter of c such that 6 A′SQ5 = 25◦,
6 A′SQ10 = 50◦ and 6 A′SQ20 = 100◦. R5, R10

and R20 are points on the perimeter of c such that
6 SQ5R5 = 6 SQ10R10 = 6 SQ20R20 = 90◦. S′ is S
rotated around C by 180◦. That is, if xS = −k,
x′S = k. S and S′ are the foci of the ellipse.

With fixed S, as points Qx, Rx for 1 ≤ x ≤
N − 1, N = 72 are added, whereby Qx and Rx are
on the same side of AA′, their intersections will form
an envelope describing an ellipse e with foci S and
S′ and major axis AA′.
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R10

Q20

R20

S S′

Fig. 1.

As points Qx and Rx are added, it becomes
clear that the intersections of the lines QxRx quickly
form an envelope revealing the outline of the ellipse.
(see fig. 2).

If this figure were to be drawn by hand, two
lines would have to be drawn for each of the QxRx

pairs and the right angles 6 SQxRx would have to be
obtained. Placing a set square accurately so that Qx

and Rx were both squarely on the perimeter thirty
times would be quite a challenge.

doi.org/10.47397/tb/43-3/tb135finston-ellipse
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Plate 1. A selection of set squares.

Assuming this feat was accomplished, the next
step would be to trace the curve of the ellipse. This
could be done with a flexible curve or a French curve.
I personally have never had good results with either
of these tools, especially where the curvature was
small.

Plate 2. A set of French curves and a flexible curve.

On the other hand, when tracing a curve ap-
proximating the ellipse using points on the envelope
using a computer, it doesn’t suffice to intuitively
recognize the rough shape of the ellipse. While it is
not necessary to find all of the intersection points
that are closest to the ellipse, it is necessary to find
a sufficient number of them to trace a good approx-
imation to the latter and to ensure that all of the
points chosen are as close as possible to the ellipse.

Figure 2 shows the intersection points p29 =
Q29R29

⋂
Q28R28 and p30 = Q30R30

⋂
Q29R29. The

intersection points used are thus px = QxRx

⋂
Qx−1Rx−1 for x > 1.
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In figure 2, p29 lies in the first quadrant of the
ellipse, while xp30 lies in the second. It is not strictly
speaking necessary to find the intersection points px
for x > 29, since the intersection points in the first
quadrant may simply be rotated about the x- and
y-axes in order to obtain points close to the ellipse in
the remaining three quadrants of e. Unless by chance,
they will not, however, be the same points that would
be found by continuing to find the intersection points
of the lines QxRx.

By hand, this would be no less work than finding
p1 . . . p29 in the first place, but with the computer it
is the work of a moment.

Q35 is already very close to A and Q35R35 is not
too far from being vertical. Q36, in fact, coincides
with A, Q36R36 is vertical and the intersection point

p36 = Q36R36

⋂
Q35R35 doesn’t exist.
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Fig. 2.

Figure 3 shows the result of continuing to find
Qx and Rx, up to Q71 and R71 (Q72, or generally

QN = A) and draw the lines QxRx. In this figure,
some portions of the lines that converge at S have
been erased so that the dots and labels may be
seen and to avoid a large, unsightly splotch of ink
around S.

S′ is the reflection of S about the y-axis. S and
S′ are the foci of the ellipse. The major axis is AA′

but the minor axis is not so easy to determine. It is
twice the distance from C to a point w on the ellipse
on the line through C perpendicular to AA′, to the
left of p29 and to the right of p30, which are both
close to the ellipse, but not actually on it. I will have
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to give some thought to how to determine w without
“cheating”.

To execute this drawing in pen-and-ink would
be a nightmare.

A′
A

S S′

Fig. 3.

Figure 4 shows the intersection points p10, p15,
. . . p70. Clearly, the length of arc px−1px increases
as px approaches A and decreases again as it passes
it and approaches A′ again.

The N points A, A′ and px for 0 < x < N ,
N = 72, x 6= 36 would normally be sufficient for
creating an ellipse object in 3DLDF, if we were to
consider them to be close enough to the ellipse to be
usable, unless it were to be projected with extreme
foreshortening, which requires there to be enough
points on a path to prevent it from “going out of
shape” when the projected path is passed to META-
POST for displaying or printing, as explained in the
article “An Introduction to GNU 3DLDF” (pp. 319–
332 in this issue).

