

Android Programming Tutorials

by Mark L. Murphy

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Android Programming Tutorials
by Mark L. Murphy

Copyright © 2009-2011 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Aug 2011:Version 3.9 ISBN: 978-0-9816780-4-7

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Table of Contents

Welcome to the Warescription!..xv

Preface...xvii

Welcome to the Book!..xvii

Prerequisites...xvii

Getting Help..xviii

Using the Tutorials..xviii

This Book and Eclipse..xx

Warescription...xx

What's New..xxi

About the "Further Reading" Sections...xxi

Errata and Book Bug Bounty...xxii

Source Code License...xxiii

Creative Commons and the Four-to-Free (42F) Guarantee.................xxiii

Lifecycle of a CommonsWare Book...xxiv

Roster of Tutorials..xxv

Your First Android Project..1

Step #1: Create the New Project...1

Step #1: Eclipse...2

Step #2: Command Line..4

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Step #2: Build, Install, and Run the Application in Your Emulator or

Device..5

Step #1: Eclipse..5

Step #2: Outside of Eclipse..6

A Simple Form...9

Step-By-Step Instructions..9

Step #1: Generate the Application Skeleton...9

Step #2: Modify the Layout..13

Step #3: Support All Screen Sizes..30

Step #4: Run the Application..34

Step #5: Create a Model Class...36

Step #6: Save the Form to the Model..37

Extra Credit...38

Further Reading..38

A Fancier Form...41

Step-By-Step Instructions...41

Step #1: Switch to a TableLayout...41

Step #2: Add a RadioGroup...48

Step #3: Update the Model..53

Step #4: Save the Type to the Model..54

Extra Credit...56

Further Reading..57

Adding a List..59

Step-By-Step Instructions..59

Step #1: Hold a List of Restaurants...59

Step #2: Save Adds to List...60

Step #3: Implement toString()...61

iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Step #4: Add a ListView Widget..61

Step #5: Build and Attach the Adapter..64

Extra Credit...66

Further Reading..67

Making A More Elaborate List..69

Step-By-Step Instructions..69

Step #1: Create a Stub Custom Adapter..70

Step #2: Design Our Row...70

Step #3: Override getView(): The Simple Way..................................78

Step #4: Create a RestaurantHolder...79

Step #5: Recycle Rows via RestaurantHolder....................................80

Extra Credit...83

Further Reading..83

Splitting the Tab..85

Step-By-Step Instructions..85

Step #1: Rework the Layout...85

Step #2: Wire In the Tabs..87

Step #3: Get Control On List Events..89

Step #4: Update Our Restaurant Form On Clicks.............................90

Step #5: Switch Tabs On Clicks...91

Extra Credit...94

Further Reading..95

Menus and Messages...97

Step-By-Step Instructions..97

Step #1: Add Notes to the Restaurant...97

Step #2: Add Notes to the Detail Form..98

Step #3: Define the Options Menu..100

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Step #4: Support the Options Menu...103

Step #5: Show the Notes as a Toast...104

Step #6: Add a ScrollView...110

Extra Credit...112

Further Reading..112

Sitting in the Background..113

Step-By-Step Instructions..113

Step #1: Initialize the Progress Bar...113

Step #2: Create the Work Method...114

Step #3: Fork the Thread from the Menu..115

Step #4: Manage the Progress Bar..117

Extra Credit..119

Further Reading...120

Life and Times...121

Step-By-Step Instructions..121

Step #1: Lengthen the Background Work..121

Step #2: Pause in onPause()...122

Step #3: Resume in onResume()..123

Extra Credit..130

Further Reading...130

A Few Good Resources..131

Step-By-Step Instructions..131

Step #1: Review our Current Resources..131

Step #2: Create a Landscape Layout..132

Extra Credit..135

Further Reading...136

vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store..137

Step-By-Step Instructions...137

Step #1: Create a Stub SQLiteOpenHelper..137

Step #2: Manage our Schema...138

Step #3: Remove Extraneous Code from LunchList.........................139

Step #4: Get Access to the Helper...140

Step #5: Save a Restaurant to the Database......................................140

Step #6: Get the List of Restaurants from the Database..................142

Step #7: Change our Adapter and Wrapper......................................143

Step #8: Clean Up Lingering ArrayList References..........................145

Step #9: Refresh Our List...146

Extra Credit...151

Further Reading..151

Getting More Active...153

Step-By-Step Instructions...153

Step #1: Create a Stub Activity...153

Step #2: Launch the Stub Activity on List Click...............................154

Step #3: Move the Detail Form Layout...156

Step #4: Move the Detail Form Code..157

Step #5: Clean Up the Original Layout...159

Step #6: Clean Up the Original Code..163

Step #7: Pass the Restaurant _ID...163

Step #8: Load the Restaurant Into the Form....................................165

Step #9: Add an "Add" Menu Option..166

Step #10: Detail Form Supports Add and Edit..................................168

Extra Credit..180

Further Reading...181

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?..183

Step-By-Step Instructions...183

Step #1: Define the Preference XML..183

Step #2: Create the Preference Activity..189

Step #3: Connect the Preference Activity to the Option Menu.......191

Step #4: Apply the Sort Order on Startup..195

Step #5: Listen for Preference Changes..196

Step #6: Re-Apply the Sort Order on Changes.................................197

Extra Credit..198

Further Reading..199

Turn, Turn, Turn..201

Step-By-Step Instructions...201

Step #1: Add a Stub onSaveInstanceState()......................................201

Step #2: Pour the Form Into the Bundle..202

Step #3: Repopulate the Form...202

Step #4: Fix Up the Landscape Detail Form....................................202

Extra Credit...204

Further Reading..204

Feeding at Lunch...205

Step-By-Step Instructions..205

Step #1: Add a Feed URL to the Data Model....................................205

Step #2: Update the Detail Form..209

Step #3: Add a Feed Options Menu Item..213

Step #4: Add Permissions and Check Connectivity.........................215

Step #5: Fetch the Feed..220

Step #6: Install the RSS Library...223

Step #7: Fetch and Parse the Feed (For Real This Time)................224

viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Step #8: Display the Feed Items..225

Extra Credit...234

Further Reading..235

Serving Up Lunch...237

Step-By-Step Instructions..237

Step #1: Create and Register a Stub IntentService...........................237

Step #2: Move Feed Fetching and Parsing to the Service...............239

Step #3: Send the Feed to the Activity...240

Step #4: Display the Feed Items, Redux...243

Extra Credit...248

Further Reading..249

Locating Lunch...251

Step-By-Step Instructions...251

Step #1: Add Latitude and Longitude to the Data Model...............252

Step #2: Save the Restaurant in onPause().......................................256

Step #3: Add a TextView and Options Menu Item for Location....258

Step #4: Update the Permissions..265

Step #5: Find Our Location Using GPS..266

Step #6: Only Enable Options Menu Item If Saved........................268

Extra Credit...274

Further Reading..275

Putting Lunch on the Map...277

Step-By-Step Instructions..277

Step #1: Make Sure You Are Ready..277

Step #2: Add an Options Menu Item for Map.................................279

Step #3: Create and Use a MapActivity...281

Step #4: Create an ItemizedOverlay...284

ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Step #5: Handle Marker Taps..293

Extra Credit...298

Further Reading..299

Is It Lunchtime Yet?...301

Step-By-Step Instructions...301

Step #1: Create a TimePreference..302

Step #2: Collect Alarm Preferences...305

Step #3: Set Up a Boot-Time Receiver..306

Step #4: Manage Preference Changes..309

Step #5: Display the Alarm...316

Extra Credit...322

Further Reading..323

More Subtle Lunch Alarms..325

Step-By-Step Instructions..325

Step #1: Collect Alarm Style Preference..326

Step #2: Display the Alarm, Redux..327

Extra Credit...334

Further Reading..334

A Restaurant In Your Own Home..335

Step-By-Step Instructions...335

Step #1: Find An App Widget Background and Some Icons...........335

Step #2: Design the App Widget Layout..336

Step #3: Add an (Empty) AppWidgetProvider.................................337

Step #4: Add the Widget Metadata...338

Step #5: Update the Manifest..339

Step #6: Delegate to an IntentService..342

Step #7: Show a Random Restaurant..343

x

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Extra Credit...348

Further Reading..349

A Lunch *List* At Home...351

Step-By-Step Instructions...351

Step #1: Update Your Build Environment...352

Step #2: Update Your Provider and Widget Layout XML...............353

Step #3: Detect Which App Widget To Display...............................357

Step #4: Implement and Connect to the RemoteViewsService......357

Step #5: Implement the RemoteViewsFactory.................................363

Step #6: Set Up the Preview Image...368

Extra Credit...370

Further Reading..370

A Fragment of Lunch at the Action Bar...371

Step-By-Step Instructions...371

Step #1: Set the Proper Target...372

Step #2: Promote "Add" to the Action Bar.......................................374

Step #3: Add the ACL...375

Step #4: Split LunchList Into a Fragment..376

Step #5: Split DetailForm Into a Fragment......................................385

Extra Credit...394

Further Reading..394

Lunches, Large and Small..395

Step-By-Step Instructions..395

Step #1: Add a Large Landscape Layout..395

Step #2: Detect Large Landscape Mode...397

Step #3: Pass the Restaurant ID to DetailFragment........................397

Step #4: Dynamically Add DetailFragment.....................................406

xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Extra Credit..410

Further Reading..410

Getting Some Help With Lunch...411

Step-By-Step Instructions...411

Step #1: Draft and Package the Help HTML......................................411

Step #2: Create a Help Activity..412

Step #3: Splice In the Help Activity...413

Extra Credit..415

Further Reading..416

Take a Monkey to Lunch..417

Step-By-Step Instructions...417

Step #1: Prep LunchList..417

Step #2: Run the Monkey...417

Extra Credit..418

Further Reading..419

Ringing the Lunch Bell..421

Step-By-Step Instructions...421

Step #1: Add a Ringtone to the Emulator..421

Step #2: Set the Alarm Volume...424

Step #3: Add a RingtonePreference..425

Step #4: Play the Ringtone... with the Notification.........................427

Step #5: Play the Ringtone... with the Activity................................429

Extra Credit...430

Further Reading...431

Asking Permission to Place a Call...435

Step-By-Step Instructions..435

Step #1: Add a Phone Number to the Database Schema.................435

xii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Step #2: Intelligently Handle Database Updates.............................436

Step #3: Add Phone Number Support to the Rest of the Helper.. .436

Step #4: Collect the Phone Number on the Detail Form...............440

Step #5: Ask for Permission to Make Calls......................................442

Step #6: See If We Have Telephony...444

Step #7: Dial the Number..444

Step #8: Make the Call...447

Extra Credit...453

Further Reading..453

How To Get Started..455

Java...455

Step #1: Install the JDK...455

Step #2: Learn Java...456

Install the Android SDK...457

Step #1: Install the Base Tools...457

Step #2: Install the SDKs and Add-Ons..457

Install the ADT for Eclipse...461

Install Apache Ant..463

Set Up the Emulator...464

Set Up the Device..471

Step #1: Windows...472

Step #2: OS X and Linux..473

Coping with Eclipse...475

How to Import a Non-Eclipse Project...475

How to Get To DDMS..480

How to Create an Emulator...482

How to Run a Project...483

xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How Not to Run Your Project...484

How to Get Past Eclipse...484

xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Welcome to the Warescription!

We hope you enjoy this ebook and its updates – subscribe to the
Warescription newsletter on the Warescription site to learn when new
editions of this book, or other books, are available.

All editions of CommonsWare titles, print and ebook, follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form
for Warescription subscribers only. Releases ending in .9 are "release
candidates" for the next major release, lacking perhaps an index but
otherwise being complete.

Personalized materials that you purchase as part of a Warescription are for
the your use only. That means that while you are welcome to make copies
as needed (e.g., home use, office use, mobile device use) for your own use,
you are not welcome to make copies available to other people or
organizations.

If CommonsWare determines that your personalized materials have been
illicitly copied, your account will be immediately suspended. If you work for
a firm and wish to have several employees have access, enterprise
Warescriptions are available. Just contact us at
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license – more on this in the preface.

xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

mailto:enterprise@commonsware.com
http://wares.commonsware.com/

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links, or follow the links contained in the
book's preface.

You can search through the PDF using most PDF readers (e.g., Adobe
Reader). If you wish to search all of the CommonsWare books at once, and
your operating system does not support that directly, you can always
combine the PDFs into one, using tools like PDF Split-And-Merge or the
Linux command pdftk *.pdf cat output combined.pdf.

xvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.pdfsam.org/

Preface

Welcome to the Book!

If you come to this book after having read its companion volumes, The
Busy Coder's Guide to Android Development and The Busy Coder's Guide to
Advanced Android Development, thanks for sticking with the series!
CommonsWare aims to have the most comprehensive set of Android
development resources (outside of the Open Handset Alliance itself), and
we appreciate your interest.

If you come to this book having learned about Android from other sources,
thanks for joining the CommonsWare community!

Prerequisites

This book is a collection of tutorials, walking you through developing
Android applications, from the simplest "Hello, world!" to applications
using many advanced Android APIs.

Since this book only supplies tutorials, you will want something beyond
it as a reference guide. That could be simply the Android SDK
documentation, available with your SDK installation or online. It could be
the other books in the CommonsWare Android series. Or, it could be
another Android book – a list of currently-available Android books can be
found on the Android Programming knol. What you do not want to do is

xvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://knol.google.com/k/-/android-programming
http://commonsware.com/AdvAndroid/
http://commonsware.com/AdvAndroid/
http://commonsware.com/Android/
http://commonsware.com/Android/

attempt to learn all of Android solely from these tutorials, as they will
demonstrate the breadth of the Android API but not its depth.

Also, the tutorials themselves have varying depth. Early on, there is more
"hand-holding" to explain every bit of what needs to be done (e.g., classes
to import). As the tutorials progress, some of the simpler Java bookkeeping
steps are left out of the instructions so the tutorials can focus on the
Android aspects of the code.

Those wishing to use Eclipse need prior Eclipse experience – more on this
below.

You can find out when new releases of this book are available via:

• The commonsguy Twitter feed

• The CommonsBlog

• The Warescription newsletter, which you can subscribe to off of
your Warescription page

Getting Help

If you have questions about the book examples, visit StackOverflow and ask
a question, tagged with android and commonsware.

If you have general Android developer questions, visit StackOverflow and
ask a question, tagged with android (and any other relevant tags, such as
java).

Using the Tutorials

Each tutorial has a main set of step-by-step instructions, plus an "Extra
Credit" section. The step-by-step instructions are intended to guide you
through creating or extending Android applications, including all code you
need to enter and all commands you need to run. The "Extra Credit"
sections, on the other hand, provide some suggested areas for
experimentation beyond the base tutorial, without step-by-step
instructions.

xviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://stackoverflow.com/
http://wares.commonsware.com/
http://commonsware.com/blog
http://twitter.com/commonsguy

If you wish to start somewhere in the middle of the book, or if you only
wish to do the "Extra Credit" work, or if you just want to examine the
results without doing the tutorials directly yourself, you can download the
results of each tutorial's step-by-step instructions from the book's github
repository. You can either clone the repository, or click the Download
button in the upper-right to get the source as a ZIP file. The source code is
organized by tutorial number, so you can readily find the project(s)
associated with a particular tutorial from the book.

Note that while you are welcome to copy and paste code out of the book,
you may wish to copy from the full source code instead. A side-effect of the
way the source code listings are put into this book makes them difficult to
copy from some PDF viewers, for example.

The tutorials do not assume you are using Eclipse, let alone any other
specific editor or debugger. The instructions included in the tutorials will
speak in general terms when it comes to tools outside of those supplied by
the Android SDK itself.

The tutorials include instructions for both Linux and Windows XP. OS X
developers should be able to follow the Linux instructions in general,
making slight alterations as needed for your platform. Windows Vista users
should be able to follow the Windows XP instructions in general, tweaking
the steps to deal with Vista's directory structure and revised Start menu.

If you wish to use the source code from the CommonsWare Web site, bear
in mind a few things:

1. The projects are set up to be built by Ant, not by Eclipse. If you wish
to use the code with Eclipse, you will need to create a suitable
Android Eclipse project and import the code and other assets –
these instructions will help you load the project into a workspace.

2. You should delete build.xml, then run android update project
-p ... (where ... is the path to a project of interest) on those
projects you wish to use, so the build files are updated for your
Android SDK version.

xix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

https://github.com/commonsguy/cw-lunchlist
https://github.com/commonsguy/cw-lunchlist
https://github.com/commonsguy/cw-lunchlist

Also, please note that the tutorials are set up to work well on HVGA and
larger screen sizes. Using them on QVGA or similar sizes is not
recommended.

This Book and Eclipse

For building GUIs, the latest Android Developer Tools (ADT) plugin for
Eclipse offers drag-and-drop manipulation of widgets and the ability to
adjust widget properties via context menus and the like.

This book offers instructions for both Eclipse users and those using other
IDEs or ordinary editors. These separate instructions are only for the
sections involving changes to the application's GUI or related files –
sections involving changing the Java code are the same.

This book does not cover Eclipse use in general, only the Android-specific
features that are necessary to build the sample application. If you do not
have experience with Eclipse on Java projects, you should either obtain that
experience before using this book or perhaps bypass Eclipse and use a
regular editor.

The first several tutorials offer detailed instructions, including screenshots
of the Eclipse editing tools. Later tutorials simply provide Eclipse-specific
instructions. Starting around tutorial #20, it is assumed that you have
internalized the use of Eclipse, and so Eclipse-specific instructions are no
longer required.

Warescription

This book will be published both in print and in digital form. The digital
versions of all CommonsWare titles are available via an annual subscription
– the Warescription.

The Warescription entitles you, for the duration of your subscription, to
digital forms of all CommonsWare titles, not just the one you are reading.
Presently, CommonsWare offers PDF and Kindle; other digital formats will
be added based on interest and the openness of the format.

xx

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in digital form. That way, your digital books are never out of date
for long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, including not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
free four-month Warescription.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

What's New

For those of you who have a Warescription, or otherwise have been keeping
up with this book, here is what is new in this version:

• The tutorials all have Eclipse-specific instructions, as mentioned
earlier in this preface

• Minor improvements were made to the LunchList UI, such as better
support for the soft keyboard

• The tutorials were lightly tested on Android 3.1

About the "Further Reading" Sections

Each tutorial has, at the end, a section named "Further Reading". Here, we
list places to go learn more about the theory behind the techniques
illustrated in the preceding tutorial. Bear in mind, however, that the
Internet is fluid, so links may not necessarily work. And, of course, there is
no good way to link to other books. Hence, the "Further Reading" section
describes where you can find material, but actually getting there may

xxi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/warescription.html
http://commonsware.com/trade-in.html

require a few additional clicks on your part. We apologize for the
inconvenience.

Errata and Book Bug Bounty

Books updated as frequently as CommonsWare's inevitably have bugs.
Flaws. Errors. Even the occasional gaffe, just to keep things interesting. You
will find a list of the known bugs on the errata page on the CommonsWare
Web site.

But, there are probably even more problems. If you find one, please let us
know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the
coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

• Typographical errors

• Sample applications that do not work as advertised, in the
environment described in the book

• Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

NOTE: Books with version numbers lower than 0.9 are ineligible for the
bounty program, as they are in various stages of completion. We appreciate
bug reports, though, if you choose to share them with us.

We appreciate hearing about "softer" issues as well, such as:

xxii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AndTutorials/errata

• Places where you think we are in error, but where we feel our
interpretation is reasonable

• Places where you think we could add sample applications, or
expand upon the existing material

• Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty
program.

Be sure to check the book's errata page, though, to see if your issue has
already been reported.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to CommonsWare.

Source Code License

The source code samples shown in this book are available for download
from the book's GitHub repository. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-ShareAlike 3.0 license as of
the fourth anniversary of its publication date, or when 4,000 copies of the
edition have been sold, whichever comes first. That means that, once four
years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers
and the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on June 1, 2015. Of course, watch the

xxiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.apache.org/licenses/LICENSE-2.0.html
http://github.com/commonsguy/cw-andtutorials
mailto:bounty@commonsware.com
http://commonsware.com/AndTutorials/errata

CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
ShareAlike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

Lifecycle of a CommonsWare Book

CommonsWare books generally go through a series of stages.

First are the pre-release editions. These will have version numbers below
0.9 (e.g., 0.2). These editions are incomplete, often times having but a few
chapters to go along with outlines and notes. However, we make them
available to those on the Warescription so they can get early access to the
material.

Release candidates are editions with version numbers ending in ".9" (0.9,
1.9, etc.). These editions should be complete. Once again, they are made
available to those on the Warescription so they get early access to the
material and can file bug reports (and receive bounties in return!).

Major editions are those with version numbers ending in ".0" (1.0, 2.0, etc.).
These will be first published digitally for the Warescription members, but
will shortly thereafter be available in print from booksellers worldwide.

Versions between a major edition and the next release candidate (e.g., 1.1,
1.2) will contain bug fixes plus new material. Each of these editions should
also be complete, in that you will not see any "TBD" (to be done) markers
or the like. However, these editions may have bugs, and so bug reports are
eligible for the bounty program, as with release candidates and major
releases.

xxiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A book usually will progress fairly rapidly through the pre-release editions
to the first release candidate and Version 1.0 – often times, only a few
months. Depending on the book's scope, it may go through another cycle of
significant improvement (versions 1.1 through 2.0), though this may take
several months to a year or more. Eventually, though, the book will go into
more of a "maintenance mode", only getting updates to fix bugs and deal
with major ecosystem events – for example, a new release of the Android
SDK will necessitate an update to all Android books.

Roster of Tutorials

Here is what you can expect in going through the tutorials in this book:

1. We start off with a simple throwaway project, just to make sure you
have the development tools all set up properly.

2. We then begin creating LunchList, an application to track
restaurants where you might wish to go for lunch. In this tutorial,
we set up a simple form to collect basic information about a
restaurant, such as a name and address.

3. We expand the form to add radio buttons for the type of restaurant
(e.g., takeout).

4. Instead of tracking just a single restaurant, we add support for a list
of restaurants – but each restaurant shows up in the list only
showing its name.

5. We extend the list to show the name and address of each restaurant,
plus an icon for the restaurant type.

6. To give us more room, we split the UI into two tabs, one for the list
of restaurants, and one for the detail form for a restaurant.

7. We experiment with an options menu (the kind that appears when
you press the MENU button on a phone) and display a pop-up
message.

8. We learn how to start a background thread and coordinate
communications between the background thread and the main
("UI") thread.

9. We learn how to find out when the activity is going off-screen,
stopping and restarting our background thread as needed.

xxv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

10. We create a separate UI description for what the tabs should look
like when the phone is held in a landscape orientation.

11. We finally add database support, so your restaurant data persists
from run to run of the application.

12. We eliminate the tabs and split the UI into two separate screens
("activities"), one for the list of restaurants, and one for the detail
form to add or edit a restaurant.

13. We establish a shared preference – and an activity to configure it –
to allow the user to specify the sort order of the restaurants in the
list.

14. We re-establish the landscape version of our UI (lost when we
eliminated the tabs in Tutorial 12) and experiment with how to
handle the orientation changing during execution of our
application.

15. We retrieve an RSS feed for our restaurant and display its results in
a separate activity

16. We move the RSS fetch-and-parse logic to a service

17. We give the user the ability to record the GPS coordinates of a
restaurant

18. Given those GPS coordinates, we give the user the ability to display
where the restaurant is on a map

19. We add an option for the user to have a "lunchtime alarm" that will
let them know when it is time for lunch

20. We extend the alarm to either pop up an activity (as before) or
display a status bar icon

21. We create an app widget, to allow users to pick a random restaurant
right from the home screen

22. We embellish the app widget on Android 3.x devices, to show the
list of restaurants right on the home screen, instead of just a single
restaurant.