It would nevertheless be somewhat unsatisfying
to have such different arc lengths depending on the
position on the circle of the points used for generating
the envelope and using points that were only close
to the ellipse inside of actually on it for the path.
Instead, 3DLDF uses the parametric equation for
an ellipse to generate the path for objects of type
ellipse, i.e.,

(x, y) = (a cos(t), b sin(t)) for 0 ≤ t ≤ 2π .

Using the intersection points px = QxRx

⋂
Qx−1Rx−1 appears to produce nearly correct re-
sults. It would seem that the intersection point of
a line QaRa with its adjacent lines Qa−1Ra−1 and
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Qa+1Ra+1 are closer to C than its intersection points

with other lines QxRx and would hence produce the
closest approximation to an ellipse. However, I would
have to think about whether I could prove this with
my limited mathematical skills.

As examples of the positions of other intersec-
tion points, g43 is the intersection point Q10R10

⋂
Q25R25 and lies close to the perimeter of the ellipse

and g44 is the intersection point Q5R5

⋂
Q30R30 and

lies outside c.

A′
A

S S′

p30

Q5

R5

Q10

R10

Q25

R25

g43

g44

p35

p70
p65
p60

p40

p10
p15

p20

p25

p45
p50

p55

Fig. 4.

Figure 5 shows all of the intersection points
p1 . . . p35, p37 . . . p71, plus A and A′, with A′ and the
points with odd indices in red and A and the ones
with even indices in blue.
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Fig. 5.

Figure 6 shows the quarter ellipse q0 containing
points A and the intersection points p1 . . . p29. This
figure also shows that Q29R29 and Q30R30 intersect
at p30.
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Fig. 6.

Figure 7 shows the completed approximation
to an ellipse ea consisting of the combination of the
paths q0, q1

′ and q3
′ where q1

′ is the reflection of q0
about the y-axis with the order of the points reversed
and q3

′ is q0q1′ reflected about the x-axis and with
the order of the points reversed.
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The annotated GNU 3DLDF code

The following listings contain only the parts of the
3DLDF program for the figures in this article that are
of particular interest. Labels, “bookkeeping chores”
and other items have been left out in the interest of
comprehensibility. The full code may be found here:
https://www.gnu.org/software/3dldf/

ellipses.html#Constructions

Let’s start with some basic declarations:

point p[];

point R[];

point Q[];

point a[];

point d[];

path q[];

circle c[];

numeric n[];

boolean b[];

bool_point_vector bpv;

picture v[];

Everything here is just the same as it would
be in METAFONT except for point p[] and the
other point array declarations, circle c[] and
bool_point_vector bpv. point is the 3D equiv-
alent of pair and circle is a type in 3DLDF similar
to a path, except its radius is stored as part of
the object and there are special operations that ap-
ply to circles that don’t apply to paths, such as
get_center and the predicate is_circular.

Of course, as mentioned above, the figures in this
article do not require any 3D calculations and could
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as easily have been created using METAPOST with a
few changes. Nonetheless, in 3DLDF, points in space,
whether two-dimensional or three-dimensional, are
represented by objects of type point and the type
pair doesn’t exist.

bool_point is a type in 3DLDF that combines a
boolean and a point in a single object. bool_point
objects may be returned as the result of operations,
such as intersection_point, whereby the boolean
part indicates whether a particular condition is true
or false, e.g., whether the point lies on one or both
of the paths.

bool_point_vector is a 3DLDF type contain-
ing multiple bool_point objects. It is a so-called
“vector-type”. The latter are similar to arrays, e.g.,
bool_point[], except that a vector-type object may
be returned as the result of an operation or operated
upon as a single object, whereas these things aren’t
possible for arrays.

c0 := unit_circle scaled (3cm, 0, 3cm)

rotated (90, 0);

draw c0;

point C;

C := origin;

point A;

A := get_point 16 c0;

point Aprime;

Aprime := get_point 0 c0;

draw A -- Aprime;

point S;

S := mediate(A, C, .2);

unit_circle is a predefined constant of type
circle. Unlike METAFONT, where the “canonical”
unit is the pixel and METAPOST, where it is the
PostScript point or big point (1bp = 1/72 in), in 3D-

LDF, the canonical unit is the centimeter and thus
unit_circle has radius (not diameter!) 1cm. And
unlike fullcircle, which has 8 points in META-
FONT, unit_circle has 32, thus point 16 of c0 is at
the halfway point around the circle.

32 points is normally about enough to prevent a
circle from “going out of shape” when it is projected
with a moderate amount of foreshortening. See “An
Introduction to GNU 3DLDF” in this issue.