23. We add support for the Android 3.x action bar to the app, plus
move all of its business logic into fragments, using the Android
Compatibility Library.

xxvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

24. We leverage the fragments from the previous tutorial to allow the
user to see both the restaurants and the details of a selected
restaurant on the screen at one time, for large screen devices (e.g.,
tablets) held in the landscape orientation.

25. We add online help, by adding HTML to the project and displaying
it in a dedicated activity.

26. We test the application using the Test Monkey.

27. We add ringtone support to our lunchtime alarms, with a user-
selected ringtone.

28. We track the phone number of the restaurant and allow the user to
call that phone number from the app.

xxvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART I – Core Tutorials

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 1

Your First Android Project

There are two major steps for getting started with Android:

1. You need to install the Android SDK and developer tools

2. You should build a test project to confirm that those tools are
properly installed and configured

If you have already done some form of "hello, world" project with the
development tools on your development machine, you can skip this
tutorial.

If you have not yet installed the Android SDK and related tools, there is an
appendix that covers this process. Once you have the Android SDK, it is
time to make your first Android project. The good news is that this requires
zero lines of code – Android's tools create a "Hello, world!" application for
you as part of creating a new project. All you need to do is build it, install it,
and see it come up on your emulator or device. That is what this tutorial is
for.

Step #1: Create the New Project

Android's tools can create a complete skeleton project for you, with
everything you need for a complete (albeit very trivial) Android application.
The only real difference comes from whether you are using Eclipse or the
command line. Hence, as you will see with many sections in this book,

1

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

there are separate instructions for Eclipse users and everyone else – please
follow the instructions that pertain to you.

Step #1: Eclipse

From the Eclipse main menu, choose File | New | Project..., and this will
bring up a list of project types to choose from. Fold open the Android
option and click on Android Project:

Figure 1. Eclipse New Project Wizard

Press Next to advance the wizard to the main Android project page:

2

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

Figure 2. Eclipse New Project Wizard, Android Project

Fill in the following:

• The name of the project (e.g., Now) in the "Project name" field

• The Android SDK you wish to compile against (e.g., Google APIs for
Android 2.2) in the "Build Target" table

• The display name for your application (e.g., "Now Sample App") in
the "Application name" field

3

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

• The name of the Java package in which this project goes (e.g.,
com.commonsware.android.skeleton) in the "Package name" field

• The name of the initial activity to create (e.g., Now) in the "Create
Activity" field

• If there is a "Min SDK Version" specified in the wizard, change it to
be 4.

At this point, clicking Finish will create your Eclipse project.

Step #2: Command Line

Here is a sample command that creates an Android project from the
command line:

android create project --target "Google Inc.:Google APIs:8" --path Skeleton/Now
--activity Now --package com.commonsware.android.skeleton

This will create an application skeleton for you, complete with everything
you need to build your first Android application: Java source code, build
instructions, etc. However, you are probably going to need to customize
this somewhat. Here are what those command-line switches mean:

• --target indicates what version of Android you are "targeting" in
terms of your build process. You need to supply the ID of a target
that is installed on your development machine, one you
downloaded via the SDK and AVD Manager. You can find out what
targets are available via the android list targets command.
Typically, your build process will target the newest version of
Android that you have available.

• --path indicates where you want the project files to be generated.
Android will create a directory if the one you name does not exist.
For example, in the command shown above, a Skeleton/Now/
directory will be created (or used if it exists) underneath the current
working directory, and the project files will be stored there.

4

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

• --activity indicates the Java class name of your first activity for this
project. Do not include a package name, and the name has to meet
Java class naming conventions.

• --package indicates the Java package in which your first activity will
be located. This package also uniquely identifies your project on any
device on which you install it, and this package also needs to be
unique on the Android Market if you plan on distributing your
application there. Hence, typically, you construct your package
based on a domain name you own (e.g.,
com.commonsware.android.skeleton), to reduce the odds of an
accidental package name collision with somebody else.

For your development machine, you will need to pick a suitable target, and
you may wish to change the path. The activity and package you can leave
alone for now.

Step #2: Build, Install, and Run the Applica­
tion in Your Emulator or Device

Having a project is nice and all, but it would be even better if we could
build and run it, whether on the Android emulator or your Android device.
Once again, the process differs somewhat depending on whether you are
using Eclipse or not.

Step #1: Eclipse

With your project selected in the Package Explorer pane, click the green
"play" button in the Eclipse toolbar to run your project. The first time you
do this, you will have to go through a few steps to set up a "run
configuration", so Eclipse knows what you want to do.

First, in the "Run As" list, choose "Android Application":

5

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

Figure 3. Eclipse "Run As" List

If you have more than one emulator AVD or device available, you will then
get an option to choose which you wish to run the application on.
Otherwise, if you do not have a device plugged in, the emulator will start up
with the AVD you created earlier. Then, Eclipse will install the application
on your device or emulator and start it up.

Step #2: Outside of Eclipse

For developers not using Eclipse, in your terminal, change into the
Skeleton/Now directory, then run the following command:

ant clean install

The Ant-based build should emit a list of steps involved in the installation
process, which look like this:

Buildfile: /home/some-balding-guy/projects/Skeleton/Now/build.xml
 [setup] Android SDK Tools Revision 8
 [setup] Project Target: Google APIs
 [setup] Vendor: Google Inc.
 [setup] Platform Version: 2.1-update1
 [setup] API level: 7
 [setup]

6

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

 [setup] ------------------
 [setup] Resolving library dependencies:
 [setup] No library dependencies.
 [setup]
 [setup] ------------------
 [setup]
 [setup] WARNING: No minSdkVersion value set. Application will install on all
Android versions.
 [setup]
 [setup] Importing rules file: tools/ant/main_rules.xml

clean:
 [delete] Deleting directory /home/some-balding-guy/projects/Skeleton/Now/bin

-debug-obfuscation-check:

-set-debug-mode:

-compile-tested-if-test:

-dirs:
 [echo] Creating output directories if needed...
 [mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin
 [mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/gen
 [mkdir] Created dir: /home/some-balding-guy/projects/Skeleton/Now/bin/classes

-pre-build:

-resource-src:
 [echo] Generating R.java / Manifest.java from the resources...

-aidl:
 [echo] Compiling aidl files into Java classes...

-pre-compile:

compile:
 [javac] /opt/android-sdk-linux/tools/ant/main_rules.xml:361: warning:
'includeantruntime' was not set, defaulting to build.sysclasspath=last; set to
false for repeatable builds
 [javac] Compiling 2 source files to /home/some-balding-
guy/projects/Skeleton/Now/bin/classes

-post-compile:

-obfuscate:

-dex:
 [echo] Converting compiled files and external libraries into /home/some-
balding-guy/projects/Skeleton/Now/bin/classes.dex...

-package-resources:
 [echo] Packaging resources
 [aapt] Creating full resource package...

7

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Your First Android Project

-package-debug-sign:
[apkbuilder] Creating Now-debug-unaligned.apk and signing it with a debug key...

debug:
 [echo] Running zip align on final apk...
 [echo] Debug Package: /home/some-balding-guy/projects/Skeleton/Now/bin/Now-
debug.apk

BUILD SUCCESSFUL
Total time: 4 seconds

Note the BUILD SUCCESSFUL at the bottom – that is how you know the
application compiled successfully.

When you have a clean build, in your emulator or device, open up the
application launcher, typically found at the bottom of the home screen:

Figure 4. Android emulator application launcher

Notice there is an icon for your Now application. Click on it to open it and
see your first activity in action. To leave the application and return to the
launcher, press the "BACK button", located to the right of the [MENU]
button, and looks like an arrow pointing to the left.

8

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 2

A Simple Form

This tutorial is the first of several that will build up a "lunch list"
application, where you can track various likely places to go to lunch. While
this application may seem silly, it will give you a chance to exercise many
features of the Android platform. Besides, perhaps you may even find the
application to be useful someday.

Step-By-Step Instructions

Here is how you can create this application:

Step #1: Generate the Application Skeleton

First, we need to create a new project. As with many sections of this book,
this one has separate instructions for people using Eclipse and people
working outside of Eclipse.

Eclipse

Use the new-project wizard to create an empty Android project named
LunchList, as described in the previous tutorial. This will create an
application skeleton for you, complete with everything you need to build
your first Android application: Java source code, build instructions, etc.

9

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

In particular:

• Choose API Level 8 with the Google APIs as your build target, so
you can add a map to the application later in this book

• Also use API Level 8 as the minimum SDK version

• Name the project LunchList, with an initial activity also named
LunchList

• Use apt.tutorial for the package name

Your Eclipse new Android project wizard window will look a bit like:

10

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 5. The Eclipse new Android project wizard, with settings for LunchList

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 6. The Eclipse new Android project wizard, with settings for LunchList
(continued)

Outside of Eclipse

If you are not using Eclipse, then inside your terminal (e.g., Command
Prompt for Windows), switch to some directory where you would like the
project to be created . Then, run the following command:

android create project --target "Google Inc.:Google APIs:8" --path ./LunchList
--activity LunchList --package apt.tutorial

12

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

This will create an application skeleton for you, complete with everything
you need to start building the LunchList application.

Step #2: Modify the Layout

Now, we need to set up the initial user interface.

Eclipse

In the Package Explorer tab (typically on the left), find the
res/layout/main.xml file in your project:

Figure 7. The Package Explorer for LunchList

Double-click on that file to open it up in Eclipse. Initially, it will appear in
the GUI builder mode, where you can drag-and-drop widgets on the screen:

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 8. The LunchList main activity layout

By default, your activity's layout will have just a "hello, world" sort of
TextView inside of it. We want to change this to have:

• A vertical LinearLayout, holding onto...

• ...a horizontal LinearLayout, with a TextView and EditText for
capturing the name of a restaurant, and...

• ...another horizontal LinearLayout, with another TextView and
EditText for getting the address of the restaurant, and...

• ...a Button labeled "Save"

First, delete the existing TextView, by clicking on it and pressing the Delete
key.

Then, let's add the initial horizontal LinearLayout. In the tool palette on the
left side of the graphical editor, click on the Layouts accordion button:

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 9. The graphical editor tool palette

Drag a "LinearLayout (Horizontal)" from the tool palette to anywhere in
the Android screen in the editor itself:

15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 10. The LunchList main activity layout, with the added horizontal
LinearLayout

Next, switch to the Form Widgets section of the tool palette:

16

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 11. The graphical editor tool palette, showing "Form Widgets"

Now, drag and drop a TextView (upper-left corner of the Form Widgets area
of the tool palette) into the LinearLayout:

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 12. The LunchList main activity layout, with the added TextView

To change the text of the TextView, right-click over it and choose Properties
> Text in the context menu. This brings up a dialog where you can type in
the new value to be displayed. Enter Name: and click OK, which then
updates the main graphical editor to match:

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 13. The LunchList main activity layout, with the revised TextView

Next, switch to the Text Fields portion of the tool palette:

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 14. The graphical editor tool palette, showing "Text Fields"

Drag the top-most EditText (the one labeled "abc") into the horizontal
LinearLayout to the right of your TextView:

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 15. The LunchList main activity layout, with the added ExitText

We need to associate an ID value with this EditText, so we can refer back to
it later. To do that, right-click over the EditText and choose "Edit ID..." from
the context menu. In the dialog that appears, enter name and click OK.

Then, switch back to the Layouts section of the tool palette and drag a
second "LinearLayout (Horizontal)" from the tool palette to anywhere in
the Android screen beneath the first horizontal LinearLayout:

21

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 16. The LunchList main activity layout, with the second horizontal
LinearLayout

Switch back to the Form Widgets section of the tool palette and drag a
TextView into the second horizontal LinearLayout:

22

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 17. The LunchList main activity layout, with the second TextView

Right-click on the second TextView, choose Properties > Text from the
context menu, fill in a value of Address:, and click OK, giving you this:

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 18. The LunchList main activity layout, with the modified second
TextView

Now, switch back to the Text Fields portion of the tool palette and drag
another EditText into the layout, to the right of your new TextView:

24

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 19. The LunchList main activity layout, with the second EditText

Right-click on the EditText, choose "Edit ID...", fill in a value of addr, and
click OK – this assigns an android:id value to the widget.

Then, switch back to the Form Widgets portion of the tool palette, and drag
a Button widget (upper-right of the palette) into the form, below the two
horizontal LinearLayout widgets:

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 20. The LunchList main activity layout, with the Button

The Button, by default, has its width set to wrap_content, meaning that it will
only take up as much space as is required by the caption. To give the user a
bigger target, we can make it fill the width of the screen. To do this, with
the Button widget selected (blue outline with the blue squares on the
perimeter), click the "Toggle Fill Width" toolbar button above the form – it
looks like a horizontal two-headed arrow. This will cause the Button to now
fill the width:

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 21. The LunchList main activity layout, with the resized Button

We need to adjust the caption of the Button to be something other than
"Button". To do this, right-click on the Button, choose Properties > Text
from the context menu, fill in a value of Save in the dialog, and click OK:

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 22. The LunchList main activity layout, with the newly-captioned Button

Now, we need to give the Button an ID value, so we can refer to it at
runtime. To do this, right-click on the Button, choose "Edit ID..." from the
context menu, enter save in the dialog, and click OK.

Finally, save this file, via the standard Eclipse save-file toolbar button, or via
File|Save from the main menu, or by pressing <Ctrl>-<S>.

Outside of Eclipse

Using your text editor, open the LunchList/res/layout/main.xml file.
Initially, that file will look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
<TextView

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Hello World, LunchList"
 />
</LinearLayout>

Change that layout to look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Name:"
 />
 <EditText android:id="@+id/name"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Address:"
 />
 <EditText android:id="@+id/addr"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
</LinearLayout>

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

This gives us a three-row form: one row with a labeled field for the
restaurant name, one with a labeled field for the restaurant address, and a
big Save button.

Step #3: Support All Screen Sizes

You may want to test this application on an emulator. You may want to test
it on a phone. You may want to test it on a tablet.

The layouts we use in these tutorials will work on a variety of screen sizes,
but they will work better if we tell Android that we do indeed need those
screen sizes. To that end, we need to modify the manifest for our project, to
add a <supports-screens> element, declaring what sizes we support and do
not.

Once again, there are separate instructions depending on whether you are
using Eclipse or not.

Eclipse

In the Package Explorer tree (typically on the left), find
AndroidManifest.xml:

Figure 23. The Eclipse Package Manager

30

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Double-click on that file to bring up the graphical manifest editor:

Figure 24. The LunchList manifest, in the Eclipse manifest editor

Click the Add... button to the right of the list of "Manifest Extras", which
brings up an untitled dialog that resembles the following:

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 25. The Eclipse manifest extras dialog

Click on "Supports Screens", then click the OK button. This will add a
"Supports Screens" entry in the "Manifest Extras" list:

32

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Figure 26. The LunchList manifest with the "Supports Screens" extra

In the "Attributes for Supports Screens" area to the right of the "Manifest
Extras" list, change "Small Screens" to false and both "Normal Screens" and
"Large Screens" to true, using the drop-down lists:

Figure 27. Attributes for Supports Screens, with proper settings

Then, save the manifest file (e.g., via <Ctrl>-<S>).

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Outside of Eclipse

Open the AndroidManifest.xml file in the root of your project tree, and add
in a <supports-screens> element. The resulting file should resemble:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Here, we are declaring that we support normal, and large, but not small
screens. Android will not automatically scale down our UI, so our
application will not run on a small-screen device (typically under 3"
diagonal screen size). However, it will run well on everything bigger than
that.

Step #4: Run the Application

If you are using Eclipse, you should be able to run the application (e.g.,
click the green "play" toolbar button). The first time you run an Android
project (or any Eclipse project), you will be prompted to choose how you
want to run it – choose "Android Application". If your emulator is not
already running, Eclipse will auto-start it for you, then will install your
application and run the initial activity. Note, though, that Eclipse cannot
dismiss the "keyguard" (on phones, that's the "slide the green dot to the
right" screen you get to prevent "butt-dialing" somebody), so you will have
to do that yourself.

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

If you are not using Eclipse, compile and install the application in the
emulator by running the following commands in your terminal:

ant clean install

Then, in your emulator, in the application launcher, you will see an icon for
your LunchList application. Click it to bring up your form.

Regardless of whether you run the application from Eclipse or just from the
emulator launcher, you should see a UI like this:

Figure 28. The first edition of LunchList

Use the directional pad (D-pad) to navigate between the fields and button.
Enter some text in the fields and click the button, to see how those widgets
behave. Then, click the BACK button to return to the application launcher.

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Step #5: Create a Model Class

Now, we want to add a class to the project that will hold onto individual
restaurants that will appear in the LunchList. Right now, we can only really
work with one restaurant, but that will change in a future tutorial.

So, create a new file named LunchList/src/apt/tutorial/Restaurant.java
with the following contents:

package apt.tutorial;

public class Restaurant {
 private String name="";
 private String address="";

 public String getName() {
 return(name);
 }

 public void setName(String name) {
 this.name=name;
 }

 public String getAddress() {
 return(address);
 }

 public void setAddress(String address) {
 this.address=address;
 }
}

Eclipse users can right-click over apt.tutorial in the Package Explorer and
choose New > Class from the context menu to bring up the new class
dialog, setting the class name to be Restaurant. Non-Eclipse users can
simply create a file with the appropriate content in the appropriate
location.

This is simply a rudimentary model, with private data members for the
name and address, and getters and setters for each of those.

Of course, don't forget to save your changes!

36

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

Step #6: Save the Form to the Model

Finally, we want to hook up the Save button, such that when it is pressed,
we update a restaurant object based on the two EditText fields. To do this,
open up the LunchList/src/apt/tutorial/LunchList.java file and replace the
generated Activity implementation with the one shown below:

package apt.tutorial;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class LunchList extends Activity {
 Restaurant r=new Restaurant();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);
 }

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 EditText name=(EditText)findViewById(R.id.name);
 EditText address=(EditText)findViewById(R.id.addr);

 r.setName(name.getText().toString());
 r.setAddress(address.getText().toString());
 }
 };
}

In Eclipse, you will find the LunchList activity in the src/ tree of the Package
Explorer, just like any other Java project.

Here, we:

• Create a single local restaurant instance when the activity is
instantiated

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Simple Form

• Get our Button from the Activity via findViewById(), then connect it
to a listener to be notified when the button is clicked

• In the listener, we get our two EditText widgets via findViewById(),
then retrieve their contents and put them in the restaurant

This code sample shows the use of an anonymous inner class
implementation of a View.OnClickListener, named onSave. This technique is
used in many places throughout this book, as it is a convenient way to
organize bits of custom code that go into these various listener objects.

Then, run the ant install command to compile and update the emulator,
or re-run the project from Eclipse. Run the application to make sure it
seems like it runs without errors, though at this point we are not really
using the data saved in the restaurant object just yet.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Try replacing the icon for your application. To do this, you will need
to find a suitable 48x48 pixel image, create a drawable/ directory
inside your res/ directory in the project, and adjust the
AndroidManifest.xml file to contain an android:icon =

"@drawable/my_icon" attribute in the application element, where
my_icon is replaced by the base name of your image file.

• Try playing with the fonts for use in both the TextView and EditText
widgets. The Android SDK documentation will show a number of
XML attributes you can manipulate to change the color, make the
text boldface, etc.

Further Reading

You can learn more about XML layouts in the "Using XML-Based Layouts"
chapter of The Busy Coder's Guide to Android Development. Similarly, you
can learn more about simple widgets, like fields and buttons, in the

38

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android

A Simple Form

"Employing Basic Widgets" chapter of the same book, where you will also
find "Working with Containers" for container classes like LinearLayout.

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 3

A Fancier Form

In this tutorial, we will switch to using a TableLayout for our restaurant data
entry form, plus add a set of radio buttons to represent the type of
restaurant.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 02-SimpleForm edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Switch to a TableLayout

A TableLayout will make our form a bit neater, in that the columns will line
up, as opposed to the ragged look we get with the nested LinearLayout
containers.

As usual, there are separate instructions for those of you using Eclipse and
those of you not using Eclipse.

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

Eclipse

Unfortunately, at the time of this writing, Eclipse lacks much support for
reorganizing existing layouts. You cannot drag and drop widgets into new
containers and such very readily, let alone convert a LinearLayout into a
TableLayout without deleting its contents. Hence, this is a case where we are
forced to work more at the XML level.

If you double-click on the res/layout/main.xml resource to bring it up in the
graphical editor, there are actually two sub-tabs at the bottom of the editor
pane. One is "Graphical Layout", which is the drag-and-drop mode you
used in the previous tutorial. The other is "main.xml":

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

Figure 29. The left side of the editor pane, showing the two sub-tabs at the
bottom

Clicking the "main.xml" sub-tab brings up the XML source for the layout
file:

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

Figure 30. The LunchList main activity layout XML source

Select the whole thing and replace it with:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name" />
 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr" />
 </TableRow>
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
</TableLayout>

44

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

Notice that we replaced the three LinearLayout containers with a
TableLayout and two TableRow containers. We also set up the EditText
column to be stretchable.

If you switch back to the "Graphical Layout" sub-tab, you will see the
preview of the modified layout:

Figure 31. The LunchList main activity layout preview, after modifications

You will notice that the toolbar atop the preview itself has changed. Rather
than having buttons to change the desired width (e.g., as we used for the
Save button), there is now one that will add a new TableRow to the
TableLayout.

At this point, you can run the modified project on your device or emulator.

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

Outside of Eclipse

First, open LunchList/res/layout/main.xml and modify its contents to look
like the following:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name" />
 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr" />
 </TableRow>
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
</TableLayout>

Notice that we replaced the three LinearLayout containers with a
TableLayout and two TableRow containers. We also set up the EditText
column to be stretchable.

Recompile and reinstall the application, then run it in the emulator.

All Environments

When you run the application, you should see something like this:

46

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

Figure 32. Using a TableLayout

Notice how the two EditText fields line up, whereas before, they appeared
immediately after each label.

NOTE: At this step, or any other, when you try to run your application, you
may get the following screen:

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

Figure 33. A "force-close" dialog

If you encounter this, first try to do a full rebuild of the project. In Eclipse,
this would involve doing Project > Force Clean. At the command line, use
ant clean or delete the contents of your bin/ and gen/ directories, then ant
install. If the problem persists after this, then there is a bug in your code
somewhere. You can use adb logcat, DDMS, or the DDMS perspective in
Eclipse to see the Java stack trace associated with this crash, to help you
perhaps diagnose what is going on.

Step #2: Add a RadioGroup

Next, we should add some RadioButton widgets to indicate the type of
restaurant this is: one that offers take-out, one where we can sit down, or
one that is only a delivery service.

As is usual with UI changes, there are separate instructions for Eclipse users
and everybody else.

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

Eclipse

The add-row toolbar button in the graphical editor, visible when you have a
TableLayout as the base layout for the activity, will add a row above the
currently-selected row. So, click on the Save button, then click the add-row
toolbar button. That will insert a blank row after the address row and
before the Save button:

Figure 34. The LunchList main activity layout preview, with the new row

From the "Form Widgets" portion of the tool palette, drag a TextView into
the row. Right-click on it, choose Properties > Text... from the context
menu, and give it a caption of Type:, which will then give you the following
result:

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

Figure 35. The LunchList main activity layout preview, with the added
TextView

Next, drag a RadioGroup into the row. The RadioGroup icon is in the "Form
Widgets" portion of the tool palette and looks like three radio buttons side-
by-side. This will give you something that looks like this:

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

Figure 36. The LunchList main activity layout preview, with the added
RadioGroup

You will note that it not only puts in the group, but adds three RadioButton
widgets for us. As it turns out, that is precisely how many we need, though
we could click on existing ones to delete extras, or drag other RadioButton
widgets from the tool palette into the group. The RadioGroup is set to have
vertical orientation, which is a good default and what we need to use here,
though we could modify that via the context menu on the RadioGroup if we
needed to.

However, we do need to set the android:id value for the RadioGroup. To do
this, right-click on the RadioGroup (to the right of the RadioButton widgets,
so you do not right-click on one of those), choose Edit ID... from the
context menu, fill in a value of types, and click OK.

Also, we do need to adjust the RadioButton widgets – if nothing else, we
need more useful captions. So, right-click on the top RadioButton, and
choose Properties > Text... from the context menu, and give it a caption of
Take-Out. Also, right-click on it, choose Edit ID... from the context menu,

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

and give it an ID value of take_out. Repeat those steps for the other two
RadioButton widgets, with Sit-Down and sit_down for the second widget's
caption and ID, and Delivery and delivery for the third widget's caption and
ID. This should give you:

Figure 37. The LunchList main activity layout preview, with the configured
RadioButton widgets

At this point, save your layout file, then run the project to see your changes
in action.

Outside of Eclipse

To do this, modify LunchList/res/layout/main.xml once again, this time to
look like:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1"

52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

 android:shrinkColumns="1"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name" />
 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr" />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />
 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"
 android:text="Delivery"
 />
 </RadioGroup>
 </TableRow>
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
</TableLayout>

Our RadioGroup and RadioButton widgets go inside the TableLayout, so they
will line up with the rest of table – you can see this once you recompile,
reinstall, and run the application. Also note that we make one of the
RadioButton widgets be checked at the outset.

Step #3: Update the Model

Right now, our model class has no place to hold the restaurant type. To
change that, modify LunchList/src/apt/tutorial/Restaurant.java to add in a
new private String type data member and a getter/setter pair, like these:

public String getType() {
 return(type);
}

public void setType(String type) {

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

 this.type=type;
}

When you are done, your restaurant class should look something like this:

package apt.tutorial;

public class Restaurant {
 private String name="";
 private String address="";
 private String type="";

 public String getName() {
 return(name);
 }

 public void setName(String name) {
 this.name=name;
 }

 public String getAddress() {
 return(address);
 }

 public void setAddress(String address) {
 this.address=address;
 }

 public String getType() {
 return(type);
 }

 public void setType(String type) {
 this.type=type;
 }
}

Step #4: Save the Type to the Model

Finally, we need to wire our RadioButton widgets to the model, such that
when the user clicks the Save button, the type is saved as well. To do this,
modify the onSave listener object to look like this:

private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 EditText name=(EditText)findViewById(R.id.name);
 EditText address=(EditText)findViewById(R.id.addr);

 r.setName(name.getText().toString());

54

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

 r.setAddress(address.getText().toString());

 RadioGroup types=(RadioGroup)findViewById(R.id.types);

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 r.setType("sit_down");
 break;

 case R.id.take_out:
 r.setType("take_out");
 break;

 case R.id.delivery:
 r.setType("delivery");
 break;
 }
 }
};

Note that you will also need to import android.widget.RadioGroup for this to
compile. The full activity will then look like this:

package apt.tutorial;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.RadioGroup;

public class LunchList extends Activity {
 Restaurant r=new Restaurant();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);
 }

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 EditText name=(EditText)findViewById(R.id.name);
 EditText address=(EditText)findViewById(R.id.addr);

 r.setName(name.getText().toString());
 r.setAddress(address.getText().toString());

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

 RadioGroup types=(RadioGroup)findViewById(R.id.types);

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 r.setType("sit_down");
 break;

 case R.id.take_out:
 r.setType("take_out");
 break;

 case R.id.delivery:
 r.setType("delivery");
 break;
 }
 }
 };
}

Recompile, reinstall, and run the application. Confirm that you can save the
restaurant data without errors.

If you are wondering what will happen if there is no selected RadioButton,
the RadioGroup call to getCheckedRadioButtonId() will return -1, which will
not match anything in our switch statement, and so the model will not be
modified.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• If you have an Android device, try installing the app on the device
and running it there. The easiest way to do this is to shut down your
emulator, plug in your device, and run ant reinstall.

• Try creating the RadioButton widgets in Java code, instead of in the
layout. To do this, you will need to create the RadioButton objects
themselves, configure them (e.g., supply them with text to display),
then add them to the RadioGroup via addView().

• Try adding more RadioButton widgets than there are room to display
on the screen. Note how the screen does not automatically scroll to
show them. Then, wrap your entire layout in a ScrollView container,

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fancier Form

and see how the form can now scroll to accommodate all of your
widgets.

Further Reading

You can learn more about radio buttons in the "Employing Basic Widgets"
chapter of The Busy Coder's Guide to Android Development. Also, you will
find material on TableLayout in the "Working with Containers" chapter of
the same book.

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 4

Adding a List

In this tutorial, we will change our model to be a list of restaurants, rather
than just one. Then, we will add a ListView to view the available restaurants.
This will be rather incomplete, in that we can only add a new restaurant,
not edit or delete an existing one, but we will cover those steps too in a later
tutorial.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 03-FancierForm edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Hold a List of Restaurants

First, if we are going to have a list of restaurants in the UI, we need a list of
restaurants as our model. So, in LunchList, change:

Restaurant r=new Restaurant();

to:

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Adding a List

List<Restaurant> model=new ArrayList<Restaurant>();

Note that you will need to import java.util.List and java.util.ArrayList
as well.

Step #2: Save Adds to List

Note that the above code will not compile, because our onSave Button click
handler is still set up to reference the old single restaurant model. For the
time being, we will have onSave simply add a new restaurant.

All we need to do is add a local restaurant r variable and populate it:

private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 Restaurant r=new Restaurant();
 EditText name=(EditText)findViewById(R.id.name);
 EditText address=(EditText)findViewById(R.id.addr);

 r.setName(name.getText().toString());
 r.setAddress(address.getText().toString());

 RadioGroup types=(RadioGroup)findViewById(R.id.types);

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 r.setType("sit_down");
 break;

 case R.id.take_out:
 r.setType("take_out");
 break;

 case R.id.delivery:
 r.setType("delivery");
 break;
 }
 }
};

At this point, you should be able to rebuild and reinstall the application.
Test it out to make sure that clicking the button does not cause any
unexpected errors.

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Adding a List

You will note that we are not adding the actual restaurant to anything – r is
a local variable and so goes out of scope after onClick() returns. We will
address this shortcoming later in this exercise.

Step #3: Implement toString()

To simplify the creation of our ListView, we need to have our restaurant
class respond intelligently to toString(). That will be called on each
restaurant as it is displayed in our list.

For the purposes of this tutorial, we will simply use the name – later
tutorials will make the rows much more interesting and complex.

So, add a toString() implementation on restaurant like this:

public String toString() {
 return(getName());
}

Recompile and ensure your application still builds.

Step #4: Add a ListView Widget

Now comes the challenging part – adding the ListView to the layout.

The challenge is in getting the layout right. Right now, while we have only
the one screen to work with, we need to somehow squeeze in the list
without eliminating space for anything else. In fact, ideally, the list takes up
all the available space that is not being used by our current detail form.

One way to achieve that is to use a RelativeLayout as the over-arching
layout for the screen. We anchor the detail form to the bottom of the
screen, then have the list span the space from the top of the screen to the
top of the detail form.

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Adding a List

Unfortunately, for Eclipse users, there does not seem to be a good way to
accomplish this purely via drag-and-drop, short of starting over from
scratch. It is simpler to modify the XML directly.

To make this change, replace your current LunchList/res/layout/main.xml
with the following:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <TableLayout android:id="@+id/details"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:stretchColumns="1"
 android:shrinkColumns="1"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name" />
 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr" />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />
 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"
 android:text="Delivery"
 />
 </RadioGroup>
 </TableRow>
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
 </TableLayout>
 <ListView android:id="@+id/restaurants"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

62

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Adding a List

 android:layout_alignParentTop="true"
 android:layout_above="@id/details"
 />
</RelativeLayout>

From an XML standpoint, here we:

• Wrap the entire existing XML in a RelativeLayout element, moving
our xmlns:android declaration to the new root

• Add android:layout_alignParentBottom="true" to the TableLayout, to
position it on the bottom

• Add android:id="@+id/details" to the TableLayout, so we can
position the ListView relative to it

• Change android:layout_height to wrap_content on the TableLayout, to
leave room for the ListView

• Add the ListView element and its attributes

If you recompile and rebuild the application, then run it, you will see our
form slid to the bottom, with empty space at the top:

63

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Adding a List

Figure 38. Adding a list to the top and sliding the form to the bottom

Step #5: Build and Attach the Adapter

The ListView will remain empty, of course, until we do something to
populate it. What we want is for the list to show our running lineup of
restaurant objects.

Since we have our ArrayList<Restaurant>, we can easily wrap it in an
ArrayAdapter<Restaurant>. This also means, though, that when we add a
restaurant, we need to add it to the ArrayAdapter via add() – the adapter
will, in turn, put it in the ArrayList. Otherwise, if we add it straight to the
ArrayList, the adapter will not know about the added restaurant and
therefore will not display it.

Here is the new implementation of the LunchList class:

package apt.tutorial;

import android.app.Activity;

64

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Adding a List

import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.RadioGroup;
import java.util.ArrayList;
import java.util.List;

public class LunchList extends Activity {
 List<Restaurant> model=new ArrayList<Restaurant>();
 ArrayAdapter<Restaurant> adapter=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);

 ListView list=(ListView)findViewById(R.id.restaurants);

 adapter=new ArrayAdapter<Restaurant>(this,
 android.R.layout.simple_list_item_1,
 model);
 list.setAdapter(adapter);
 }

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 Restaurant r=new Restaurant();
 EditText name=(EditText)findViewById(R.id.name);
 EditText address=(EditText)findViewById(R.id.addr);

 r.setName(name.getText().toString());
 r.setAddress(address.getText().toString());

 RadioGroup types=(RadioGroup)findViewById(R.id.types);

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 r.setType("sit_down");
 break;

 case R.id.take_out:
 r.setType("take_out");
 break;

 case R.id.delivery:
 r.setType("delivery");
 break;

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Adding a List

 }

 adapter.add(r);
 }
 };
}

The magic value android.R.layout.simple_list_item_1 is a stock layout for a
list row, just displaying the text of the object in white on a black
background with a reasonably large font. In later tutorials, we will change
the look of our rows to suit our own designs.

If you then add a few restaurants via the form, it will look something like
this:

Figure 39. Our LunchList with a few fake restaurants added

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Adding a List

• See what the activity looks like if you use a Spinner instead of a
ListView.

• Make the address field, presently an EditText widget, into an
AutoCompleteTextView, using the other addresses as values to possibly
reuse (e.g., for multiple restaurants in one place, such as a food
court or mall).

Further Reading

Information on ListView and other selection widgets can be found in the
"Using Selection Widgets" chapter of The Busy Coder's Guide to Android
Development.

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android
http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 5

Making A More Elaborate List

In this tutorial, we will update the layout of our ListView rows, so they show
both the name and address of the restaurant, plus an icon indicating the
type. Along the way, we will need to create our own custom ListAdapter to
handle our row views and a RestaurantHolder to populate a row from a
restaurant.

Regarding the notion of adapters and ListAdapter, to quote from The Busy
Coder's Guide to Android Development:

In the abstract, adapters provide a common interface to mul­
tiple disparate APIs. More specifically, in Android's case,
adapters provide a common interface to the data model be­
hind a selection­style widget, such as a listbox...Android's
adapters are responsible for providing the roster of data for a
selection widget plus converting individual elements of data
into specific views to be displayed inside the selection widget.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 04-ListView edition of LunchList to use as a starting point. If you are

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Create a Stub Custom Adapter

First, let us create a stub implementation of a RestaurantAdapter that will be
where we put our logic for creating our own custom rows. That can look
like this, implemented as an inner class of LunchList:

class RestaurantAdapter extends ArrayAdapter<Restaurant> {
 RestaurantAdapter() {
 super(LunchList.this,
 android.R.layout.simple_list_item_1,
 model);
 }
}

We hard-wire in the android.R.layout.simple_list_item_1 layout for now,
and we get our Activity and model from LunchList itself.

We also need to change our adapter data member to be a RestaurantAdapter,
both where it is declared and where it is instantiated in onCreate(). Make
these changes, then rebuild and reinstall the application and confirm it
works as it did at the end of the previous tutorial.

Step #2: Design Our Row

Next, we want to design a row that incorporates all three of our model
elements: name, address, and type. For the type, we will use three icons,
one for each specific type (sit down, take-out, delivery). You can use
whatever icons you wish, but they need to be named ball_red.png,
ball_yellow.png, and ball_green.png, all located in res/drawable/ in your
project.

NOTE: If your project has no res/drawable/ directory, but does have
res/drawable-ldpi/ and others with similar suffixes, rename res/drawable-
mdpi/ to res/drawable/ directory for use in this project, and delete the other
res/drawable-* directories.

70

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

NOTE #2: Links to download the three icons used in this tutorial are:

• ball_green.png

• ball_red.png

• ball_yellow.png

The general layout is to have the icon on the left and the name stacked atop
the address to the right:

Figure 40. A fancy row for our fancy list

To achieve this look, we use a nested pair of LinearLayout containers. And,
once again, we have separate instructions for those of you using Eclipse and
those of you who are not.

Eclipse

To add a new layout resource, simply right-click on the res/layout/
directory in the Package Explorer, and choose New > File from the options
menu. That will bring up the new-file dialog:

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

https://github.com/commonsguy/cw-lunchlist/raw/master/05-FancyList/LunchList/res/drawable/ball_yellow.png
https://github.com/commonsguy/cw-lunchlist/raw/master/05-FancyList/LunchList/res/drawable/ball_red.png
https://github.com/commonsguy/cw-lunchlist/raw/master/05-FancyList/LunchList/res/drawable/ball_green.png

Making A More Elaborate List

Figure 41. The Eclipse new-file dialog

Fill in row.xml as the name and click Finish. It will show up in your Package
Explorer with a red X, indicating a problem:

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

Figure 42. The Eclipse Package Explorer, showing our new and incomplete file

That is because there is no content in the file yet. To address this, from the
Layouts section of the tool palette, drag a "LinearLayout (Horizontal)" into
the open area of the graphical editor and drop it. That will set up the initial
contents of the file, with our root container.

Then, right-click anywhere on the main area of the preview (basically,
where our LinearLayout resides) and choose Properties > Padding from the
context menu. Fill in a value of 4dip and click OK.

Next, in the "Images & Media" section of the tool palette, drag an ImageView
into the LinearLayout. The ImageView is the widget in the upper-left corner
of the "Images & Media" section of the tool palette – if you hover your
mouse over it, the tool-tip will indicate the class. Immediately, you will be
presented with a dialog to choose a "drawable resource" to apply to the
image, via a Resource Chooser:

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

Figure 43. The Eclipse drawable Resource Chooser

We will get more into resources later in the book – for now, take it on faith
that this is a list of all the images in your various resource directories. Click
on ball_green and click OK. This will give you the following preview:

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

Figure 44. The current working edition of the row layout

Right-click over the ImageView, choose Edit ID... from the context menu, and
fill in an ID of icon.

Our existing LinearLayout is set to fill the screen, which is not ideal for a
row in the list. Click the toolbar button above the preview that looks like a
pair of vertically-oriented arrowheads, to switch the height to be
wrap_content. There will be no visual result, other than the toolbar button
no longer being inset.

Now, we need to add a vertical LinearLayout for the two TextView widgets.
From the Layouts section of the tool palette, drag a "LinearLayout (Vertical)"
to the layout, dropping it to the right of the ImageView. Use the toolbar

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

toggle button to change the width to match_parent (click the pair of
horizontally-oriented arrowheads).

Next, from the "Form Widgets" section of the tool palette, drag a TextView
into the newly-created vertical LinearLayout. Make the following
adjustments to that widget:

• Give it an ID of title by choosing Edit ID... from the context menu

• Have it fill the width of the LinearLayout by toggling the width
toolbar button (click the pair of horizontally-oriented arrowheads)

• Make it boldface by choosing Properties > Text Style > Bold from
the context menu

• Set the maximum number of lines to be 1 by choosing Properties >
Max Lines from the context menu

• Set the ellipsis rule to be end by choosing Properties > Ellipsize >
End from the context menu

Now, drag another TextView into the vertical LinearLayout, below the
TextView you just added. Make the following adjustments to that widget:

• Give it an ID of address by choosing Edit ID... from the context
menu

• Have it fill the width of the LinearLayout by toggling the width
toolbar button (click the pair of horizontally-oriented arrowheads)

• Set the maximum number of lines to be 1 by choosing Properties >
Max Lines from the context menu

• Set the ellipsis rule to be end by choosing Properties > Ellipsize >
End from the context menu

With the second TextView selected (has the blue outline and drag handles),
shift-click on the top TextView (hold the Shift key while clicking) to select
both widgets. Now, changes you make will affect both widgets. Click the
"Change Gravity" toolbar button (sixth from left, looks like arrows pointing
to the four corners) and choose "Center Vertical" from the popup menu.
Then, click the "Distribute Weights Evenly" toolbar button (second from

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

right, looks like a pair of rectangles separated by a vertical bar), dividing the
total height of the row between them.

At this point, you can save your changes, using the standard Eclipse save-
file options (e.g., Ctrl-S).

Outside of Eclipse

Use the following XML as the basis for LunchList/res/layout/row.xml:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:padding="4dip"
 >
 <ImageView android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_alignParentTop="true"
 android:layout_alignParentBottom="true"
 android:layout_marginRight="4dip"
 />
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 >
 <TextView android:id="@+id/title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:gravity="center_vertical"
 android:textStyle="bold"
 android:maxLines="1"
 android:ellipsize="end"
 />
 <TextView android:id="@+id/address"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:gravity="center_vertical"
 android:maxLines="1"
 android:ellipsize="end"
 />
 </LinearLayout>
</LinearLayout>

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

Some of the unusual attributes applied in this layout include:

• android:padding, which arranges for some whitespace to be put
outside the actual widget contents but still be considered part of the
widget (or container) itself when calculating its size

• android:textStyle, where we can indicate that some text is in bold
or italics

• android:maxLines, which indicates how many lines the text should
appear on, at most

• android:ellipsize, which indicates where text should be truncated
and ellipsized if it is too long for the available space

Step #3: Override getView(): The Simple Way

Next, we need to use this layout ourselves in our RestaurantAdapter. To do
this, we need to override getView() and inflate the layout as needed for
rows.

Modify RestaurantAdapter to look like the following:

class RestaurantAdapter extends ArrayAdapter<Restaurant> {
 RestaurantAdapter() {
 super(LunchList.this,
 android.R.layout.simple_list_item_1,
 model);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, null);
 }

 Restaurant r=model.get(position);

 ((TextView)row.findViewById(R.id.title)).setText(r.getName());
 ((TextView)row.findViewById(R.id.address)).setText(r.getAddress());

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

78

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

 if (r.getType().equals("sit_down")) {
 icon.setImageResource(R.drawable.ball_red);
 }
 else if (r.getType().equals("take_out")) {
 icon.setImageResource(R.drawable.ball_yellow);
 }
 else {
 icon.setImageResource(R.drawable.ball_green);
 }

 return(row);
 }
}

Notice how we create a row only if needed, recycling existing rows. But, we
still pick out each TextView and ImageView from each row and populate it
from the restaurant at the indicated position.

Step #4: Create a RestaurantHolder

To improve performance and encapsulation, we should move the logic that
populates a row from a restaurant into a separate class, one that can cache
the TextView and ImageView widgets.

To do this, add the following static inner class to LunchList:

static class RestaurantHolder {
 private TextView name=null;
 private TextView address=null;
 private ImageView icon=null;

 RestaurantHolder(View row) {
 name=(TextView)row.findViewById(R.id.title);
 address=(TextView)row.findViewById(R.id.address);
 icon=(ImageView)row.findViewById(R.id.icon);
 }

 void populateFrom(Restaurant r) {
 name.setText(r.getName());
 address.setText(r.getAddress());

 if (r.getType().equals("sit_down")) {
 icon.setImageResource(R.drawable.ball_red);
 }
 else if (r.getType().equals("take_out")) {
 icon.setImageResource(R.drawable.ball_yellow);

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

 }
 else {
 icon.setImageResource(R.drawable.ball_green);
 }
 }
}

Step #5: Recycle Rows via RestaurantHolder

To take advantage of the new RestaurantHolder, we need to modify
getView() in RestaurantAdapter. Following the holder pattern, we need to
create a RestaurantHolder when we inflate a new row, cache that wrapper in
the row via setTag(), then get it back later via getTag().

Change getView() to look like the following:

public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;
 RestaurantHolder holder=null;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 holder=new RestaurantHolder(row);
 row.setTag(holder);
 }
 else {
 holder=(RestaurantHolder)row.getTag();
 }

 holder.populateFrom(model.get(position));

 return(row);
}

This means the whole LunchList class looks like:

package apt.tutorial;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.ArrayAdapter;

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TextView;
import java.util.ArrayList;
import java.util.List;

public class LunchList extends Activity {
 List<Restaurant> model=new ArrayList<Restaurant>();
 RestaurantAdapter adapter=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);

 ListView list=(ListView)findViewById(R.id.restaurants);

 adapter=new RestaurantAdapter();
 list.setAdapter(adapter);
 }

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 Restaurant r=new Restaurant();
 EditText name=(EditText)findViewById(R.id.name);
 EditText address=(EditText)findViewById(R.id.addr);

 r.setName(name.getText().toString());
 r.setAddress(address.getText().toString());

 RadioGroup types=(RadioGroup)findViewById(R.id.types);

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 r.setType("sit_down");
 break;

 case R.id.take_out:
 r.setType("take_out");
 break;

 case R.id.delivery:
 r.setType("delivery");
 break;
 }

 adapter.add(r);

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

 }
 };

 class RestaurantAdapter extends ArrayAdapter<Restaurant> {
 RestaurantAdapter() {
 super(LunchList.this, R.layout.row, model);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;
 RestaurantHolder holder=null;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 holder=new RestaurantHolder(row);
 row.setTag(holder);
 }
 else {
 holder=(RestaurantHolder)row.getTag();
 }

 holder.populateFrom(model.get(position));

 return(row);
 }
 }

 static class RestaurantHolder {
 private TextView name=null;
 private TextView address=null;
 private ImageView icon=null;

 RestaurantHolder(View row) {
 name=(TextView)row.findViewById(R.id.title);
 address=(TextView)row.findViewById(R.id.address);
 icon=(ImageView)row.findViewById(R.id.icon);
 }

 void populateFrom(Restaurant r) {
 name.setText(r.getName());
 address.setText(r.getAddress());

 if (r.getType().equals("sit_down")) {
 icon.setImageResource(R.drawable.ball_red);
 }
 else if (r.getType().equals("take_out")) {
 icon.setImageResource(R.drawable.ball_yellow);
 }
 else {
 icon.setImageResource(R.drawable.ball_green);
 }

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Making A More Elaborate List

 }
 }
}

Rebuild and reinstall the application, then try adding several restaurants
and confirm that, when the list is scrolled, everything appears as it should –
the name, address, and icon all change.

Note that you may experience a problem, where your EditText widgets
shrink, failing to follow the android:stretchColumns rule. This is a bug in
Android that will hopefully be repaired one day.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Customize the rows beyond just the icon based on each restaurant,
such as applying different colors to the name based upon certain
criteria.

• Use three different layouts for the three different restaurant types.
To do this, you will need to override getItemViewType() and
getViewTypeCount() in the custom adapter to return the appropriate
data.

Further Reading

Using custom Adapter classes and creating list rows that are more than
mere strings is covered in the "Getting Fancy with Lists" chapter of The
Busy Coder's Guide to Android Development.

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android
http://commonsware.com/Android
http://code.google.com/p/android/issues/detail?id=6089
http://code.google.com/p/android/issues/detail?id=6089

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 6

Splitting the Tab

In this tutorial, we will move our ListView onto one tab and our form onto a
separate tab of a TabView. Along the way, we will also arrange to update our
form based on a ListView selections or clicks, even though the Save button
will still only add new restaurants to our list.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 05-FancyList edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Rework the Layout

First, we need to change our layout around, to introduce the tabs and split
our UI between a list tab and a details tab. This involves:

• Removing the RelativeLayout and the layout attributes leveraging it,
as that was how we had the list and form on a single screen

• Add in a TabHost, TabWidget, and FrameLayout, the latter of which is
parent to the list and details

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Splitting the Tab

Once again, this sort of refactoring is not readily possible in Eclipse using
drag-and-drop. Hence, Eclipse users will need to edit the XML of the layout
file using the main.xml sub-tab, just as non-Eclipse users would edit the
XML.