There are three other differences with respect
to METAFONT in this section of the code:

• All of the assignments are actual assignments
using := rather than equations using =. Un-
fortunately, 3DLDF doesn’t (yet?) share META-
FONT’s “amazing ability to deduce explicit val-
ues from implicit statements” [1, p. 83].
• get_point is the equivalent in 3DLDF of point

in METAFONT, as in 〈pair primary〉 −→ point
〈numeric expression〉 of 〈path primary〉 [1, p. 73].
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In 3DLDF, as previously mentioned, the symbol
point is a “declarator” used to declare point

objects and its use as an operator would have
caused conflicts in the grammar generated by
the parser generator GNU Bison.
• Nor did Bison allow METAFONT’s syntax for the
mediation operation, e.g., .5[p0, p1] because
it would have conflicted with the other uses of
brackets. Therefore, the operator mediate must
be used instead.

In 3DLDF, as in METAFONT, A’ would have
been a valid name for a variable. However, I generally
don’t use such variable names and I thought it would
be potentially confusing, so I used Aprime instead.

numeric j;

j := 0;

As in METAFONT, j could just have been used
without explicitly declaring it as a numeric. Doing
so is considered good programming style, although it
may be overkill here and I have some doubts about
whether every member of the “programming style
police” actually has practical experience writing com-
puter programs.

numeric N, k;

N := 72;

K := 360/N;

for i = 0 upto 100:

Q[i] := Aprime rotated (0, 0, 0 + (i * K));

d[j] := Q[i] shifted (0, 0, 1);

d[j+1] := S rotatedaround (Q[i], d[j]) 90;

bpv := (Q[i] -- d[j+1])

intersection_points c0;

a0 := bpv0;

a1 := bpv1;

if xpart a0 > xpart a1:

a2 := a0;

else:

a2 := a1;

fi

R[i] := a2;

j += 2;

endfor;

The loop in this section of the code is where
the real action of the program begins. Qx is found
by rotating A′ about C, the perpendicular to SQx

through Qx is found and Rx is found as the in-
tersection point of the perpendicular with c0 with
the greatest x-coordinate. A circle and a line, that
is, a path with two points and a simple connector,
that is, one without any modifiers that would cause
it to diverge from a straight line, can have 0 to 2
intersections.
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Please note that this loop finds the points Qx

in a different way than in the description in sec-
tion “Constructing an ellipse envelope” on page 333.
However, it is completely arbitrary how these points
are found.

Again, in most ways, the 3DLDF code would
mostly be valid in METAFONT, but there are several
important differences:

In METAFONT, rotation is about a 2D point,
either the origin, with plain rotated, or about an
arbitrary point with rotatedaround. In 3DLDF,
rotation is about the x-, y- and z-axes with rotated

and about an axis specified as two points with the
operator rotated_around.

METAFONT provides the primitive operation
intersectiontimes and a related macro named
intersectionpoint, both of which return a single
pair as their result. Therefore, if two paths intersect
more than once, information about only one of the
intersections is returned.

For 3DLDF, where geometric figures play a much
greater role than in METAFONT, this behavior would
not be acceptable, so bool_point_vectors are used
as the type of the return values for the various oper-
ations that return intersection points or times.

The a0 := bpv0 and a1 := bpv1 statements
show that bool_points can be assigned to points,
whereby the boolean component of the bool_point

is discarded. For many but not all operations in 3D-

LDF, bool_points may be used in place of points.
It is worth noting that the intersection points

of lines with each other and lines with circles in this
program are not found as in METAFONT. There, all
paths are implemented as Bézier curves and intersec-
tion times and points are found with a routine that
applies to all Bézier curves, irrespective of shape.

In 3DLDF, the intersections of lines with each
other and with other geometric figures, such as cir-
cles, are used by combining and solving the implicit
equations of the figures. However, since there are
no restrictions on the transformations that can be
applied to objects in 3DLDF, they must be tested to
ensure that the equations still apply. For this pur-
pose, 3DLDF implements the predicate operations
is_linear, is_circular, is_elliptical, etc.

Here is the next portion of code we’ll consider:

q0 += ..;

q1 += ..;

q0 += Aprime;

This, unlike what we’ve seen before, would not
be valid METAFONT code. 3DLDF implements the
operators +=, -=, *= and /= for the operations assign-
ment with addition, subtraction, multiplication and
division, respectively. While 3DLDF for the most
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part shares METAFONT’s scanning rules, these op-
erators break these rules, as = belongs to category
1, + and - to category 3 and * and / to category 4
[1, pp. 50–51]. However, this was easy to implement
and has never caused any problems.