Hence, to accomplish this, replace your current
LunchList/res/layout/main.xml with the following:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/tabhost"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <ListView android:id="@+id/restaurants"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
 <TableLayout android:id="@+id/details"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1"
 android:shrinkColumns="1"
 android:paddingTop="4dip"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name" />
 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr" />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Splitting the Tab

 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"
 android:text="Delivery"
 />
 </RadioGroup>
 </TableRow>
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
 </TableLayout>
 </FrameLayout>
 </LinearLayout>
</TabHost>

Step #2: Wire In the Tabs

Next, we need to modify the LunchList itself, so it is a TabActivity (rather
than a plain Activity) and teaches the TabHost how to use our FrameLayout
contents for the individual tab panes. To do this:

1. Add imports to LunchList for android.app.TabActivity and
android.widget.TabHost

2. Make LunchList extend TabActivity

3. Obtain 32px high icons from some source to use for the list and
details tab icons, place them in LunchList/res/drawable as list.png
and restaurant.png, respectively – if you wish to use the ones shown
in the book, they are linked to here as list.png and restaurant.png

4. Add the following code to the end of your onCreate() method:

TabHost.TabSpec spec=getTabHost().newTabSpec("tag1");

spec.setContent(R.id.restaurants);
spec.setIndicator("List", getResources()
 .getDrawable(R.drawable.list));
getTabHost().addTab(spec);

spec=getTabHost().newTabSpec("tag2");
spec.setContent(R.id.details);
spec.setIndicator("Details", getResources()
 .getDrawable(R.drawable.restaurant));
getTabHost().addTab(spec);

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

https://github.com/commonsguy/cw-lunchlist/raw/master/06-Tabs/LunchList/res/drawable/restaurant.png
https://github.com/commonsguy/cw-lunchlist/raw/master/06-Tabs/LunchList/res/drawable/list.png

Splitting the Tab

getTabHost().setCurrentTab(0);

At this point, you can recompile and reinstall the application and try it out.
You should see a two-tab UI like this:

Figure 45. The first tab of the two-tab LunchList

88

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Splitting the Tab

Figure 46. The second tab of the two-tab LunchList

Step #3: Get Control On List Events

Next, we need to detect when the user clicks on one of our restaurants in
the list, so we can update our detail form with that information.

First, add an import for android.widget.AdapterView to LunchList. Then,
create an AdapterView.OnItemClickListener named onListClick:

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent,
 View view, int position,
 long id) {
 }
};

Finally, call setOnItemClickListener() on the ListView in the activity's
onCreate() to connect the ListView to the onListClick listener object
(list.setOnItemClickListener(onListClick);)

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Splitting the Tab

Step #4: Update Our Restaurant Form On Clicks

Next, now that we have control in a list item click, we need to actually find
the associated restaurant and update our details form.

To do this, you need to do two things. First, move the name, address, and
types variables into data members and populate them in the activity's
onCreate() – our current code has them as local variables in the onSave
listener object's onClick() method. So, you should have some data members
like:

EditText name=null;
EditText address=null;
RadioGroup types=null;

And some code after the call to setContentView() in onCreate() like:

name=(EditText)findViewById(R.id.name);
address=(EditText)findViewById(R.id.addr);
types=(RadioGroup)findViewById(R.id.types);

Then, add smarts to onListClick to update the details form:

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent,
 View view, int position,
 long id) {
 Restaurant r=model.get(position);

 name.setText(r.getName());
 address.setText(r.getAddress());

 if (r.getType().equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (r.getType().equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }
 }
};

90

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Splitting the Tab

Note how we find the clicked-upon restaurant via the position parameter,
which is an index into our ArrayList of restaurants.

Step #5: Switch Tabs On Clicks

Finally, we want to switch to the detail form when the user clicks a
restaurant in the list.

This is just one extra line of code, in the onItemClick() method of our
onListClick listener object:

getTabHost().setCurrentTab(1);

This just changes the current tab to the one known as index 1, which is the
second tab (tabs start counting at 0).

At this point, you should be able to recompile and reinstall the application
and test out the new functionality.

Here is the complete source code to our LunchList activity, after all of the
changes made in this tutorial:

package apt.tutorial;

import android.app.TabActivity;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TabHost;
import android.widget.TextView;
import java.util.ArrayList;
import java.util.List;

public class LunchList extends TabActivity {
 List<Restaurant> model=new ArrayList<Restaurant>();

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Splitting the Tab

 RestaurantAdapter adapter=null;
 EditText name=null;
 EditText address=null;
 RadioGroup types=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 name=(EditText)findViewById(R.id.name);
 address=(EditText)findViewById(R.id.addr);
 types=(RadioGroup)findViewById(R.id.types);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);

 ListView list=(ListView)findViewById(R.id.restaurants);

 adapter=new RestaurantAdapter();
 list.setAdapter(adapter);

 TabHost.TabSpec spec=getTabHost().newTabSpec("tag1");

 spec.setContent(R.id.restaurants);
 spec.setIndicator("List", getResources()
 .getDrawable(R.drawable.list));
 getTabHost().addTab(spec);

 spec=getTabHost().newTabSpec("tag2");
 spec.setContent(R.id.details);
 spec.setIndicator("Details", getResources()
 .getDrawable(R.drawable.restaurant));
 getTabHost().addTab(spec);

 getTabHost().setCurrentTab(0);

 list.setOnItemClickListener(onListClick);
 }

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 Restaurant r=new Restaurant();
 r.setName(name.getText().toString());
 r.setAddress(address.getText().toString());

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 r.setType("sit_down");
 break;

 case R.id.take_out:
 r.setType("take_out");

92

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Splitting the Tab

 break;

 case R.id.delivery:
 r.setType("delivery");
 break;
 }

 adapter.add(r);
 }
 };

 private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent,
 View view, int position,
 long id) {
 Restaurant r=model.get(position);

 name.setText(r.getName());
 address.setText(r.getAddress());

 if (r.getType().equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (r.getType().equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 getTabHost().setCurrentTab(1);
 }
 };

 class RestaurantAdapter extends ArrayAdapter<Restaurant> {
 RestaurantAdapter() {
 super(LunchList.this, R.layout.row, model);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;
 RestaurantHolder holder=null;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 holder=new RestaurantHolder(row);
 row.setTag(holder);
 }
 else {
 holder=(RestaurantHolder)row.getTag();

93

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Splitting the Tab

 }

 holder.populateFrom(model.get(position));

 return(row);
 }
 }

 static class RestaurantHolder {
 private TextView name=null;
 private TextView address=null;
 private ImageView icon=null;

 RestaurantHolder(View row) {
 name=(TextView)row.findViewById(R.id.title);
 address=(TextView)row.findViewById(R.id.address);
 icon=(ImageView)row.findViewById(R.id.icon);
 }

 void populateFrom(Restaurant r) {
 name.setText(r.getName());
 address.setText(r.getAddress());

 if (r.getType().equals("sit_down")) {
 icon.setImageResource(R.drawable.ball_red);
 }
 else if (r.getType().equals("take_out")) {
 icon.setImageResource(R.drawable.ball_yellow);
 }
 else {
 icon.setImageResource(R.drawable.ball_green);
 }
 }
 }
}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Add a date in the restaurant model to note the last time you visited
the restaurant, then use either DatePicker or DatePickerDialog to
allow users to set the date when they create their restaurant objects.

• Try making a version of the activity that uses a ViewFlipper and a
Button to flip from the list to the detail form, rather than using two
tabs.

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Splitting the Tab

Further Reading

The use of tabs in an Android activity is covered in the "Still More Widgets
and Containers" chapter of The Busy Coder's Guide to Android
Development.

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android
http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 7

Menus and Messages

In this tutorial, we will add an EditText for a note to our detail form and
restaurant model. Then, we will add an options menu that will display the
note as a Toast.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 06-Tabs edition of LunchList to use as a starting point. If you are using
Eclipse, these instructions will help you load the project into a workspace.

Step #1: Add Notes to the Restaurant

First, our restaurant model does not have any spot for notes. Add a String
notes data member plus an associated getter and setter. Your resulting class
should look like:

package apt.tutorial;

public class Restaurant {
 private String name="";
 private String address="";
 private String type="";
 private String notes="";

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

 public String getName() {
 return(name);
 }

 public void setName(String name) {
 this.name=name;
 }

 public String getAddress() {
 return(address);
 }

 public void setAddress(String address) {
 this.address=address;
 }

 public String getType() {
 return(type);
 }

 public void setType(String type) {
 this.type=type;
 }

 public String getNotes() {
 return(notes);
 }

 public void setNotes(String notes) {
 this.notes=notes;
 }

 public String toString() {
 return(getName());
 }
}

Step #2: Add Notes to the Detail Form

Next, we need LunchList to make use of the notes.

Unfortunately for Eclipse users, it does not appear to be possible to do
drag-and-drop editing of a tabbed UI in the r12 version of the Android
Developer Tools plugin. In Tutorial 12, we will be replacing the tabs with
two separate activities, at which point you will be able to edit the main
layout file via drag-and-drop. For now, you will need to modify the XML
directly.

98

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

To do this, first add the following TableRow above the Save button in our
TableLayout in LunchList/res/layout/main.xml:

<TableRow>
 <TextView android:text="Notes:" />
 <EditText android:id="@+id/notes"
 android:singleLine="false"
 android:gravity="top"
 android:lines="2"
 android:scrollHorizontally="false"
 android:maxLines="2"
 android:maxWidth="200sp"
 />
</TableRow>

Then, we need to modify the LunchList activity itself, by:

1. Adding another data member for the notes EditText widget defined
above

2. Find our notes EditText widget as part of onCreate(), like we do with
other EditText widgets

3. Save our notes to our restaurant in onSave

4. Restore our notes to the EditText in onListClick

At this point, you can recompile and reinstall the application to see your
notes field in action:

99

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

Figure 47. The notes field in the detail form

Step #3: Define the Options Menu

Now, we need to create an options menu and arrange for it to be displayed
when the user clicks the [MENU] button.

Options menu items have icons, so you will need some image to work with.
For the purposes of this tutorial, any 32px image or so should be fine, but
the file should be named toast.png and put in your project's res/drawable/
directory. If you wish to use the image shown in these examples, you can
find it here.

Eclipse users can use a graphical editor for defining menu resources, while
non-Eclipse users will create XML directly.

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

https://github.com/commonsguy/cw-lunchlist/raw/master/07-MenusMessages/LunchList/res/drawable/toast.png

Menus and Messages

Eclipse

Add a menu/ folder to your project's res/ directory (e.g., right-click on res/
and choose New > Folder from the context menu).

Then, add a option.xml file to the res/menu/ directory (e.g., right-click on
res/menu/ and choose New > File from the context menu). This will bring up
the menu editor:

Figure 48. The Eclipse menu resource editor

If you wish, you can immediately save the file with the minimal default
XML that the Android Developer Tools adds, to get rid of the error
indicator in the Package Explorer.

In the menu resource editor, click the Add... button, and choose Item from
the dialog of available entries to add to the menu resource. This adds an
empty menu item and gives you a number of values you can specify for it on
the right:

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

Figure 49. The Eclipse menu resource editor, showing an newly-added menu
item

Make the following adjustments:

• Change the Id to be @+id/toast, most easily accomplished simply by
typing into the field

• Change the Title to be Raise Toast, also most easily accomplished
simply by typing into the field

• Change the Icon to be @drawable/toast, to refer to the toast.png file
in our drawable resources

At this point, you can save the file using normal Eclipse procedures (e.g.,
Ctrl-S).

Outside of Eclipse

The menu itself can be defined as a small piece of XML. Enter the following
as LunchList/res/menu/option.xml:

102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/toast"
 android:title="Raise Toast"
 android:icon="@drawable/toast"
 />
</menu>

This code relies upon an icon stored in LunchList/res/drawable/toast.png.
Find something suitable to use, preferably around 32px high.

Step #4: Support the Options Menu

To arrange for the menu to be displayed, add the following method to
LunchList:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 return(super.onCreateOptionsMenu(menu));
}

Note that you will also need to define imports for android.view.Menu and
android.view.MenuInflater for this to compile cleanly.

At this point, you can rebuild and reinstall the application. Click the
[MENU] button, from either tab, to see the options menu with its icon:

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

Figure 50. The LunchList options menu, displayed, with one menu choice

Step #5: Show the Notes as a Toast

Finally, we need to get control when the user selects the Raise Toast menu
choice and display the notes in a Toast.

The problem is that, to do this, we need to know what restaurant to show.
So far, we have not been holding onto a specific restaurant except when we
needed it, such as when we populate the detail form. Now, we need to
know our current restaurant, defined as the one visible in the detail
form...which could be none, if we have not yet saved anything in the form.

To make all of this work, do the following:

1. Add another data member, current, to hold the current Restaurant.
Be sure to initialize it to null.

2. In onSave and onListClick, rather than declaring local restaurant
variables, use current to hold the restaurant we are saving (in

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

onSave) or have clicked on (in onListClick). You will need to change
all references to the old r variable to be current in these two objects.

3. Add imports for android.view.MenuItem and android.widget.Toast.

4. Add the following implementation of onOptionsItemSelected() to
your LunchList class:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.toast) {
 String message="No restaurant selected";

 if (current!=null) {
 message=current.getNotes();
 }

 Toast.makeText(this, message, Toast.LENGTH_LONG).show();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

Note how we will either display "No restaurant selected" (if current is null)
or the restaurant's notes, depending on our current state.

You can now rebuild and reinstall the application. Enter and save a
restaurant, with notes, then choose the Raise Toast options menu item, and
you will briefly see your notes in a Toast:

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

Figure 51. The Toast displayed, with some notes

The LunchList activity, as a whole, is shown below, incorporating all of the
changes outlined in this tutorial:

package apt.tutorial;

import android.app.TabActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TabHost;
import android.widget.TextView;
import android.widget.Toast;
import java.util.ArrayList;
import java.util.List;

106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

public class LunchList extends TabActivity {
 List<Restaurant> model=new ArrayList<Restaurant>();
 RestaurantAdapter adapter=null;
 EditText name=null;
 EditText address=null;
 EditText notes=null;
 RadioGroup types=null;
 Restaurant current=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 name=(EditText)findViewById(R.id.name);
 address=(EditText)findViewById(R.id.addr);
 notes=(EditText)findViewById(R.id.notes);
 types=(RadioGroup)findViewById(R.id.types);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);

 ListView list=(ListView)findViewById(R.id.restaurants);

 adapter=new RestaurantAdapter();
 list.setAdapter(adapter);

 TabHost.TabSpec spec=getTabHost().newTabSpec("tag1");

 spec.setContent(R.id.restaurants);
 spec.setIndicator("List", getResources()
 .getDrawable(R.drawable.list));
 getTabHost().addTab(spec);

 spec=getTabHost().newTabSpec("tag2");
 spec.setContent(R.id.details);
 spec.setIndicator("Details", getResources()
 .getDrawable(R.drawable.restaurant));
 getTabHost().addTab(spec);

 getTabHost().setCurrentTab(0);

 list.setOnItemClickListener(onListClick);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 return(super.onCreateOptionsMenu(menu));
 }

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.toast) {
 String message="No restaurant selected";

 if (current!=null) {
 message=current.getNotes();
 }

 Toast.makeText(this, message, Toast.LENGTH_LONG).show();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 current=new Restaurant();
 current.setName(name.getText().toString());
 current.setAddress(address.getText().toString());
 current.setNotes(notes.getText().toString());

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 current.setType("sit_down");
 break;

 case R.id.take_out:
 current.setType("take_out");
 break;

 case R.id.delivery:
 current.setType("delivery");
 break;
 }

 adapter.add(current);
 }
 };

 private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent,
 View view, int position,
 long id) {
 current=model.get(position);

 name.setText(current.getName());
 address.setText(current.getAddress());
 notes.setText(current.getNotes());

 if (current.getType().equals("sit_down")) {

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

 types.check(R.id.sit_down);
 }
 else if (current.getType().equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 getTabHost().setCurrentTab(1);
 }
 };

 class RestaurantAdapter extends ArrayAdapter<Restaurant> {
 RestaurantAdapter() {
 super(LunchList.this, R.layout.row, model);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;
 RestaurantHolder holder=null;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 holder=new RestaurantHolder(row);
 row.setTag(holder);
 }
 else {
 holder=(RestaurantHolder)row.getTag();
 }

 holder.populateFrom(model.get(position));

 return(row);
 }
 }

 static class RestaurantHolder {
 private TextView name=null;
 private TextView address=null;
 private ImageView icon=null;

 RestaurantHolder(View row) {
 name=(TextView)row.findViewById(R.id.title);
 address=(TextView)row.findViewById(R.id.address);
 icon=(ImageView)row.findViewById(R.id.icon);
 }

 void populateFrom(Restaurant r) {
 name.setText(r.getName());
 address.setText(r.getAddress());

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

 if (r.getType().equals("sit_down")) {
 icon.setImageResource(R.drawable.ball_red);
 }
 else if (r.getType().equals("take_out")) {
 icon.setImageResource(R.drawable.ball_yellow);
 }
 else {
 icon.setImageResource(R.drawable.ball_green);
 }
 }
 }
}

Step #6: Add a ScrollView

The soft keyboard (technically, the "input method editor") on Android will
tend to cover up the lower part of the screen. This makes it difficult to type
and see what you are typing in. A simple solution for this is to wrap part or
all of your layout in a ScrollView widget, as Android will automatically scroll
the ScrollView to try to keep the EditText visible when it is being typed into.

Alas, once again, Eclipse users cannot directly interact with the contents of
the tabs from the graphical editor, and as such are forced to modify the
XML directly, as developers using other tools must do.

With that in mind, adjust the res/layout/main.xml to look like this:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/tabhost"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <ListView android:id="@+id/restaurants"

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
 <ScrollView
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TableLayout android:id="@+id/details"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1"
 android:shrinkColumns="1"
 android:paddingTop="4dip"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name" />
 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr" />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />
 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"
 android:text="Delivery"
 />
 </RadioGroup>
 </TableRow>
 <TableRow>
 <TextView android:text="Notes:" />
 <EditText android:id="@+id/notes"
 android:inputType="textMultiLine"
 android:gravity="top"
 android:lines="2"
 android:scrollHorizontally="false"
 android:maxLines="2"
 />
 </TableRow>
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
 </TableLayout>
 </ScrollView>
 </FrameLayout>

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Menus and Messages

 </LinearLayout>
</TabHost>

The TableLayout is now wrapped in a ScrollView, which will give you better
results when you go to type text into the form.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Try using an AlertDialog instead of a Toast to display the message.

• Try adding a menu option to switch you between tabs. In particular,
change the text and icon on the menu option to reflect the other tab
(i.e., on the List tab, the menu should show "Details" and the details
tab icon; on the Details tab, the menu should show "List" and the
List tab icon).

• Try creating an ErrorDialog designed to display exceptions in a
"pleasant" format to the end user. The ErrorDialog should also log
the exceptions via android.util.Log. Use some sort of runtime
exception (e.g., division by zero) for generating exceptions to pass
to the dialog.

Further Reading

You can learn more about menus – both options menus and context menus
– in the "Applying Menus" chapter of The Busy Coder's Guide to Android
Development. The use of a Toast is covered in the "Showing Pop-Up
Messages" chapter of the same book.

112

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 8

Sitting in the Background

In this tutorial, we will simulate having the LunchList do some background
processing in a secondary thread, updating the user interface via a progress
bar. While all of these tutorials are somewhat contrived, this one will be
more contrived than most, as there is not much we are really able to do in a
LunchList that would even require long processing in a background thread.
So, please forgive us if this tutorial is a bit goofy.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 07-MenusMessages edition of LunchList to use as a starting point. If you
are using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Initialize the Progress Bar

For this application, rather than use a ProgressBar widget, we will use the
progress bar feature of the Activity window. This will put a progress bar in
the title bar, rather than clutter up our layouts.

This requires a bit of initialization. Specifically, we need to add a line to
onCreate() that will request this feature be activated. We have to do this

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sitting in the Background

before calling setContentView(), so we add it right after chaining to the
superclass:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_PROGRESS);
 setContentView(R.layout.main);

 name=(EditText)findViewById(R.id.name);
 address=(EditText)findViewById(R.id.addr);
 notes=(EditText)findViewById(R.id.notes);
 types=(RadioGroup)findViewById(R.id.types);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);

 ListView list=(ListView)findViewById(R.id.restaurants);

 adapter=new RestaurantAdapter();
 list.setAdapter(adapter);

 TabHost.TabSpec spec=getTabHost().newTabSpec("tag1");

 spec.setContent(R.id.restaurants);
 spec.setIndicator("List", getResources()
 .getDrawable(R.drawable.list));
 getTabHost().addTab(spec);

 spec=getTabHost().newTabSpec("tag2");
 spec.setContent(R.id.details);
 spec.setIndicator("Details", getResources()
 .getDrawable(R.drawable.restaurant));
 getTabHost().addTab(spec);

 getTabHost().setCurrentTab(0);

 list.setOnItemClickListener(onListClick);
}

Also, add another data member, an int named progress.

Step #2: Create the Work Method

The theory of this demo is that we have something that takes a long time,
and we want to have that work done in a background thread and update

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sitting in the Background

the progress along the way. So, the first step is to build something that will
run a long time.

To do that, first, implement a doSomeLongWork() method on LunchList as
follows:

private void doSomeLongWork(final int incr) {
 SystemClock.sleep(250); // should be something more useful!
}

Here, we sleep for 250 milliseconds, simulating doing some meaningful
work.

Then, create a private Runnable in LunchList that will fire off
doSomeLongWork() a number of times, as follows:

private Runnable longTask=new Runnable() {
 public void run() {
 for (int i=0;i<20;i++) {
 doSomeLongWork(500);
 }
 }
};

Here, we just loop 20 times, so the overall background thread will run for 5
seconds.

Step #3: Fork the Thread from the Menu

We need to arrange to do this (fake) long work at some point. The easiest
way to do that is add another menu choice.

First, we should obtain our menu icon. Any image around 32px high should
be fine, so long as it is in your res/drawable/ directory and is named
run.png. If you wish to use the image shown in these examples, you can
find it here.

Next, update the LunchList/res/menu/option.xml file to look like the
following:

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

https://github.com/commonsguy/cw-lunchlist/raw/master/08-Threads/LunchList/res/drawable/run.png

Sitting in the Background

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/toast"
 android:title="Raise Toast"
 android:icon="@drawable/toast"
 />
 <item android:id="@+id/run"
 android:title="Run Long Task"
 android:icon="@drawable/run"
 />
</menu>

Eclipse users can accomplish this by:

• Double-clicking on the res/menu/option.xml resource to bring it up
in the graphical editor

• Clicking the Add... button to add a new menu item – in the dialog
that appears, you will need to toggle the radio button to add a child
to the root element rather than a sub-item of whatever the selected
menu item happens to be

• Changing the new menu item to have an ID of @+id/run, Run Long
Task as the title, and @drawable/run as the icon

• Saving your changes via <Ctrl>-<S>

Since the menu item is in the menu XML, we do not need to do anything
special to display the item – it will just be added to the menu automatically.
We do, however, need to arrange to do something useful when the menu
choice is chosen. So, update onOptionsItemSelected() in LunchList to look
like the following:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.toast) {
 String message="No restaurant selected";

 if (current!=null) {
 message=current.getNotes();
 }

 Toast.makeText(this, message, Toast.LENGTH_LONG).show();

 return(true);
 }
 else if (item.getItemId()==R.id.run) {

116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sitting in the Background

 new Thread(longTask).start();
 }

 return(super.onOptionsItemSelected(item));
}

You are welcome to recompile, reinstall, and run the application. However,
since our background thread does not do anything visible at the moment,
all you will see that is different is the new menu item:

Figure 52. The Run Long Task menu item

Step #4: Manage the Progress Bar

Finally, we need to actually make use of the progress indicator. This
involves making it visible when we start our long-running task, updating it
as the task proceeds, and hiding it again when the task is complete.

First, make it visible by updating onOptionsItemSelected() to show it:

117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sitting in the Background

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.toast) {
 String message="No restaurant selected";

 if (current!=null) {
 message=current.getNotes();
 }

 Toast.makeText(this, message, Toast.LENGTH_LONG).show();

 return(true);
 }
 else if (item.getItemId()==R.id.run) {
 setProgressBarVisibility(true);
 progress=0;
 new Thread(longTask).start();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

Notice the extra line that makes progress visible.

Then, we need to update the progress bar on each pass, so make this
change to doSomeLongWork():

private void doSomeLongWork(final int incr) {
 runOnUiThread(new Runnable() {
 public void run() {
 progress+=incr;
 setProgress(progress);
 }
 });

 SystemClock.sleep(250); // should be something more useful!
}

Notice how we use runOnUiThread() to make sure our progress bar update
occurs on the UI thread.

Finally, we need to hide the progress bar when we are done, so make this
change to our longTask Runnable:

118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sitting in the Background

private Runnable longTask=new Runnable() {
 public void run() {
 for (int i=0;i<20;i++) {
 doSomeLongWork(500);
 }

 runOnUiThread(new Runnable() {
 public void run() {
 setProgressBarVisibility(false);
 }
 });
 }
};

At this point, you can rebuild, reinstall, and run the application. When you
choose the Run Long Task menu item, you will see the progress bar appear
for five seconds, progressively updated as the "work" gets done:

Figure 53. The progress bar in action

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Sitting in the Background

• Have the background thread also update some UI element when the
work is completed, beyond dismissing the progress bar. Make sure
you arrange to update the UI on the UI thread!

• Instead of using Activity#runOnUiThread(), try using a Handler for
communication between the background thread and the UI thread.

• Instead of starting a Thread from the menu choice, have the Thread
be created in onCreate() and have it monitor a LinkedBlockingQueue
(from java.util.concurrent) as a source of work to be done. Create a
FakeJob that does what our current long-running method does, and
a KillJob that causes the Thread to fall out of its queue-monitoring
loop.

Further Reading

Coverage of the Android concept of "the UI thread" and tools like the
Handler for managing communication between threads can be found in the
"Dealing with Threads" chapter of The Busy Coder's Guide to Android
Development. You will also learn about AsyncTask in that chapter, which is
another important means of coordinating background and UI thread
operations.

If you are interested in Java threading in general, particularly the use of the
java.util.concurrent set of thread-management classes, the book Java
Concurrency in Practice is a popular source of information.

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.amazon.com/Java-Concurrency-Practice-Brian-Goetz/dp/0321349601
http://www.amazon.com/Java-Concurrency-Practice-Brian-Goetz/dp/0321349601
http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 9

Life and Times

In this tutorial, we will make our background task take a bit longer, then
arrange to pause the background work when we start up another activity
and restart the background work when our activity regains control. This
pattern – stopping unnecessary background work when the activity is
paused – is a good design pattern and is not merely something used for a
tutorial.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 08-Threads edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Lengthen the Background Work

First, let us make the background work take a bit longer, so we have a
bigger "window" in which to test whether our pause-and-resume logic
works. It is also helpful, in our case, to synchronize our loop with our
progress, so rather than counting 0 to 20 by 1, we should count from 0 to
10000 by 200, so the loop counter and progress are the same.

121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Life and Times

In the longTask Runnable, change the loop to look like this:

for (int i=progress;
 i<10000;
 i+=200) {
 doSomeLongWork(200);
}

Step #2: Pause in onPause()

Now, we need to arrange to have our thread stop running when the activity
is paused (e.g., some other activity has taken over the screen). Since threads
are relatively cheap to create and destroy, we can simply have our current
running thread stop and start a fresh one, if needed, in onResume().

While there are some deprecated methods on Thread to try to forcibly
terminate them, it is generally better to let the Thread stop itself by falling
out of whatever processing loop it is in. So, what we want to do is let the
background thread know the activity is not active.

To do this, first import java.util.concurrent.atomic.AtomicBoolean in
LunchList and add an AtomicBoolean data member named isActive, initially
set to true (new AtomicBoolean(true);).

Then, in the longTask Runnable, change the loop to also watch for the state
of isActive, falling out of the loop if the activity is no longer active:

for (int i=progress;
 i<10000 && isActive.get();
 i+=200) {
 doSomeLongWork(200);
}

Finally, implement onPause() to update the state of isActive:

@Override
public void onPause() {
 super.onPause();

 isActive.set(false);
}

122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Life and Times

Note how we chain to the superclass in onPause() – if we fail to do this, we
will get a runtime error.

With this implementation, our background thread will run to completion
or until isActive is false, whichever comes first.

Step #3: Resume in onResume()

Now, we need to restart our thread if it is needed. It will be needed if the
progress is greater than 0, indicating we were in the middle of our
background work when our activity was so rudely interrupted.

So, add the following implementation of onResume():

@Override
public void onResume() {
 super.onResume();

 isActive.set(true);

 if (progress>0) {
 startWork();
 }
}

This assumes we have pulled out our thread-starting logic into a
startWork() method, which you should implement as follows:

private void startWork() {
 setProgressBarVisibility(true);
 new Thread(longTask).start();
}

And you can change our menu handler to also use startWork():

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.toast) {
 String message="No restaurant selected";

 if (current!=null) {
 message=current.getNotes();
 }

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Life and Times

 Toast.makeText(this, message, Toast.LENGTH_LONG).show();

 return(true);
 }
 else if (item.getItemId()==R.id.run) {
 startWork();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

Finally, we need to not reset and hide the progress indicator when our
background thread ends if it ends because our activity is not active.
Otherwise, we will never restart it, since the progress will be reset to 0 every
time. So, change longTask one more time, to look like this:

private Runnable longTask=new Runnable() {
 public void run() {
 for (int i=progress;
 i<10000 && isActive.get();
 i+=200) {
 doSomeLongWork(200);
 }

 if (isActive.get()) {
 runOnUiThread(new Runnable() {
 public void run() {
 setProgressBarVisibility(false);
 progress=0;
 }
 });
 }
 }
};

What this does is reset the progress only if we are active when the work is
complete, so we are ready for the next round of work. If we are inactive, and
fell out of our loop for that reason, we leave the progress as-is.

At this point, recompile and reinstall the application. To test this feature:

1. Use the [MENU] button to run the long task.

124

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Life and Times

2. While it is running, click the green phone button on the emulator
(lower-left corner of the "phone"). This will bring up the call log
activity and, as a result, pause our LunchList activity.

3. After a while, click the BACK button – you should see the LunchList
resuming the background work from the point where it left off.

Here is the full LunchList implementation, including the changes shown
above:

package apt.tutorial;

import android.app.TabActivity;
import android.os.Bundle;
import android.os.SystemClock;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.view.Window;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TabHost;
import android.widget.TextView;
import android.widget.Toast;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicBoolean;

public class LunchList extends TabActivity {
 List<Restaurant> model=new ArrayList<Restaurant>();
 RestaurantAdapter adapter=null;
 EditText name=null;
 EditText address=null;
 EditText notes=null;
 RadioGroup types=null;
 Restaurant current=null;
 AtomicBoolean isActive=new AtomicBoolean(true);
 int progress=0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_PROGRESS);

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Life and Times

 setContentView(R.layout.main);

 name=(EditText)findViewById(R.id.name);
 address=(EditText)findViewById(R.id.addr);
 notes=(EditText)findViewById(R.id.notes);
 types=(RadioGroup)findViewById(R.id.types);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);

 ListView list=(ListView)findViewById(R.id.restaurants);

 adapter=new RestaurantAdapter();
 list.setAdapter(adapter);

 TabHost.TabSpec spec=getTabHost().newTabSpec("tag1");

 spec.setContent(R.id.restaurants);
 spec.setIndicator("List", getResources()
 .getDrawable(R.drawable.list));
 getTabHost().addTab(spec);

 spec=getTabHost().newTabSpec("tag2");
 spec.setContent(R.id.details);
 spec.setIndicator("Details", getResources()
 .getDrawable(R.drawable.restaurant));
 getTabHost().addTab(spec);

 getTabHost().setCurrentTab(0);

 list.setOnItemClickListener(onListClick);
 }

 @Override
 public void onPause() {
 super.onPause();

 isActive.set(false);
 }

 @Override
 public void onResume() {
 super.onResume();

 isActive.set(true);

 if (progress>0) {
 startWork();
 }
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Life and Times

 new MenuInflater(this).inflate(R.menu.option, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.toast) {
 String message="No restaurant selected";

 if (current!=null) {
 message=current.getNotes();
 }

 Toast.makeText(this, message, Toast.LENGTH_LONG).show();

 return(true);
 }
 else if (item.getItemId()==R.id.run) {
 startWork();

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 private void startWork() {
 setProgressBarVisibility(true);
 new Thread(longTask).start();
 }

 private void doSomeLongWork(final int incr) {
 runOnUiThread(new Runnable() {
 public void run() {
 progress+=incr;
 setProgress(progress);
 }
 });

 SystemClock.sleep(250); // should be something more useful!
 }

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 current=new Restaurant();
 current.setName(name.getText().toString());
 current.setAddress(address.getText().toString());
 current.setNotes(notes.getText().toString());

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 current.setType("sit_down");
 break;

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Life and Times

 case R.id.take_out:
 current.setType("take_out");
 break;

 case R.id.delivery:
 current.setType("delivery");
 break;
 }

 adapter.add(current);
 }
 };

 private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent,
 View view, int position,
 long id) {
 current=model.get(position);

 name.setText(current.getName());
 address.setText(current.getAddress());
 notes.setText(current.getNotes());

 if (current.getType().equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (current.getType().equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 getTabHost().setCurrentTab(1);
 }
 };

 private Runnable longTask=new Runnable() {
 public void run() {
 for (int i=progress;
 i<10000 && isActive.get();
 i+=200) {
 doSomeLongWork(200);
 }

 if (isActive.get()) {
 runOnUiThread(new Runnable() {
 public void run() {
 setProgressBarVisibility(false);
 progress=0;
 }
 });

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Life and Times

 }
 }
 };

 class RestaurantAdapter extends ArrayAdapter<Restaurant> {
 RestaurantAdapter() {
 super(LunchList.this, R.layout.row, model);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;
 RestaurantHolder holder=null;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 holder=new RestaurantHolder(row);
 row.setTag(holder);
 }
 else {
 holder=(RestaurantHolder)row.getTag();
 }

 holder.populateFrom(model.get(position));

 return(row);
 }
 }

 static class RestaurantHolder {
 private TextView name=null;
 private TextView address=null;
 private ImageView icon=null;

 RestaurantHolder(View row) {
 name=(TextView)row.findViewById(R.id.title);
 address=(TextView)row.findViewById(R.id.address);
 icon=(ImageView)row.findViewById(R.id.icon);
 }

 void populateFrom(Restaurant r) {
 name.setText(r.getName());
 address.setText(r.getAddress());

 if (r.getType().equals("sit_down")) {
 icon.setImageResource(R.drawable.ball_red);
 }
 else if (r.getType().equals("take_out")) {
 icon.setImageResource(R.drawable.ball_yellow);
 }
 else {
 icon.setImageResource(R.drawable.ball_green);

129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Life and Times

 }
 }
 }
}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Have the progress position be persisted via onSaveInstanceState().
When the activity is started in onCreate(), see if the background
work was in progress when the activity was shut down (i.e., progress
further than 0), and restart the background thread immediately if it
was. To test this, you can press <Ctrl>-<F12> to simulate opening the
keyboard and rotating the screen – by default, this causes your
activity to be destroyed and recreated, with onSaveInstanceState()
called along the way.

• Try moving the pause/resume logic to onStop() and onStart().

Further Reading

You can find material on the topics shown in this tutorial in the "Handling
Activity Lifecycle Events" chapter of The Busy Coder's Guide to Android
Development.

You are also strongly encouraged to read the class overview for Activity in
the JavaDocs.

130

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 10

A Few Good Resources

We have already used many types of resources in the preceding tutorials.
After reviewing what we have used so far, we set up an alternate layout for
our LunchList activity to be used when the activity is in landscape
orientation instead of portrait.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 09-Lifecycle edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Review our Current Resources

Now that we have completed ten tutorials, this is a good time to recap what
resources we have been using along the way. Right now, LunchList has:

• Several icons in LunchList/res/drawable/, all PNGs

• Two XML files in LunchList/res/layout/, representing the main
LunchList UI and the definition of each row

• One XML file in LunchList/res/menu/, containing our options menu
definition

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Few Good Resources

• The system-created strings.xml file in LunchList/res/values/

Step #2: Create a Landscape Layout

In the emulator, with LunchList running and showing the detail form, press
<Ctrl>-<F12>. This simulates opening and closing the keyboard, causing the
screen to rotate to landscape and portrait, respectively. Our current layout
is not very good in landscape orientation:

Figure 54. The LunchList in landscape orientation

So, let us come up with an alternative layout that will work better. Since
Eclipse and tabs do not get along well, Eclipse users will have to perform
this work by modifying the XML directly, as will developers not using
Eclipse.

First, create a LunchList/res/layout-land/ directory in your project. This will
hold layout files that we wish to use when the device (or emulator) is in the
landscape orientation.

Then, create a main.xml file in LunchList/res/layout-land/ that looks like:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/tabhost"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"

132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Few Good Resources

 android:layout_height="match_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <ListView android:id="@+id/restaurants"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <ScrollView
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TableLayout android:id="@+id/details"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1,3"
 android:shrinkColumns="3"
 android:paddingTop="4dip"
 >
 <TableRow>
 <TextView
 android:text="Name:"
 android:paddingRight="2dip"
 />
 <EditText
 android:id="@+id/name"
 android:maxWidth="140sp"
 />
 <TextView
 android:text="Address:"
 android:paddingLeft="2dip"
 android:paddingRight="2dip"
 />
 <EditText
 android:id="@+id/addr"
 android:maxWidth="140sp"
 />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />
 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"
 android:text="Delivery"

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Few Good Resources

 />
 </RadioGroup>
 <TextView
 android:text="Notes:"
 android:paddingLeft="2dip"
 />
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 >
 <EditText android:id="@+id/notes"
 android:inputType="textMultiLine"
 android:gravity="top"
 android:lines="3"
 android:scrollHorizontally="false"
 android:maxLines="3"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
 </LinearLayout>
 </TableRow>
 </TableLayout>
 </ScrollView>
 </FrameLayout>
 </LinearLayout>
</TabHost>

In this revised layout, we:

• Switched to four columns in our table, with columns #1 and #3 as
stretchable

• Put the name and address labels and fields on the same row

• Put the type, notes, and Save button on the same row, with the
notes and Save button stacked via a LinearLayout

• Made the notes three lines instead of two, since we have the room

• Fixed the maximum width of the EditText widgets to 140 scaled
pixels (sp), so they do not automatically grow outlandishly large if
we type a lot

• Added a bit of padding in places to make the placement of the
labels and fields look a bit better

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Few Good Resources

If you rebuild and reinstall the application, then run it in landscape mode,
you will see a form that looks like this:

Figure 55. The LunchList in landscape orientation, revised

Note that we did not create a LunchList/res/layout-land/ edition of our row
layout (row.xml). Android, upon not finding one in LunchList/res/layout-
land/, will fall back to the one in LunchList/res/layout/. Since we do not
really need our row to change, we can leave it as-is.

Note that when you change the screen orientation, your existing
restaurants will vanish. That is because we are not persisting them
anywhere, and rotating the screen by default destroys and recreates the
activity. These issues will be addressed in later tutorials.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Find some other icons to use and create a LunchList/res/drawable-
land directory with the replacement icons, using the same names as
found in LunchList/res/drawable. See if exposing the keyboard
swaps the icons as well as the layouts.

• Change the text of the labels in our main layout file to be string
resources. You will need to add those values to
LunchList/res/values/strings.xml and reference them in
LunchList/res/layout/main.xml.

135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Few Good Resources

• Use onSaveInstanceState() to save the current contents of the detail
form, and restore those contents in onCreate() if an instance state is
available (e.g., after the screen was rotated). Note how this does not
cover the list – you will still lose all existing restaurants on a
rotation event. However, in a later tutorial, we will move that data
to the database, which will solve that problem.

Further Reading

You can learn more about resource sets, particularly with respect to UI
impacts, in the "Working with Resources" chapter of The Busy Coder's
Guide to Android Development.

You will also find "Table 2" in the Alternate Resources section of the
Android developer guide to be of great use for determining the priority of
different resource set suffixes.

136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/guide/topics/resources/resources-i18n.html#AlternateResources
http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 11

The Restaurant Store

In this tutorial, we will create a database and table for holding our
restaurant data and switch from our ArrayAdapter to a CursorAdapter, to
make use of that database. This will allow our restaurants to persist from
run to run of LunchList.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 10-Resources edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Create a Stub SQLiteOpenHelper

First, we need to be able to define what our database name is, what the
schema is for the table for our restaurants, etc. That is best wrapped up in a
SQLiteOpenHelper implementation.

So, create LunchList/src/apt/tutorial/RestaurantHelper.java, and enter in
the following code:

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

package apt.tutorial;

import android.content.Context;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;

class RestaurantHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="lunchlist.db";
 private static final int SCHEMA_VERSION=1;

 public RestaurantHelper(Context context) {
 super(context, DATABASE_NAME, null, SCHEMA_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 }
}

Eclipse users can right-click over apt.tutorial in the Package Explorer and
choose New > Class from the context menu to bring up the new class
dialog. Set the class name to be RestaurantHelper and set the parent class to
be android.content.database.SQLiteOpenHelper. Then, edit the resulting class
to look like the above code listing.

This says that our database name is lunchlist.db, we are using the first
version of the schema...and not much else. However, the project should still
compile cleanly after adding this class.

Step #2: Manage our Schema

Next, we need to flesh out the onCreate() and onUpgrade() methods in
RestaurantHelper, to actually create the schema we want.

To do this, add an import for android.database.Cursor and use the following
implementation of onCreate():

138

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT);");
}

Here, we are simply executing a SQL statement to create a restaurant table
with a particular schema.

For onUpgrade(), there is nothing we really need to do now, since this
method will not be executed until we have at least two schema versions. So
far, we barely have our first schema version. So, just put a comment to that
effect in onUpgrade(), perhaps something like this:

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 // no-op, since will not be called until 2nd schema
 // version exists
}

In a production system, of course, we would want to make a temporary
table, copy our current data to it, fix up the real table's schema, then
migrate the data back.

Step #3: Remove Extraneous Code from LunchList

With our menu and thread samples behind us, we can get rid of our options
menu and simplify the code. Get rid of the following items from your
implementation of LunchList:

• The isActive and progress data members

• The call to requestWindowFeature() in onCreate()

• The implementations of onPause(), onResume(),
onCreateOptionsMenu(), and onOptionsItemSelected()

• The startWork() and doSomeLongWork() methods, along with the
longTask Runnable

139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

Step #4: Get Access to the Helper

We will be using RestaurantHelper as our bridge to the database. Hence,
LunchList will need a RestaurantHelper, to retrieve existing restaurants and
add new ones.

In order to really use the database, though, we need to open and close
access to it from LunchList.

First, in LunchList, create a RestaurantHelper data member named helper.

Then, in onCreate() in LunchList, after the call to setContentView(), initialize
RestaurantHelper like this:

helper=new RestaurantHelper(this);

Finally, implement onDestroy() on LunchList as follows:

@Override
public void onDestroy() {
 super.onDestroy();

 helper.close();
}

All we do in onDestroy(), besides chain to the superclass, is close the helper
we opened in onCreate(). This will close the underlying SQLite database as
well.

Step #5: Save a Restaurant to the Database

We are going to be replacing our restaurant object model (and its
associated ArrayList) with the database and a Cursor representing the roster
of restaurants. This will involve adding some more logic to RestaurantHelper
to aid in this process, while also starting to use it from LunchList.

First, add an import statement for android.content.ContentValues to
RestaurantHelper.

140

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

Then, implement insert() on RestaurantHelper as follows:

public void insert(String name, String address,
 String type, String notes) {
 ContentValues cv=new ContentValues();

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);

 getWritableDatabase().insert("restaurants", "name", cv);
}

With this code, we pour the individual pieces of a restaurant (e.g., its name)
into a ContentValues and tell the SQLiteDatabase to insert it into the
database. We call getWritableDatabase() to get at the SQLiteDatabase. Our
helper will automatically open the database in write mode if it has not
already been opened by the helper before.

Finally, we need to actually call insert() at the appropriate time. Right
now, our Save button adds a restaurant to our RestaurantAdapter – now, we
need it to persist the restaurant to the database. So, modify the onSave
object in LunchList to look like this:

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 case R.id.delivery:
 type="delivery";
 break;
 }

 helper.insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString());
 }
 };

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

We simply get the four pieces of data from their respective widgets and call
insert().

Step #6: Get the List of Restaurants from the Data­
base

This puts restaurants into the database. Presumably, it would be useful to
get them back out sometime. Hence, we need some logic that can query the
database and return a Cursor with columnar data from our restaurant table.
A Cursor in Android is much like a cursor in other database access libraries
– it is an encapsulation of the result set of the query, plus the query that
was used to create it.

To do this, add the following method to RestaurantHelper:

public Cursor getAll() {
 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes FROM restaurants
ORDER BY name",
 null));
}

Here, we get access to the underlying SQLiteDatabase (opening it in read
mode if it is not already open) and call rawQuery(), passing in a suitable
query string to retrieve all restaurants, sorted by name.

We will also need to have some way to get the individual pieces of data out
of the Cursor (e.g., name). To that end, add a few getter-style methods to
RestaurantHelper that will retrieve the proper columns from a Cursor
positioned on the desired row:

public String getName(Cursor c) {
 return(c.getString(1));
}

public String getAddress(Cursor c) {
 return(c.getString(2));
}

public String getType(Cursor c) {
 return(c.getString(3));

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

}

public String getNotes(Cursor c) {
 return(c.getString(4));
}

Step #7: Change our Adapter and Wrapper

Of course, our existing RestaurantAdapter extends ArrayAdapter and cannot
use a Cursor very effectively. So, we need to change our RestaurantAdapter
into something that can use a Cursor...such as a CursorAdapter. Just as an
ArrayAdapter creates a View for every needed item in an array or List,
CursorAdapter creates a View for every needed row in a Cursor.

A CursorAdapter does not use getView(), but rather bindView() and
newView(). The newView() method handles the case where we need to inflate
a new row; bindView() is when we are recycling an existing row. So, our
current getView() logic needs to be split between bindView() and newView().

Replace our existing RestaurantAdapter implementation in LunchList with
the following:

class RestaurantAdapter extends CursorAdapter {
 RestaurantAdapter(Cursor c) {
 super(LunchList.this, c);
 }

 @Override
 public void bindView(View row, Context ctxt,
 Cursor c) {
 RestaurantHolder holder=(RestaurantHolder)row.getTag();

 holder.populateFrom(c, helper);
 }

 @Override
 public View newView(Context ctxt, Cursor c,
 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();
 View row=inflater.inflate(R.layout.row, parent, false);
 RestaurantHolder holder=new RestaurantHolder(row);

 row.setTag(holder);

 return(row);

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

 }
}

Then, you need to make use of this refined adapter, by changing the model
in LunchList from an ArrayList to a Cursor. After you have changed that data
member, replace the current onCreate() code that populates our
RestaurantAdapter with the following:

model=helper.getAll();
startManagingCursor(model);
adapter=new RestaurantAdapter(model);
list.setAdapter(adapter);

After getting the Cursor from getAll(), we call startManagingCursor(), so
Android will deal with refreshing its contents if the activity is paused and
resumed. Then, we hand the Cursor off to the RestaurantAdapter.