Here, the connector .. is put onto paths q0 and
q1 (which start out without any points) and Aprime

is put onto q0 as its first point.

for i = 1 upto (N - 1):

if i <> 36:

p[i] := (Q[i] -- R[i])

intersection_point (Q[i-1] -- R[i-1]);

b[i] := p[i] rotated (0, 180);

if i < 30:

q0 += p[i];

q1 += b[i];

fi

else:

message "Skipping p36.";

fi

endfor;

v0 := current_picture;

A second loop finds the N − 2 = 70 intersection
points px = QxRx

⋂
Qx−1Rx−1 for 1 ≤ x < N ,

x 6= 36. Q36R36 is skipped, because Q36 coincides

with A and thus Q36R36

⋂
Q35R35 doesn’t exist.

The intersection points are appended to q0. In
addition, they are rotated 180◦ about the y-axis
and appended to q1. Since ellipses are symmetrical
about their major and minor axes, I only have to find
the intersection points in the upper right quadrant
of c0 and can rotate them into the other quadrants
instead of finding the intersection points in the latter,
although that would certainly be possible with the
construction described by Lockwood, whereby the
points would be different.

Unlike the convention in TEX and METAFONT,
where the names of macros, variables, etc., are run
together, I favor the use of the underline charac-
ter in variable names. However, currentpicture

may be used as a synonym for current_picture,
rotatedaround for rotated_around, withpen for
with_pen and similarly for many other names of
operators and predefined variables and constants.

Thus far, I have left out most of the drawing
and labelling commands. However, the following are
of special interest:

undrawdot Sprime with_pen pensquare

scaled (.65cm, .65cm, .65cm);

dotlabel.bot("$S’$", Sprime);

undrawdot S with_pen pencircle

scaled (.25cm, .25cm, .25cm);

drawdot S with_pen dot_pen;
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About S and S′: undrawdot uses a large circular
or square pen, respectively, to clear out a space so
that the labels may be seen and, the case of S, to
avoid a large splotch of black ink. In addition, a
selection of lines is drawn over the white space to
show that the lines QxRx converge at S.

q2 := q0 .. reversed q1;

q3 := q2 rotated (180, 0);

q4 := q2 .. reversed q3;

q4 += cycle;

drawarrow q0 with_color red

with_pen medium_pen;

draw q0 .. reversed q1 .. reversed q3

.. Aprime .. cycle

with_pen pencircle

scaled (2.5mm, 2.5mm, 2.5mm);

undraw q0 .. reversed q1 .. reversed q3

.. Aprime .. cycle

with_pen pencircle

scaled (1.5mm, 1.5mm, 1.5mm);

drawarrow q0 with_color red;

drawarrow reversed q1 with_color dark_green;

drawarrow reversed q3 with_color blue;

This is the code that draws the constructed
approximation to an ellipse ea. I’ve included the
drawing commands here because, together with the
erasures above, this is a good example of technical
drawing tasks that are trivial with the computer but
would be difficult to execute by hand and likely to
cause much wailing and gnashing of teeth.

To create the black outlines of ea, it is first
drawn using a large pencircle of 2.5mm diameter.
To compare, in technical drawings, 0.5mm is the
size used most. For example, acrylic templates for
drawing shapes are designed for use with technical
pens with 0.5mm nibs. (Other commonly available
sizes are 0.25mm, 0.7mm and 1mm.) In this article,
the “standard” pen size is 0.333mm. Then, the
middle of the curve is cleared out by undrawing it
with a pencircle of diameter 1.5mm. Finally, the
paths q0, q1

′ and q3
′, whereby the latter two are

simply q1 and q3 reversed, are drawn in color and
with arrows using a pencircle of diameter 0.5mm.
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In METAFONT, pencircle would be scaled us-
ing a single numeric value while pensquare would
be scaled using two. In 3DLDF, a drawing command
copies an object such as a path, associates the copy
with any items such as pens or colors that are spec-
ified in the command and puts them all together
onto a picture, current_picture by default. The
pens are only used when endfig or output causes
METAFONT or METAPOST code to be written to an
output file. They are therefore purely 2D objects.
While they may be scaled using three numerical val-
ues, in fact only the x- and y-coordinates are used
and the z-coordinate is ignored, even when the object
is projected using the parallel projection onto the
x-z plane.

Since this may change in the future, it is safest
to specify all three dimensions when scaling a pen.
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