Also, you will need to import android.content.Context and
android.widget.CursorAdapter in LunchList.

Then, we need to update RestaurantHolder to work with Cursor objects
rather than a restaurant directly. Replace the existing implementation with
the following:

static class RestaurantHolder {
 private TextView name=null;
 private TextView address=null;
 private ImageView icon=null;

 RestaurantHolder(View row) {
 name=(TextView)row.findViewById(R.id.title);
 address=(TextView)row.findViewById(R.id.address);
 icon=(ImageView)row.findViewById(R.id.icon);
 }

 void populateFrom(Cursor c, RestaurantHelper helper) {
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));

 if (helper.getType(c).equals("sit_down")) {
 icon.setImageResource(R.drawable.ball_red);
 }
 else if (helper.getType(c).equals("take_out")) {
 icon.setImageResource(R.drawable.ball_yellow);
 }

144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

 else {
 icon.setImageResource(R.drawable.ball_green);
 }
 }
}

Step #8: Clean Up Lingering ArrayList References

Since we changed our model in LunchList from an ArrayList to a Cursor,
anything that still assumes an ArrayList will not work.

Notably, the onListClick listener object tries to obtain a restaurant from the
ArrayList. Now, we need to move the Cursor to the appropriate position and
get a restaurant from that. So, modify onListClick to use the Cursor and the
property getter methods on RestaurantHelper instead:

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent,
 View view, int position,
 long id) {
 model.moveToPosition(position);
 name.setText(helper.getName(model));
 address.setText(helper.getAddress(model));
 notes.setText(helper.getNotes(model));

 if (helper.getType(model).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (helper.getType(model).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 getTabHost().setCurrentTab(1);
 }
};

At this point, you can recompile and reinstall your application. If you try
using it, it will launch and you can save restaurants to the database.
However, you will find that the list of restaurants will not update unless you
exit and restart the LunchList activity.

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

Step #9: Refresh Our List

The reason the list does not update is because neither the Cursor nor the
CursorAdapter realize that the database contents have changed when we
save our restaurant. To resolve this, add model.requery(); immediately after
the call to insert() in the onSave object in LunchList. This causes the Cursor
to reload its contents from the database, which in turn will cause the
CursorAdapter to redisplay the list.

Rebuild and reinstall the application and try it out. You should have all the
functionality you had before, with the added benefit of restaurants living
from run to run of LunchList.

Here is an implementation of LunchList that incorporates all of the changes
shown in this tutorial:

package apt.tutorial;

import android.app.TabActivity;
import android.content.Context;
import android.database.Cursor;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.CursorAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.RadioGroup;
import android.widget.TabHost;
import android.widget.TextView;

public class LunchList extends TabActivity {
 Cursor model=null;
 RestaurantAdapter adapter=null;
 EditText name=null;
 EditText address=null;
 EditText notes=null;
 RadioGroup types=null;
 RestaurantHelper helper=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 helper=new RestaurantHelper(this);

 name=(EditText)findViewById(R.id.name);
 address=(EditText)findViewById(R.id.addr);
 notes=(EditText)findViewById(R.id.notes);
 types=(RadioGroup)findViewById(R.id.types);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);

 ListView list=(ListView)findViewById(R.id.restaurants);

 model=helper.getAll();
 startManagingCursor(model);
 adapter=new RestaurantAdapter(model);
 list.setAdapter(adapter);

 TabHost.TabSpec spec=getTabHost().newTabSpec("tag1");

 spec.setContent(R.id.restaurants);
 spec.setIndicator("List", getResources()
 .getDrawable(R.drawable.list));
 getTabHost().addTab(spec);

 spec=getTabHost().newTabSpec("tag2");
 spec.setContent(R.id.details);
 spec.setIndicator("Details", getResources()
 .getDrawable(R.drawable.restaurant));
 getTabHost().addTab(spec);

 getTabHost().setCurrentTab(0);

 list.setOnItemClickListener(onListClick);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 helper.close();
 }

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

 case R.id.take_out:
 type="take_out";
 break;
 case R.id.delivery:
 type="delivery";
 break;
 }

 helper.insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString());
 model.requery();
 }
 };

 private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent,
 View view, int position,
 long id) {
 model.moveToPosition(position);
 name.setText(helper.getName(model));
 address.setText(helper.getAddress(model));
 notes.setText(helper.getNotes(model));

 if (helper.getType(model).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (helper.getType(model).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 getTabHost().setCurrentTab(1);
 }
 };

 class RestaurantAdapter extends CursorAdapter {
 RestaurantAdapter(Cursor c) {
 super(LunchList.this, c);
 }

 @Override
 public void bindView(View row, Context ctxt,
 Cursor c) {
 RestaurantHolder holder=(RestaurantHolder)row.getTag();

 holder.populateFrom(c, helper);
 }

 @Override
 public View newView(Context ctxt, Cursor c,

148

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();
 View row=inflater.inflate(R.layout.row, parent, false);
 RestaurantHolder holder=new RestaurantHolder(row);

 row.setTag(holder);

 return(row);
 }
 }

 static class RestaurantHolder {
 private TextView name=null;
 private TextView address=null;
 private ImageView icon=null;

 RestaurantHolder(View row) {
 name=(TextView)row.findViewById(R.id.title);
 address=(TextView)row.findViewById(R.id.address);
 icon=(ImageView)row.findViewById(R.id.icon);
 }

 void populateFrom(Cursor c, RestaurantHelper helper) {
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));

 if (helper.getType(c).equals("sit_down")) {
 icon.setImageResource(R.drawable.ball_red);
 }
 else if (helper.getType(c).equals("take_out")) {
 icon.setImageResource(R.drawable.ball_yellow);
 }
 else {
 icon.setImageResource(R.drawable.ball_green);
 }
 }
 }
}

Similarly, here is a full implementation of RestaurantHelper that contains
the modifications from this tutorial:

package apt.tutorial;

import android.content.Context;
import android.content.ContentValues;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

class RestaurantHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="lunchlist.db";
 private static final int SCHEMA_VERSION=1;

 public RestaurantHelper(Context context) {
 super(context, DATABASE_NAME, null, SCHEMA_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT);");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 // no-op, since will not be called until 2nd schema
 // version exists
 }

 public Cursor getAll() {
 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes FROM restaurants
ORDER BY name",
 null));
 }

 public void insert(String name, String address,
 String type, String notes) {
 ContentValues cv=new ContentValues();

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);

 getWritableDatabase().insert("restaurants", "name", cv);
 }

 public String getName(Cursor c) {
 return(c.getString(1));
 }

 public String getAddress(Cursor c) {
 return(c.getString(2));
 }

 public String getType(Cursor c) {
 return(c.getString(3));
 }

 public String getNotes(Cursor c) {
 return(c.getString(4));

150

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

The Restaurant Store

 }
}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Download the database off the emulator (or device) and examine it
using a SQLite client program. You can use adb pull to download
/data/data/apt.tutorial/databases/lunchlist.db, or use Eclipse or
DDMS to browse the emulator graphically to retrieve the same file.

• Use adb shell and the sqlite3 program built into the emulator to
examine the database in the emulator itself, without downloading
it.

Further Reading

You can learn more about how Android and SQLite work together in the
"Managing and Accessing Local Databases" chapter of The Busy Coder's
Guide to Android Development.

However, if you are looking for more general documentation on SQLite
itself, such as it's particular flavor of SQL, you will want to use the SQLite
site, or perhaps The Definitive Guide to SQLite.

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.amazon.com/Definitive-Guide-SQLite-Mike-Owens/dp/1590596730
http://sqlite.org/
http://sqlite.org/
http://commonsware.com/Android
http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 12

Getting More Active

In this tutorial, we will add support for both creating new restaurants and
editing ones that were previously entered. Along the way, we will get rid of
our tabs, splitting the application into two activities: one for the list, and
one for the detail form.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 11-Database edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Also, for this specific tutorial, since there is a lot of cutting and pasting, you
may wish to save off a copy of your current work before starting in on the
modifications, so you can clip code from the original and paste it where it is
needed.

Step #1: Create a Stub Activity

The first thing we need to do is create an activity to serve as our detail form.
In a flash of inspiration, let's call it DetailForm. So, create a
LunchList/src/apt/tutorial/DetailForm.java file with the following content:

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

package apt.tutorial;

import android.app.Activity;
import android.os.Bundle;

public class DetailForm extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
// setContentView(R.layout.main);
 }
}

Eclipse users can do this by right-clicking over the apt.tutorial package in
the Package Explorer and choosing New > Class from the context menu.
Indicate that the class name is DetailForm and the superclass is
android.app.Activity. Then, fill in the onCreate() method shown in the
listing above.

This is just a stub activity, except it has the setContentView() line
commented out. That is because we do not want to use main.xml, as that is
the layout for LunchList. Since we do not have another layout ready yet, we
can just comment out the line. As we will see, this is perfectly legal, but it
means the activity will have no UI.

Step #2: Launch the Stub Activity on List Click

Now, we need to arrange to display this activity when the user clicks on a
LunchList list item, instead of flipping to the original detail form tab in
LunchList.

First, we need to add DetailForm to the AndroidManifest.xml file, so it is
recognized by the system as being an available activity. Change the
manifest to look like the following:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <supports-screens android:largeScreens="true"

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm"></activity>
 </application>
</manifest>

Notice the second <activity> element, referencing the DetailForm class.
Also note that it does not need an <intent-filter>, since we will be
launching it ourselves rather than expecting the system to launch it for us.

Eclipse users can accomplish the preceding step by:

• Double-clicking on the AndroidManifest.xml file in the
PackageExplorer to launch the graphical manifest editor

• Switching to the Application sub-tab of the editor

• Clicking the Add... button next to the Application Nodes list

• Choosing Activity from the list of possible elements to add

• Clicking the Browse... button next to the Name field and choosing
DetailForm from the list of activities

Then, we need to start this activity when the list item is clicked. That is
handled by our onListClick listener object in LunchList. So, replace our
current implementation with the following:

private AdapterView.OnItemClickListener onListClick=new
AdapterView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent,
 View view, int position,
 long id) {
 Intent i=new Intent(LunchList.this, DetailForm.class);

 startActivity(i);
 }
};

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Here we create an Intent that points to our DetailForm and call
startActivity() on that Intent. You will need to add an import for
android.content.Intent to LunchList.

At this point, you should be able to recompile and reinstall the application.
If you run it and click on an item in the list, it will open up the empty
DetailForm. From there, you can click the BACK button to return to the
main LunchList activity.

Step #3: Move the Detail Form Layout

Now, the shredding begins – we need to start moving our detail form
smarts out of LunchList and its layout to DetailForm.

Create a LunchList/res/layout/detail_form.xml, using the detail form from
LunchList/res/layout/main.xml as a basis:

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1"
 android:shrinkColumns="1"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name" />
 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr" />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />
 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

 android:text="Delivery"
 />
 </RadioGroup>
 </TableRow>
 <TableRow>
 <TextView android:text="Notes:" />
 <EditText android:id="@+id/notes"
 android:inputType="textMultiLine"
 android:gravity="top"
 android:lines="2"
 android:scrollHorizontally="false"
 android:maxLines="2"
 />
 </TableRow>
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
 </TableLayout>
</ScrollView>

Eclipse users can accomplish the above by copying res/layout/main.xml
(right-click on the file and choose Copy), pasting it back into res/layout/ as
detail_form.xml (right-click on the res/layout/ folder and choose Paste),
and then editing the XML.

This is just the detail form turned into its own standalone layout file. You
are getting rid of everything before the <ScrollView> and after the
</ScrollView> tags, after moving the android:xmlns attribute on the root
element to the ScrollView element.

Step #4: Move the Detail Form Code

Un-comment the setContentView() call in onCreate() in DetailForm and have
it load this layout:

setContentView(R.layout.detail_form);

Then, we need to add all our logic for accessing the various form widgets,
plus an onSave listener for our Save button, plus all necessary imports.

Set the import list for DetailForm to be:

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

import android.app.Activity;
import android.database.Cursor;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.TextView;

Then, add the following data members to the DetailForm class:

EditText name=null;
EditText address=null;
EditText notes=null;
RadioGroup types=null;
RestaurantHelper helper=null;

Then, copy the widget finders and stuff from onCreate() in LunchList into
the same spot in DetailForm:

helper=new RestaurantHelper(this);

name=(EditText)findViewById(R.id.name);
address=(EditText)findViewById(R.id.addr);
notes=(EditText)findViewById(R.id.notes);
types=(RadioGroup)findViewById(R.id.types);

Button save=(Button)findViewById(R.id.save);

save.setOnClickListener(onSave);

Finally, add the onSave listener object with a subset of the implementation
from LunchList:

private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 case R.id.delivery:
 type="delivery";
 break;

158

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

 }
 }
};

You will notice that we are not using the type variable – we will put that to
use in a later step of the tutorial.

Step #5: Clean Up the Original Layout

Now we need to clean up LunchList and its layout to reflect the fact that we
moved much of the logic over to DetailForm.

First, we need to get rid of the tabs and the detail form from
LunchList/res/layout/main.xml and alter the ListView's android:id to the
@android:id/list value required for use with ListActivity. Also, it would be
nice, now that we are using ListActivity, to support the "empty view" – a
View in our layout that will be displayed when the list of restaurants is
empty.

In what is sure to be a shock to you, there are separate instructions for
those of you using Eclipse and those of you not using Eclipse.

Eclipse

It will be simplest to start this layout from scratch. Delete the existing
main.xml layout resource by right-clicking over it, choosing Delete from the
context menu, and confirming this move. Then, right-click over
res/layout/, choose New > File from the context menu, and name it
main.xml. Once again, you will get complaints in Eclipse about not having
any content in this file, but we will fix that next.

From the Layouts section of the tool palette, drag a FrameLayout into the
editing area. Your preview image will appear, though, as with most layouts,
there is nothing visible at this point.

159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

From the Composite section of the tool palette, drag a ListView into the
editing area, dropping it on your (invisible) FrameLayout. It will appear as a
transparent widget with a selection outline and grab handles:

Figure 56. The new LunchList main layout, with a FrameLayout and ListView

Then, toggle over to the XML, and assign @android:id/list to the android:id
attribute on the ListView element – due to a bug in the tools, you cannot
define this one via the context menu.

Back in the "Graphical Layout" sub-tab, from the "Form Widgets" section of
the tool palette, drag a TextView onto the FrameLayout (do not drag it onto
the ListView!). This will add it to the FrameLayout, visually placing it in the
top-left corner. Then, toggle over to the XML, and assign @android:id/empty
to the android:id attribute on the TextView element – again, due to a bug in
the tools, you cannot define this one via the context menu.

160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Back in the "Graphical Layout" sub-tab, with the TextView selected, click
both the horizontal and vertical stretch toggle toolbar buttons (first two on
the left in the toolbar above the preview), to say that the TextView should fill
the entire screen. Then, right-click on the TextView, choose Properties >
Text from the context menu, and fill in Click the MENU button to add a
restaurant! as the text.

Now, right-click over the TextView and choose Select > Select Siblings from
the context menu. This will cause both the TextView and the ListView to be
selected in the graphical editor:

Figure 57. The new LunchList main layout, with both the TextView and the
ListView selected

161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Click the second toolbar button from the left above the editing area (looks
like vertical arrowheads) to indicate that both the ListView and the TextView
should fill all available vertical space. ListActivity will arrange for only one
of these widgets to be visible at a time.

At this point, you can save your layout via Ctrl-S or the main Eclipse menu.
Also, you can delete the res/layout-land/main.xml file (right-click over it,
choose Delete, and confirm your decision), as we will create an updated
version of the landscape layout in a later tutorial.

Outside of Eclipse

To make those changes, replace your existing LunchList/res/layout/main.xml
with the following:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />
 <TextView
 android:id="@android:id/empty"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="Click the MENU button to add a restaurant!"/>
</FrameLayout>

You will notice that our ListView is wrapped inside of a FrameLayout, with a
TextView as a peer. The TextView, courtesy of the magic @android:id/empty
ID, will be displayed when the list is empty. Flipping between the TextView
and ListView is handled for us automatically by ListActivity.

Next, delete LunchList/res/layout_land/main.xml, as we will revisit
landscape layouts in a later tutorial.

162

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Step #6: Clean Up the Original Code

At present, LunchList extends TabActivity, which is no longer what we need.
Change it to extend ListActivity instead, adding an import for
android.app.ListActivity.

Finally, get rid of the code from onCreate() that sets up the tabs and the
Save button, since they are no longer needed. Also, you no longer need to
find the ListView widget, since you can call setListAdapter() on the
ListActivity to associate your RestaurantAdapter with the ListActivity's
ListView. You also no longer need to access the form widgets, since they are
no longer in this activity. The resulting onCreate() implementation should
look like:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 helper=new RestaurantHelper(this);
 model=helper.getAll();
 startManagingCursor(model);
 adapter=new RestaurantAdapter(model);
 setListAdapter(adapter);
}

You can also get rid of the onSave object, as we will be using the onSave that
exists in the DetailForm class.

Step #7: Pass the Restaurant _ID

Now, let's step back a bit and think about what we are trying to achieve.

We want to be able to use DetailForm for both adding new restaurants and
editing an existing restaurant. DetailForm needs to be able to tell those two
scenarios apart. Also, DetailForm needs to know which item is to be edited.

To achieve this, we will pass an "extra" in our Intent that launches
DetailForm, containing the ID (_id column) of the restaurant to edit. We will

163

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

use this if the DetailForm was launched by clicking on an existing
restaurant. If DetailForm receives an Intent lacking our "extra", it will know
to add a new restaurant.

First, we need to define a name for this "extra", so add the following data
member to LunchList:

public final static String ID_EXTRA="apt.tutorial._ID";

We use the apt.tutorial namespace to ensure our "extra" name will not
collide with any names perhaps used by the Android system.

Next, convert the onListClick object to an onListItemClick() method
(available to us on ListActivity) and have it add this "extra" to the Intent it
uses to start the DetailForm:

@Override
public void onListItemClick(ListView list, View view,
 int position, long id) {
 Intent i=new Intent(LunchList.this, DetailForm.class);

 i.putExtra(ID_EXTRA, String.valueOf(id));
 startActivity(i);
}

The _id of the restaurant happens to be provided to us as the fourth
parameter to onListItemClick(). We turn it into a String because DetailForm
will want it in String format, as we will see shortly.

Next, add the following data member to DetailForm:

String restaurantId=null;

This will be null if we are adding a new restaurant or the string form of the
ID if we are editing an existing restaurant.

Finally, add the following line to the end of onCreate() in DetailForm:

restaurantId=getIntent().getStringExtra(LunchList.ID_EXTRA);

164

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

This will pull out our "extra", or leave restaurantId as null if there is no
such "extra".

Step #8: Load the Restaurant Into the Form

In the case where we are editing an existing restaurant, we need to load that
restaurant from the database, then load it into the DetailForm.

Since we created a RestaurantHelper in onCreate(), we need to close it again,
so add an onDestroy() implementation to DetailForm as follows:

@Override
public void onDestroy() {
 super.onDestroy();

 helper.close();
}

Now that we have a handle to the database, we need to load a restaurant
given its ID. So, add the following method to RestaurantHelper:

public Cursor getById(String id) {
 String[] args={id};

 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes FROM restaurants
WHERE _ID=?",
 args));
}

Then, add the following lines to the bottom of onCreate() in DetailForm, to
load in the specified restaurant into the form if its ID was specified in the
Intent:

if (restaurantId!=null) {
 load();
}

The code snippet above references a load() method, which we need to add
to DetailForm, based off of code originally in LunchList:

165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

private void load() {
 Cursor c=helper.getById(restaurantId);

 c.moveToFirst();
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));
 notes.setText(helper.getNotes(c));

 if (helper.getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (helper.getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 c.close();
}

Step #9: Add an "Add" Menu Option

We have most of the logic in place to edit existing restaurants. However, we
still need to add a menu item for adding a new restaurant.

First, we need an icon for that menu option. In our case, we will use one
from the Android SDK. Go to the directory where you installed the SDK,
and go into the platforms/ directory inside of it. Then, go into the directory
for some version of Android (e.g., android-8/), and into data/res/drawable-
mdpi/. You will find ic_menu_add.png in there – copy it into your project.
Eclipse users may have to press <F5> to get Eclipse to recognize the new
image, if you copied it using your development machine's operating system
(e.g., copied it using Windows Explorer).

Now we need to change LunchList/res/menu/option.xml to replace the
existing options with one for add:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/add"
 android:title="Add"
 android:icon="@drawable/ic_menu_add"
 />
</menu>

166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Eclipse users can accomplish this by:

• Double-clicking on the res/menu/option.xml resource to bring it up
in the graphical editor

• Selecting one of the existing menu options and clicking the
Remove... button to get rid of it

• Selecting the other menu option and changing it to have an ID of
@+id/add, Add as the title, and @drawable/ic_menu_add as the icon

• Saving your changes via <Ctrl>-<S>

Now that we have the menu option, we need to adjust our menu handling
to match. Restore our older implementation of onCreateOptionMenu() to
LunchList:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 return(super.onCreateOptionsMenu(menu));
}

Then, add an onOptionsItemSelected() implementation in LunchList with the
following:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.add) {
 startActivity(new Intent(LunchList.this, DetailForm.class));

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

Here, we launch the DetailForm activity without our "extra", signalling to
DetailForm that it is to add a new restaurant. You will need imports again for
android.view.Menu, android.view.MenuInflater, and android.view.MenuItem.

167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Step #10: Detail Form Supports Add and Edit

Last, but certainly not least, we need to have DetailForm properly do useful
work when the Save button is clicked. Specifically, we need to either insert
or update the database. It would also be nice if we dismissed the DetailForm
at that point and returned to the main LunchList activity.

To accomplish this, we first need to add an update() method to
RestaurantHelper that can perform a database update:

public void update(String id, String name, String address,
 String type, String notes) {
 ContentValues cv=new ContentValues();
 String[] args={id};

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);

 getWritableDatabase().update("restaurants", cv, "_ID=?",
 args);
}

Then, we need to adjust our onSave listener object in DetailForm to call the
right method (save() or update()) and finish() our activity:

private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 case R.id.delivery:
 type="delivery";
 break;
 }

 if (restaurantId==null) {
 helper.insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString());

168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

 }
 else {
 helper.update(restaurantId, name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString());
 }

 finish();
 }
};

At this point, you should be able to recompile and reinstall the application.
When you first bring up the application, it will no longer show the tabs:

Figure 58. The new-and-improved LunchList

However, it will have an "add" menu option:

169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Figure 59. The LunchList options menu, with Add

If you choose the "add" menu option, it will bring up a blank DetailForm:

170

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Figure 60. The DetailForm activity

If you fill out the form and click Save, it will return you to the LunchList and
immediately shows the new restaurant (courtesy of our using a managed
Cursor in LunchList):

171

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Figure 61. The LunchList with an added Restaurant

If you click an existing restaurant, it will bring up the DetailForm for that
object:

172

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Figure 62. The DetailForm on an existing Restaurant

Making changes and clicking Save will update the database and list:

173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Figure 63. The LunchList with an edited Restaurant

Here is one implementation of LunchList that incorporates all of this
tutorial's changes:

package apt.tutorial;

import android.app.ListActivity;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.CursorAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;

public class LunchList extends ListActivity {
 public final static String ID_EXTRA="apt.tutorial._ID";
 Cursor model=null;

174

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

 RestaurantAdapter adapter=null;
 RestaurantHelper helper=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 helper=new RestaurantHelper(this);
 model=helper.getAll();
 startManagingCursor(model);
 adapter=new RestaurantAdapter(model);
 setListAdapter(adapter);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 helper.close();
 }

 @Override
 public void onListItemClick(ListView list, View view,
 int position, long id) {
 Intent i=new Intent(LunchList.this, DetailForm.class);

 i.putExtra(ID_EXTRA, String.valueOf(id));
 startActivity(i);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.add) {
 startActivity(new Intent(LunchList.this, DetailForm.class));

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 class RestaurantAdapter extends CursorAdapter {
 RestaurantAdapter(Cursor c) {
 super(LunchList.this, c);
 }

175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

 @Override
 public void bindView(View row, Context ctxt,
 Cursor c) {
 RestaurantHolder holder=(RestaurantHolder)row.getTag();

 holder.populateFrom(c, helper);
 }

 @Override
 public View newView(Context ctxt, Cursor c,
 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();
 View row=inflater.inflate(R.layout.row, parent, false);
 RestaurantHolder holder=new RestaurantHolder(row);

 row.setTag(holder);

 return(row);
 }
 }

 static class RestaurantHolder {
 private TextView name=null;
 private TextView address=null;
 private ImageView icon=null;

 RestaurantHolder(View row) {
 name=(TextView)row.findViewById(R.id.title);
 address=(TextView)row.findViewById(R.id.address);
 icon=(ImageView)row.findViewById(R.id.icon);
 }

 void populateFrom(Cursor c, RestaurantHelper helper) {
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));

 if (helper.getType(c).equals("sit_down")) {
 icon.setImageResource(R.drawable.ball_red);
 }
 else if (helper.getType(c).equals("take_out")) {
 icon.setImageResource(R.drawable.ball_yellow);
 }
 else {
 icon.setImageResource(R.drawable.ball_green);
 }
 }
 }
}

Here is one implementation of DetailForm that works with the revised
LunchList:

176

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

package apt.tutorial;

import android.app.Activity;
import android.database.Cursor;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.TextView;

public class DetailForm extends Activity {
 EditText name=null;
 EditText address=null;
 EditText notes=null;
 RadioGroup types=null;
 RestaurantHelper helper=null;
 String restaurantId=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.detail_form);

 helper=new RestaurantHelper(this);

 name=(EditText)findViewById(R.id.name);
 address=(EditText)findViewById(R.id.addr);
 notes=(EditText)findViewById(R.id.notes);
 types=(RadioGroup)findViewById(R.id.types);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);

 restaurantId=getIntent().getStringExtra(LunchList.ID_EXTRA);

 if (restaurantId!=null) {
 load();
 }
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 helper.close();
 }

 private void load() {
 Cursor c=helper.getById(restaurantId);

 c.moveToFirst();
 name.setText(helper.getName(c));

177

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

 address.setText(helper.getAddress(c));
 notes.setText(helper.getNotes(c));

 if (helper.getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (helper.getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 c.close();
 }

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 case R.id.delivery:
 type="delivery";
 break;
 }

 if (restaurantId==null) {
 helper.insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString());
 }
 else {
 helper.update(restaurantId, name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString());
 }

 finish();
 }
 };
}

And, here is an implementation of RestaurantHelper with the changes
needed by DetailForm:

178

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

package apt.tutorial;

import android.content.Context;
import android.content.ContentValues;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;

class RestaurantHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="lunchlist.db";
 private static final int SCHEMA_VERSION=1;

 public RestaurantHelper(Context context) {
 super(context, DATABASE_NAME, null, SCHEMA_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT);");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 // no-op, since will not be called until 2nd schema
 // version exists
 }

 public Cursor getAll() {
 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes FROM restaurants
ORDER BY name",
 null));
 }

 public Cursor getById(String id) {
 String[] args={id};

 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes FROM restaurants
WHERE _ID=?",
 args));
 }

 public void insert(String name, String address,
 String type, String notes) {
 ContentValues cv=new ContentValues();

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);

179

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

 getWritableDatabase().insert("restaurants", "name", cv);
 }

 public void update(String id, String name, String address,
 String type, String notes) {
 ContentValues cv=new ContentValues();
 String[] args={id};

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);

 getWritableDatabase().update("restaurants", cv, "_ID=?",
 args);
 }

 public String getName(Cursor c) {
 return(c.getString(1));
 }

 public String getAddress(Cursor c) {
 return(c.getString(2));
 }

 public String getType(Cursor c) {
 return(c.getString(3));
 }

 public String getNotes(Cursor c) {
 return(c.getString(4));
 }
}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Have the database hold a URL for the restaurant's Web site. Update
the UI to collect this address in the detail form. Launch that URL
via startActivity() via an options menu choice from the restaurant
list, so you can view the restaurant's Web site.

• Add an options menu to delete a restaurant. Raise an AlertDialog to
confirm that the user wants the restaurant deleted. Delete it from
the database and refresh the list if the user confirms the deletion.

180

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting More Active

Further Reading

You can read up on having multiple activities in your application, or linking
to activities supplied by others, in the "Launching Activities and Sub-
Activities" chapter of The Busy Coder's Guide to Android Development.

181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 13

What's Your Preference?

In this tutorial, we will add a preference setting for the sort order of the
restaurant list. To do this, we will create a PreferenceScreen definition in
XML, load that into a PreferenceActivity, connect that activity to the
application, and finally actually use the preference to control the sort order.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 12-Activities edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Define the Preference XML

Preferences are described in the form of a preference XML resource, located
in a res/xml/ resource directory. Not surprisingly, there are separate
instructions for setting up the XML, depending upon whether or not you
are using Eclipse.

183

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

Eclipse

The preference that we are going to use is a ListPreference. A
ListPreference, as the name suggests, gives the user a list of things to
choose from. That list of things to choose from comes in the form of a
string-array resource, as does a corresponding list of actual values to be
stored – think of this as being the difference between the text in an HTML
<option> tag compared to the tag's value attribute.

So, first, we need to set up these arrays. To do that, right-click over the
res/values/ directory in your project and choose New > File from the
context menu. Give the file the name of arrays.xml and click OK. This will
create an empty file, and give you an error message to that effect:

Figure 64. The new array resource file, initially empty

Click the Add... button, choose "String Array" in the dialog, and click OK to
create a new string-array resource:

184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

Figure 65. The new, empty string-array resource

Fill in sort_names for the name in the field on the right. Then, with the
string-array resource highlighted, click the Add... button, choose "Item" in
the dialog, and click OK to put a new item in this string-array resource:

185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

Figure 66. The new, empty item in the string-array resource

Fill in By Name, Ascending as the value in the field on the right. Continue
clicking the Add... button and adding new items to the array, with the
following values:

• By Name, Descending

• By Type

• By Address, Ascending

• By Address, Descending

Click the Add... button once again, but this time, choose the top radio
button ("Create a new element at the top level, in Resources"), then choose
"String Array" and click OK. This will add another string-array resource as
a peer to the first:

186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

Figure 67. The arrays.xml resource file, now with two string-array resources

Give this string-array resource a name of sort_clauses. Then, add five items
to it using the Add... button, with the following five values:

• name ASC

• name DESC

• type, name ASC

• address ASC

• address DESC

Note that you need to add these in the orders specified, or at least keep the
two arrays synchronized.

When done, you can save this file using <Ctrl>-<S> or the File menu.

With that behind us, we can define the preference XML itself. Right-click
over the res/ directory and choose New > Folder from the context menu.
Give the folder the name of xml and click OK. Then, right-click over the

187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

newly-created res/xml/ folder and choose New > File from the context
menu. Give the file the name of preferences.xml and click OK. And, since at
this point there is no means of defining preference XML resources
graphically in a useful fashion, switch to the Source sub-tab and paste in
the following XML:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <ListPreference
 android:key="sort_order"
 android:title="Sort Order"
 android:summary="Choose the order the list uses"
 android:entries="@array/sort_names"
 android:entryValues="@array/sort_clauses"
 android:dialogTitle="Choose a sort order" />
</PreferenceScreen>

This sets up a single-item PreferenceScreen. Note that it references the two
string-array resources that we defined above.

Outside of Eclipse

First, add a LunchList/res/xml/preferences.xml file as follows:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <ListPreference
 android:key="sort_order"
 android:title="Sort Order"
 android:summary="Choose the order the list uses"
 android:entries="@array/sort_names"
 android:entryValues="@array/sort_clauses"
 android:dialogTitle="Choose a sort order" />
</PreferenceScreen>

This sets up a single-item PreferenceScreen. Note that it references two
string arrays, one for the display labels of the sort-order selection list, and
one for the values actually stored in the SharedPreferences.

So, to define those string arrays, add a LunchList/res/values/arrays.xml file
with the following content:

188

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="sort_names">
 <item>By Name, Ascending</item>
 <item>By Name, Descending</item>
 <item>By Type</item>
 <item>By Address, Ascending</item>
 <item>By Address, Descending</item>
 </string-array>
 <string-array name="sort_clauses">
 <item>name ASC</item>
 <item>name DESC</item>
 <item>type, name ASC</item>
 <item>address ASC</item>
 <item>address DESC</item>
 </string-array>
</resources>

Note we are saying that the value stored in the SharedPreferences will
actually be an ORDER BY clause for use in our SQL query. This is a convenient
trick, though it does tend to make the system a bit more fragile – if we
change our column names, we might have to change our preferences to
match and deal with older invalid preference values.

Step #2: Create the Preference Activity

Next, we need to create a PreferenceActivity that will actually use these
preferences. Eclipse users can use the Eclipse new-class wizard (right-click
over the apt.tutorial package in Package Explorer and choose New > Class)
to create a subclass of android.preference.PreferenceActivity named
EditPreferences. Non-Eclipse users can simply create a
LunchList/src/apt/tutorial/EditPreferences.java file.

Regardless of how you create the class, its implementation should look like
this:

package apt.tutorial;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
 @Override

189

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);
 }
}

Here, we simply tell Android to allow the user to edit the preferences
defined in that preference XML resource from the previous section.

We also need to update AndroidManifest.xml to reference this activity, so we
can launch it later. Eclipse users should:

1. Double-click on the AndroidManifest.xml file in the project to open it
up in the editor

2. Click on the Application sub-tab

3. Click the Add... button next to the "Application Nodes" list

4. Choose Activity in the dialog box and click OK

5. Click the Browse... button next to the Name field and choose
EditPreferences from the resulting dialog (then press OK to close
that dialog)

6. Save the changes to the manifest (e.g., <Ctrl>-<S>)

Non-Eclipse users can simply add the <activity> element for
EditPreferences shown in the manifest file below:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

190

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

 </activity>
 <activity android:name=".DetailForm"></activity>
 <activity android:name=".EditPreferences"></activity>
 </application>
</manifest>

Step #3: Connect the Preference Activity to the Option
Menu

Now, we can add a menu option to launch the EditPreferences activity.

First, we need another menu icon. Grab the ic_menu_preferences.png image
from the Android SDK, from the same directory where you got
ic_menu_add.png, and put it in your res/drawable/ directory in your project.

Then, we need to add another <item> to our LunchList/res/menu/option.xml
file:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/add"
 android:title="Add"
 android:icon="@drawable/ic_menu_add"
 />
 <item android:id="@+id/prefs"
 android:title="Settings"
 android:icon="@drawable/ic_menu_preferences"
 />
</menu>

Eclipse users, instead of manually editing the XML, can do the following:

1. Double-click on the res/menu/option.xml file in the Package Explorer
to open it up in the editor

2. Click the Add... button next to the list of menu items, choose Item
in the dialog, and click OK to add a blank menu item

3. Assign @+id/prefs as the Id value for the menu item

4. Fill in Settings as the title for the menu item

5. Use @drawable/ic_menu_preferences for the icon for the menu item

191

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

6. Save the resulting changes (e.g., <Ctrl>-<S>)

Of course, if we modify the menu XML, we also need to modify the
LunchList implementation of onOptionsItemSelected() to match, so replace
the current implementation with the following:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.add) {
 startActivity(new Intent(LunchList.this, DetailForm.class));

 return(true);
 }
 else if (item.getItemId()==R.id.prefs) {
 startActivity(new Intent(this, EditPreferences.class));

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

All we are doing is starting up our EditPreferences activity.

If you recompile and reinstall the application, you will see our new menu
option:

192

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

Figure 68. The LunchList with the new menu option

And if you choose that menu option, you will get the EditPreferences
activity:

193

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

Figure 69. The preferences activity

Clicking the Sort Order item will bring up a selection list of available sort
orders:

194

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

Figure 70. The available sort orders

Of course, none of this is actually having any effect on the sort order itself,
which we will address in the next section.

Step #4: Apply the Sort Order on Startup

Now, given that the user has chosen a sort order, we need to actually use it.
First, we can apply it when the application starts up – the next section will
handle changing the sort order after the user changes the preference value.

First, the getAll() method on RestaurantHelper needs to take a sort order as
a parameter, rather than apply one of its own. So, change that method as
follows:

public Cursor getAll(String orderBy) {
 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes FROM restaurants
ORDER BY "+orderBy,
 null));
}

195

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

Then, we need to get our hands on our SharedPreferences instance. Add
imports to LunchList for android.content.SharedPreferences and
android.preference.PreferenceManager, along with a SharedPreferences data
member named prefs.

Next, add this line near the top of onCreate() in LunchList, to initialize prefs
to be the SharedPreferences our preference activity uses:

prefs=PreferenceManager.getDefaultSharedPreferences(this);

Finally, change the call to getAll() to use the SharedPreferences:

model=helper.getAll(prefs.getString("sort_order", "name"));

Here, we use name as the default value, so if the user has not specified a sort
order yet, the sort order will be by name.

Now, if you recompile and reinstall the application, then set a sort order
preference, you can see that preference take effect if you exit and reopen
the application.

Step #5: Listen for Preference Changes

That works, but users will get annoyed if they have to exit the application
just to get their preference choice to take effect. To change the sort order on
the fly, we first need to know when they change the sort order.

SharedPreferences has the notion of a preference listener object, to be
notified on such changes. To take advantage of this, add the following line
at the end of onCreate() in LunchList:

prefs.registerOnSharedPreferenceChangeListener(prefListener);

This snippet refers to a prefListener object, so add the following code to
LunchList to create a stub implementation of that object:

196

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

private SharedPreferences.OnSharedPreferenceChangeListener prefListener=
 new SharedPreferences.OnSharedPreferenceChangeListener() {
 public void onSharedPreferenceChanged(SharedPreferences sharedPrefs, String
key) {
 if (key.equals("sort_order")) {
 }
 }
};

All we are doing right now is watching for our specific preference of interest
(sort_order), though we are not actually taking advantage of the changed
value.

Step #6: Re-Apply the Sort Order on Changes

Finally, we actually need to change the sort order. For simple lists like this,
the easiest way to accomplish this is to get a fresh Cursor representing our
list (from getAll() on RestaurantHelper) with the proper sort order, and use
the new Cursor instead of the old one.

First, pull some of the list-population logic out of onCreate(), by
implementing an initList() method as follows:

private void initList() {
 if (model!=null) {
 stopManagingCursor(model);
 model.close();
 }

 model=helper.getAll(prefs.getString("sort_order", "name"));
 startManagingCursor(model);
 adapter=new RestaurantAdapter(model);
 setListAdapter(adapter);
}

Note that we call stopManagingCursor() so Android will ignore the old
Cursor, then we close it, before we get and apply the new Cursor. Of course,
we only do those things if there is an old Cursor.

The onCreate() method needs to change to take advantage of initList():

197

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 helper=new RestaurantHelper(this);
 prefs=PreferenceManager.getDefaultSharedPreferences(this);
 initList();
 prefs.registerOnSharedPreferenceChangeListener(prefListener);
}

Also, we can call initList() from prefListener:

private SharedPreferences.OnSharedPreferenceChangeListener prefListener=
 new SharedPreferences.OnSharedPreferenceChangeListener() {
 public void onSharedPreferenceChanged(SharedPreferences sharedPrefs,
 String key) {
 if (key.equals("sort_order")) {
 initList();
 }
 }
};

At this point, if you recompile and reinstall the application, you should see
the sort order change immediately as you change the order via the
preferences.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Add a preference for the default type of restaurant (e.g., take-out).
Use that preference in detail forms when creating a new restaurant.

• Add an options menu to the detail form activity and have it be able
to start the preference activity the way we did from the option
menu for the list.

• Rather than use preferences, store the preference values in a JSON
file that you read in at startup and re-read in onResume() (to find out
about changes). This means you will need to create your own
preference UI, rather than rely upon the one created by the
preference XML.

198

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

What's Your Preference?

Further Reading

Learn more about setting up preference XML files and reading shared
preferences in the "Using Preferences" chapter of The Busy Coder's Guide
to Android Development.

199

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android
http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 14

Turn, Turn, Turn

In this tutorial, we will make our application somewhat more intelligent
about screen rotations, ensuring that partially-entered restaurant
information remains intact even after the screen rotates.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 13-Prefs edition of LunchList to use as a starting point. If you are using
Eclipse, these instructions will help you load the project into a workspace.

Step #1: Add a Stub onSaveInstanceState()

Since we are not holding onto network connections or other things that
cannot be stored in a Bundle, we can use onSaveInstanceState() to track our
state as the screen is rotated.

To that end, add a stub implementation of onSaveInstanceState() to
DetailForm as follows:

@Override
public void onSaveInstanceState(Bundle state) {
 super.onSaveInstanceState(state);
}

201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Turn, Turn, Turn

Step #2: Pour the Form Into the Bundle

Now, fill in the details of onSaveInstanceState(), putting our widget
contents into the supplied Bundle:

@Override
public void onSaveInstanceState(Bundle state) {
 super.onSaveInstanceState(state);

 state.putString("name", name.getText().toString());
 state.putString("address", address.getText().toString());
 state.putString("notes", notes.getText().toString());
 state.putInt("type", types.getCheckedRadioButtonId());
}

Step #3: Repopulate the Form

Next, we need to make use of that saved state. We could do this in
onCreate(), if the passed-in Bundle is non-null. However, it is usually easier
just to override onRestoreInstanceState(). This is called only when there is
state to restore, supplying the Bundle with your state. So, add an
implementation of onRestoreInstanceState() to DetailForm:

@Override
public void onRestoreInstanceState(Bundle state) {
 super.onRestoreInstanceState(state);

 name.setText(state.getString("name"));
 address.setText(state.getString("address"));
 notes.setText(state.getString("notes"));
 types.check(state.getInt("type"));
}

At this point, you can recompile and reinstall the application. Use <Ctrl>-
<F12> to simulate rotating the screen of your emulator. If you do this after
making changes (but not saving) on the DetailForm, you will see those
changes survive the rotation.

Step #4: Fix Up the Landscape Detail Form

As you tested the work from the previous section, you no doubt noticed
that the DetailForm layout is not well-suited for landscape – the notes text

202

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Turn, Turn, Turn

area is chopped off and the Save button is missing. To fix this, we need to
create a LunchList/res/layout-land/detail_form.xml file, derived from our
original, but set up to take advantage of the whitespace to the right of the
radio buttons:

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="3"
 android:shrinkColumns="3"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name"
 android:layout_span="3"
 />
 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr"
 android:layout_span="3"
 />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />
 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"
 android:text="Delivery"
 />
 </RadioGroup>
 <TextView android:text="Notes:" />
 <LinearLayout android:orientation="vertical">
 <EditText android:id="@+id/notes"
 android:inputType="textMultiLine"
 android:gravity="top"
 android:lines="2"
 android:scrollHorizontally="false"
 android:maxLines="2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />
 <Button android:id="@+id/save"

203

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Turn, Turn, Turn

 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
 </LinearLayout>
 </TableRow>
 </TableLayout>
</ScrollView>

Eclipse users can right-click over the res/layout-land/ directory and choose
New > File from the context menu. Name the new file detail_form.xml to
match the one we have in res/layout/. Then, paste in the above XML in the
source sub-tab.

Now, if you recompile and reinstall the application, you should see a better
landscape rendition of the detail form.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Try switching to onRetainNonConfigurationInstance() instead of
onSaveInstanceState().

• Try commenting out onSaveInstanceState() and
onRestoreInstanceState(). Does the activity still retain its instance
state? Why or why not?

Further Reading

Additional coverage of screen rotations and how to control what happens
during them can be found in the "Handling Rotation" chapter of The Busy
Coder's Guide to Android Development.

204

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 15

Feeding at Lunch

Right now, our LunchList application simply displays data that the user
entered. It would be nice to collect more information about a restaurant,
culled from other places online. In this tutorial, we allow users to attach an
RSS feed URL to a restaurant. Then, we allow them to view the latest titles
in the feed via a new ListActivity. To do this, we will need to download the
feed from the Internet, then parse it – to do this, we will take advantage of a
third-party JAR file.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 14-Rotation edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Add a Feed URL to the Data Model

First, we need to track the feed URL in our data model. This means we need
to adjust our database and our RestaurantHelper (so we can retrieve and set
the URL).

205

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

First, modify onCreate() of RestaurantHelper to add a new TEXT column
named feed:

@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT, feed TEXT);");
}

This also means that we have changed our schema, so we need to change
our SCHEMA_VERSION in RestaurantHelper to match:

private static final int SCHEMA_VERSION=2;

Also, now we need to contend with upgrading our existing database, for
those users who already have LunchList installed and do not wish to lose all
their precious restaurant data. This means we need to replace our original
"no-op" RestaurantHelper onUpgrade() with one that will execute an ALTER
TABLE statement to add this column:

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN feed TEXT");
}

Plus, we need to adjust our RestaurantHelper methods that operate on the
database, including getAll(), getById(), insert(), and update(), adding in
support for the feed column:

public Cursor getAll(String orderBy) {
 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, feed FROM
restaurants ORDER BY "+orderBy,
 null));
}

public Cursor getById(String id) {
 String[] args={id};

 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, feed FROM
restaurants WHERE _ID=?",
 args));
}

206

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

public void insert(String name, String address,
 String type, String notes,
 String feed) {
 ContentValues cv=new ContentValues();

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);
 cv.put("feed", feed);

 getWritableDatabase().insert("restaurants", "name", cv);
}

public void update(String id, String name, String address,
 String type, String notes, String feed) {
 ContentValues cv=new ContentValues();
 String[] args={id};

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);
 cv.put("feed", feed);

 getWritableDatabase().update("restaurants", cv, "_ID=?",
 args);
}

And, we should add a new getFeed() method on RestaurantHelper to retrieve
our feed URL from a Cursor returned by getAll() or getById():

public String getFeed(Cursor c) {
 return(c.getString(5));
}

The complete revised RestaurantHelper class now looks something like this:

package apt.tutorial;

import android.content.Context;
import android.content.ContentValues;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;

class RestaurantHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="lunchlist.db";
 private static final int SCHEMA_VERSION=2;

207

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 public RestaurantHelper(Context context) {
 super(context, DATABASE_NAME, null, SCHEMA_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT, feed TEXT);");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN feed TEXT");
 }

 public Cursor getAll(String orderBy) {
 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, feed FROM
restaurants ORDER BY "+orderBy,
 null));
 }

 public Cursor getById(String id) {
 String[] args={id};

 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, feed FROM
restaurants WHERE _ID=?",
 args));
 }

 public void insert(String name, String address,
 String type, String notes,
 String feed) {
 ContentValues cv=new ContentValues();

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);
 cv.put("feed", feed);

 getWritableDatabase().insert("restaurants", "name", cv);
 }

 public void update(String id, String name, String address,
 String type, String notes, String feed) {
 ContentValues cv=new ContentValues();
 String[] args={id};

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);

208

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 cv.put("notes", notes);
 cv.put("feed", feed);

 getWritableDatabase().update("restaurants", cv, "_ID=?",
 args);
 }

 public String getName(Cursor c) {
 return(c.getString(1));
 }

 public String getAddress(Cursor c) {
 return(c.getString(2));
 }

 public String getType(Cursor c) {
 return(c.getString(3));
 }

 public String getNotes(Cursor c) {
 return(c.getString(4));
 }

 public String getFeed(Cursor c) {
 return(c.getString(5));
 }
}

Step #2: Update the Detail Form

The next problem is that our detail form is getting a wee bit crowded. We
do not really have much room for adding another field, so we will need to
use a bit of creativity to allow our form to still work on HVGA displays, in
addition to larger ones.

Change the res/layout/detail_form.xml resource to look like this:

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1"
 android:shrinkColumns="1"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name" />

209

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr" />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />
 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"
 android:text="Delivery"
 />
 </RadioGroup>
 </TableRow>
 <EditText android:id="@+id/notes"
 android:inputType="textMultiLine"
 android:gravity="top"
 android:lines="2"
 android:scrollHorizontally="false"
 android:maxLines="2"
 android:hint="Notes"
 />
 <EditText android:id="@+id/feed"
 android:hint="Feed URL"
 />
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
 </TableLayout>
</ScrollView>

We have dropped the label for the notes field, replacing it with a hint. The
hint will be displayed if the EditText is empty; otherwise, it will show what
the user has typed in. Our new feed EditText also uses a hint instead of a
label, and both are direct children of the TableLayout, like the Button, so
they fill the entire row.

Because Eclipse does not support drag-and-drop of widgets in a TableLayout
that are not in a TableRow, Eclipse users will need to edit the XML by hand.

210

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

Similarly, change the res/layout-land/detail_form.xml resource to look like
this:

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="2"
 android:shrinkColumns="2"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name"
 android:layout_span="2"
 />
 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr"
 android:layout_span="2"
 />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />
 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"
 android:text="Delivery"
 />
 </RadioGroup>
 <LinearLayout android:orientation="vertical">
 <EditText android:id="@+id/notes"
 android:inputType="textMultiLine"
 android:gravity="top"
 android:lines="2"
 android:scrollHorizontally="false"
 android:maxLines="2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Notes"
 />
 <EditText android:id="@+id/feed"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Feed URL"

211

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 />
 <Button android:id="@+id/save"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Save"
 />
 </LinearLayout>
 </TableRow>
 </TableLayout>
</ScrollView>

Again, we have switched to hints instead of labels, plus added the feed
EditText. Also, we have changed android:stretchColumns in the TableLayout
element to 2, and similarly changed the android:layout_span attributes to 2,
since we have removed one column.

Since Eclipse does not support changing the android:layout_span attribute
graphically, Eclipse users will need to edit the XML by hand.

This also requires some changes to the DetailForm class. Add a new EditText
data member named feed:

EditText feed=null;

Then, add a statement to the onCreate() method of DetailForm that uses
findViewById() to retrieve that EditText widget from the inflated layout,
after the similar statements for the other widgets:

feed=(EditText)findViewById(R.id.feed);

The load() method will need to populate the feed widget from the data
model, so add a statement that performs that after all the other similar
statements:

feed.setText(helper.getFeed(c));

Finally, the onSave object's onClick() method will need to change its calls to
insert() and update() on the RestaurantHelper to add in the feed URL:

private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {

212

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 case R.id.delivery:
 type="delivery";
 break;
 }

 if (restaurantId==null) {
 helper.insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 else {
 helper.update(restaurantId, name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }

 finish();
 }
};

Step #3: Add a Feed Options Menu Item

Next, we need to give the user the ability to launch another activity to view
the latest items from a restaurant's RSS feed. A likely way to do that would
be via an options menu. Right now, though, the detail form does not have
an options menu, so we will need to add one.

First, you will need to add a suitable icon to your project's res/drawable/
directory as well, such as copying the ic_menu_friendslist.png file from your
SDK installation – the same place where we have obtained most of the
other menu drawables used in this project.

Then, we need to actually create the menu. Non-Eclipse users can create a
new file, res/menu/details_option.xml, with the following content:

213

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/feed"
 android:title="RSS Feed"
 android:icon="@drawable/ic_menu_friendslist"
 />
</menu>

It has a single menu item, to be used to view the feed.

Eclipse users should:

1. Right-click over the res/menu/ folder and choose New > File from
the context menu

2. Fill in details_option.xml in the dialog and click OK to create an
empty menu XML resource

3. Click the Add... button next to the list of menu items, choose Item
in the dialog, and click OK to add an empty menu item

4. Assign it @+id/feed as the Id value for the menu item

5. Use RSS Feed as the title for the menu item

6. Supply @drawable/ic_menu_friendslist as the icon for the menu item

7. Save the changes (e.g., <Ctrl>-<S>)

Then, add an onCreateOptionsMenu() method to DetailForm, using a
MenuInflater object to load the menu resource and display it when the user
chooses the menu:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.details_option, menu);

 return(super.onCreateOptionsMenu(menu));
}

We will add the corresponding onOptionsItemSelected() method in the next
section. Note that you will need to add imports to android.view.Menu and
android.view.MenuInflater.

214

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

Step #4: Add Permissions and Check Connectivity

It would be nice if we would check to see if there is an Internet connection
before going ahead and trying to fetch the feed given its URL. After all, if
there is no connectivity, there is no point in trying and failing with some
ugly error.

With that in mind, add an onOptionsItemSelected() method, and an
accompanying isNetworkAvailable() method, to DetailForm that look like
this:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(this, FeedActivity.class);

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);
 }
 else {
 Toast
 .makeText(this, "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

private boolean isNetworkAvailable() {
 ConnectivityManager
cm=(ConnectivityManager)getSystemService(CONNECTIVITY_SERVICE);
 NetworkInfo info=cm.getActiveNetworkInfo();

 return(info!=null);
}

Here, we call getSystemService() to obtain a ConnectivityManager.
ConnectivityManager knows the state of data access overall, not via some
particular technology (e.g., WiFi). Specifically, we see if
getActiveNetworkInfo() returns a non-null object – if so, the device thinks it
has a network connection. Of course, there could be problems with that

215

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

connection (e.g., connected to a WiFi router, but unable to access certain
URLs), but at least we can detect obvious problems.

If there is an Internet connection, onOptionsItemSelected() goes ahead and
starts up a yet-to-be-defined activity named FeedActivity, tucking the feed
URL in an Intent extra. If there is no Internet connection, we display a Toast
instead.

You will need to add imports for:

• android.content.Intent

• android.net.ConnectivityManager

• android.net.NetworkInfo

• android.view.MenuItem

• android.widget.Toast

The complete modified DetailForm class should look something like this:

package apt.tutorial;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.net.ConnectivityManager;
import android.net.NetworkInfo;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.TextView;
import android.widget.Toast;

public class DetailForm extends Activity {
 EditText name=null;
 EditText address=null;
 EditText notes=null;
 EditText feed=null;
 RadioGroup types=null;
 RestaurantHelper helper=null;
 String restaurantId=null;

216

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.detail_form);

 helper=new RestaurantHelper(this);

 name=(EditText)findViewById(R.id.name);
 address=(EditText)findViewById(R.id.addr);
 notes=(EditText)findViewById(R.id.notes);
 types=(RadioGroup)findViewById(R.id.types);
 feed=(EditText)findViewById(R.id.feed);

 Button save=(Button)findViewById(R.id.save);

 save.setOnClickListener(onSave);

 restaurantId=getIntent().getStringExtra(LunchList.ID_EXTRA);

 if (restaurantId!=null) {
 load();
 }
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 helper.close();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.details_option, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(this, FeedActivity.class);

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);
 }
 else {
 Toast
 .makeText(this, "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

217

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 private boolean isNetworkAvailable() {
 ConnectivityManager
cm=(ConnectivityManager)getSystemService(CONNECTIVITY_SERVICE);
 NetworkInfo info=cm.getActiveNetworkInfo();

 return(info!=null);
 }

 private void load() {
 Cursor c=helper.getById(restaurantId);

 c.moveToFirst();
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));
 notes.setText(helper.getNotes(c));
 feed.setText(helper.getFeed(c));

 if (helper.getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (helper.getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 c.close();
 }

 private View.OnClickListener onSave=new View.OnClickListener() {
 public void onClick(View v) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 case R.id.delivery:
 type="delivery";
 break;
 }

 if (restaurantId==null) {
 helper.insert(name.getText().toString(),

218

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 else {
 helper.update(restaurantId, name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }

 finish();
 }
 };
}

Also, we need to add our first permissions to our manifest, as we are
starting to access device capabilities that require user agreement. Add the
INTERNET and ACCESS_NETWORK_STATE permissions to your AndroidManifest.xml
file, as children of the root <manifest> element:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Eclipse users can add these permissions by:

1. Double-clicking on AndroidManifest.xml in the Package Explorer to
bring it up in the editor

2. Clicking on the Permissions sub-tab

3. Clicking the Add... button next to the permissions list, choosing
"Uses Permission" in the dialog, and clicking OK

4. Choosing android.permission.INTERNET from the Name drop-down
list

5. Repeating steps 2-3, then choosing
android.permission.ACCESS_NETWORK_STATE for the second permission

6. Saving the results (e.g., <Ctrl>-<S>)

219

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

Step #5: Fetch the Feed

Now we are in position to start work on the FeedActivity – the class that
will arrange to retrieve and display the RSS feed.

Start a new FeedActivity class, inheriting from ListActivity, in the project
package. Do not worry about any methods on the class right now – we will
add some of those in a bit. Eclipse users can do this by right-clicking over
the apt.tutorial package in Package Explorer, choosing New > Class from
the context menu, then specifying FeedActivity as the class name and
android.app.Activity as the superclass.

Add FeedActivity to your manifest, by adding another <activity> element.
The resulting AndroidManifest.xml file should look something like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm"></activity>
 <activity android:name=".EditPreferences"></activity>
 <activity android:name=".FeedActivity"></activity>
 </application>
</manifest>

Eclipse users can do this by:

1. Double-clicking on the AndroidManifest.xml file in Package Explorer
to bring it up in the editor

220

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

2. Clicking on the Application sub-tab

3. Clicking on the Add... button next to the Application Nodes list

4. Choosing Activity in the node type dialog and clicking OK

5. Clicking the Browse... button next to the Name field and choosing
FeedActivity

6. Saving changes (e.g., <Ctrl>-<S>)

Then, add a static inner class named FeedTask to FeedActivity that looks like
this:

private static class FeedTask extends AsyncTask<String, Void, Void> {
 private Exception e=null;
 private FeedActivity activity=null;

 FeedTask(FeedActivity activity) {
 attach(activity);
 }

 @Override
 public Void doInBackground(String... urls) {
 try {
 DefaultHttpClient client=new DefaultHttpClient();
 HttpGet getMethod=new HttpGet(urls[0]);
 ResponseHandler<String> responseHandler=new BasicResponseHandler();
 String responseBody=client.execute(getMethod,
 responseHandler);

 Log.d("FeedActivity", responseBody);
 }
 catch (Exception e) {
 this.e=e;
 }

 return(null);
 }

 @Override
 public void onPostExecute(Void unused) {
 if (e==null) {
 // TODO
 }
 else {
 Log.e("LunchList", "Exception parsing feed", e);
 activity.goBlooey(e);
 }
 }
}

221

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

FeedTask is an AsyncTask, designed to wrap a thread and Handler and deal
with background operations on our behalf. The doInBackground() method
uses HttpClient to fetch our feed, given its URL. Specifically:

• We create a DefaultHttpClient object, representing our executor of
HTTP requests

• We create an HttpGet object to represent the request we wish to
perform

• We create a BasicResponseHandler, whose job it is to get our data out
of the server's response – specifically, we are looking for our feed

• We tell the client to execute the GET request by way of the response
handler, giving us our feed, which we dump to LogCat

• If there is an exception – for example, we have a bad URL – we hold
onto the Exception object and pass it to our activity

The FeedTask constructor takes the FeedActivity as a parameter. This is
needed because FeedTask is a static inner class, and therefore does not
automatically get access to the outer class instance. As we will see later in
this tutorial, we need to attach and detach the activity from the task as part
of handling configuration changes, such as screen rotations.

Also, go ahead and implement goBlooey() on FeedActivity, raising an
AlertDialog if an Exception is encountered:

private void goBlooey(Throwable t) {
 AlertDialog.Builder builder=new AlertDialog.Builder(this);

 builder
 .setTitle("Exception!")
 .setMessage(t.toString())
 .setPositiveButton("OK", null)
 .show();
}

You will need the following imports:

• android.app.AlertDialog

• android.app.ListActivity

• android.os.AsyncTask

222

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://hc.apache.org/httpcomponents-client-ga/index.html

Feeding at Lunch

• android.util.Log

• org.apache.http.client.ResponseHandler

• org.apache.http.client.HttpClient

• org.apache.http.client.methods.HttpGet

• org.apache.http.impl.client.BasicResponseHandler

• org.apache.http.impl.client.DefaultHttpClient

If you are trying to use the emulator from some facility that requires a
proxy server for external HTTP access, add the following lines of code to
doInBackground() before creating the DefaultHttpClient object:

Properties systemSettings=System.getProperties();

systemSettings.put("http.proxyHost", "your.proxy.host.here");
systemSettings.put("http.proxyPort", "8080"); // use actual proxy port

Step #6: Install the RSS Library

To download and parse the feed, we could continue to use HttpClient to
retrieve the content at the URL, then roll a DOM- or SAX-based parser to
get at the data.

We could.

But we won't. Because we're lazy.

Instead, we will reuse an existing library for this purpose, android-rss,
released under the Apache 2.0 license.

At the time of this writing, the author of that component only publishes
source code, not a JAR, but you can download a JAR from
http://misc.commonsware.com/android-rss.jar. Readers of the digital
edition of this book can simply click on the link to begin downloading the
file.

Copy that JAR into the libs/ directory of your project.

223

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://misc.commonsware.com/android-rss.jar
https://github.com/ahorn/android-rss

Feeding at Lunch

Eclipse users will also need to add the library to the build path – this is
automatic if you are building via Ant. Eclipse users should right-click over
the project name in the project explorer, then choose Build Path >
Configure Build Path from the context menu. Click on the Libraries tab,
then click the "Add JARs" button. Find the android-rss.jar file in your
project's libs/ directory and select it. Then, you can close up this project
properties window.

Step #7: Fetch and Parse the Feed (For Real This
Time)

Get rid of the existing implementation of FeedTask in FeedActivity and
replace it with one that looks like this:

private static class FeedTask extends AsyncTask<String, Void, RSSFeed> {
 private RSSReader reader=new RSSReader();
 private Exception e=null;
 private FeedActivity activity=null;

 FeedTask(FeedActivity activity) {
 attach(activity);
 }

 void attach(FeedActivity activity) {
 this.activity=activity;
 }

 void detach() {
 this.activity=null;
 }

 @Override
 public RSSFeed doInBackground(String... urls) {
 RSSFeed result=null;

 try {
 result=reader.load(urls[0]);
 }
 catch (Exception e) {
 this.e=e;
 }

 return(result);
 }

 @Override
 public void onPostExecute(RSSFeed feed) {

224

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 if (e==null) {
 activity.setFeed(feed);
 }
 else {
 Log.e("LunchList", "Exception parsing feed", e);
 activity.goBlooey(e);
 }
 }
}

This time, the doInBackground() method uses an RSSReader object to load an
RSSFeed, given the URL. This one statement takes care of downloading and
parsing it, courtesy of our helper JAR. doInBackground() passes the RSSFeed
object to onPostExecute(), which calls a setFeed() method that we will
eventually implement on FeedActivity. If an exception occurs while
retrieving or parsing the feed (e.g., the URL is not an RSS resource),
doInBackground() catches the Exception and onPostExecute() logs it to
LogCat and hands it to FeedActivity.

The FeedTask constructor takes the FeedActivity as a parameter. This is
needed because FeedTask is a static inner class, and therefore does not
automatically get access to the outer class instance. As we will see in the
next two sections, we need to attach and detach the activity from the task
as part of handling configuration changes, such as screen rotations.

You can remove all of the org.apache.http.* imports, as you will no longer
need them. However, you will need to add the following imports:

• org.mcsoxford.rss.RSSReader

• org.mcsoxford.rss.RSSFeed

Step #8: Display the Feed Items

Finally, we need to actually use the ListView in FeedActivity to display the
results of the feed.

Immediately, we run into yet another challenge. RSSFeed is our data model.
It has a getItems() method that returns a List<RSSItem>. We could wrap that
List in an ArrayAdapter. However, to demonstrate another solution, let's

225

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

create a totally different adapter, a FeedAdapter, extended from BaseAdapter.
BaseAdapter handles the basic adapter operations – we just need to override
a handful of methods.

So, add an inner class named FeedAdapter to FeedActivity, that looks like
this:

 private class FeedAdapter extends BaseAdapter {
 RSSFeed feed=null;

 FeedAdapter(RSSFeed feed) {
 super();

 this.feed=feed;
 }

 public int getCount() {
 return(feed.getItems().size());
 }

 public Object getItem(int position) {
 return(feed.getItems().get(position));
 }

 public long getItemId(int position) {
 return(position);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(android.R.layout.simple_list_item_1,
 parent, false);
 }

 RSSItem item=(RSSItem)getItem(position);

 ((TextView)row).setText(item.getTitle());

 return(row);
 }
 }
}

A BaseAdapter subclass, at minimum, needs to implement:

226

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

• getCount(), to return how many items are in the adapter

• getItem(), to return a model object (e.g., an RSSItem) given a
position

• getItemId(), to return a unique long ID for a position – in this case,
we just use the position itself

• getView(), as we would with an ArrayAdapter, except that we have to
inflate rows ourself, rather than perhaps relying upon the superclass
to do that for us

In the case of getView(), we simply pour each item's title into an
android.R.layout.simple_list_item_1 row.

The next problem is thinking about handling configuration changes. Any
time you fork a background thread from an Activity – whether directly or
via an AsyncTask – you really need to think about how you are going to deal
with a screen rotation or other configuration change. We want to ensure
that when our FeedTask gets to onPostExecute() that it is updating the
FeedActivity instance that is on the screen, not a FeedActivity instance that
happened to kick off the task but then was destroyed as part of the user
changing device orientation. This is the reason we added the attach() and
detach() methods to FeedTask, which we now need to make use of.

The recipe for configuration changes is:

• Use onSaveInstanceState() and onRestoreInstanceState() for simple
stuff that can fit in the supplied Bundle

• In onRetainNonConfigurationInstance(), return some state object for
things that cannot go in a Bundle, and update those objects as
needed to indicate that the original Activity is going away

• In onCreate(), call getLastNonConfigurationInstance() – if that is not
null, it is the object returned by the previous call to
onRetainNonConfigurationInstance(), and so we can hook that state
back up to the newly-created Activity

227

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

With all of that in mind, add another static inner class, this time named
InstanceState:

private static class InstanceState {
 RSSFeed feed=null;
 FeedTask task=null;
}

This is a simple data structure holding onto our FeedTask and the RSSFeed.
These objects are part of our state, but neither can go inside a Bundle. You
should also add an InstanceState data member named state:

private InstanceState state=null;

Then, implement the following three methods on FeedActivity:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 state=(InstanceState)getLastNonConfigurationInstance();

 if (state==null) {
 state=new InstanceState();
 state.task=new FeedTask(this);
 state.task.execute(getIntent().getStringExtra(FEED_URL));
 }
 else {
 if (state.task!=null) {
 state.task.attach(this);
 }

 if (state.feed!=null) {
 setFeed(state.feed);
 }
 }
}

@Override
public Object onRetainNonConfigurationInstance() {
 if (state.task!=null) {
 state.task.detach();
 }

 return(state);
}

private void setFeed(RSSFeed feed) {
 state.feed=feed;

228

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 setListAdapter(new FeedAdapter(feed));
}

In onCreate(), if getLastNonConfigurationInstance() is null, we must be
starting up a brand-new copy of the FeedActivity. In that case, we set up a
fresh InstanceState, a fresh FeedTask, and have the FeedTask set about
downloading and parsing our feed, using the URL we were passed in the
Intent extra. If, however, getLastNonConfigurationInstance() returns
something other than null, it is the InstanceState we are returning from
onRetainNonConfigurationInstance(). In that case, we can attach the new
FeedActivity to our FeedTask, so onPostExecute() will update our new
FeedActivity when results are in. And, if we already have our RSSFeed object,
we call a setFeed() method, just like FeedTask does in onPostExecute().

setFeed() simply puts the RSSFeed into our InstanceState, plus wraps it in a
FeedAdapter and puts the adapter into the ListView.

onRetainNonConfigurationInstance() merely detaches the old activity from
the FeedTask before returning it.

Hence, the flow of events on an orientation change is:

• The user flicks their wrist, slides out the keyboard, or otherwise
triggers the rotation

• onRetainNonConfigurationInstance() is called, where we detach the
activity from the FeedTask and returns it

• A new FeedActivity is instantiated

• onCreate() of the new activity is called, where we attach to the
FeedTask and, if available, use the already-parsed RSSFeed

FeedActivity also needs a static String data member named FEED_URL, to
serve as our Intent extra key:

public static final String FEED_URL="apt.tutorial.FEED_URL";

And, we need a handful of new imports, including:

229

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

• android.os.Bundle

• android.view.LayoutInflater

• android.view.View

• android.view.ViewGroup

• android.widget.BaseAdapter

• android.widget.TextView

• org.mcsoxford.rss.RSSItem

The resulting FeedActivity class, including all inner classes, should look a
bit like this:

package apt.tutorial;

import android.app.AlertDialog;
import android.app.ListActivity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.BaseAdapter;
import android.widget.TextView;
import org.mcsoxford.rss.RSSItem;
import org.mcsoxford.rss.RSSFeed;
import org.mcsoxford.rss.RSSReader;

public class FeedActivity extends ListActivity {
 public static final String FEED_URL="apt.tutorial.FEED_URL";
 private InstanceState state=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 state=(InstanceState)getLastNonConfigurationInstance();

 if (state==null) {
 state=new InstanceState();
 state.task=new FeedTask(this);
 state.task.execute(getIntent().getStringExtra(FEED_URL));
 }
 else {
 if (state.task!=null) {
 state.task.attach(this);
 }

 if (state.feed!=null) {

230

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 setFeed(state.feed);
 }
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 if (state.task!=null) {
 state.task.detach();
 }

 return(state);
 }

 private void setFeed(RSSFeed feed) {
 state.feed=feed;
 setListAdapter(new FeedAdapter(feed));
 }

 private void goBlooey(Throwable t) {
 AlertDialog.Builder builder=new AlertDialog.Builder(this);

 builder
 .setTitle("Exception!")
 .setMessage(t.toString())
 .setPositiveButton("OK", null)
 .show();
 }

 private static class InstanceState {
 RSSFeed feed=null;
 FeedTask task=null;
 }

 private static class FeedTask extends AsyncTask<String, Void, RSSFeed> {
 private RSSReader reader=new RSSReader();
 private Exception e=null;
 private FeedActivity activity=null;

 FeedTask(FeedActivity activity) {
 attach(activity);
 }

 void attach(FeedActivity activity) {
 this.activity=activity;
 }

 void detach() {
 this.activity=null;
 }

 @Override
 public RSSFeed doInBackground(String... urls) {
 RSSFeed result=null;

231

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 try {
 result=reader.load(urls[0]);
 }
 catch (Exception e) {
 this.e=e;
 }

 return(result);
 }

 @Override
 public void onPostExecute(RSSFeed feed) {
 if (e==null) {
 activity.setFeed(feed);
 }
 else {
 Log.e("LunchList", "Exception parsing feed", e);
 activity.goBlooey(e);
 }
 }
 }

 private class FeedAdapter extends BaseAdapter {
 RSSFeed feed=null;

 FeedAdapter(RSSFeed feed) {
 super();

 this.feed=feed;
 }

 public int getCount() {
 return(feed.getItems().size());
 }

 public Object getItem(int position) {
 return(feed.getItems().get(position));
 }

 public long getItemId(int position) {
 return(position);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(android.R.layout.simple_list_item_1,
 parent, false);
 }

232

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

 RSSItem item=(RSSItem)getItem(position);

 ((TextView)row).setText(item.getTitle());

 return(row);
 }
 }
}

Now you can compile and run your application. Fill in some likely RSS feed
URL into the detail form (e.g., http://rss.slashdot.org/Slashdot/slashdot,
also available as http://goo.gl/UZBdM), and click the RSS Feed options menu
item:

Figure 71. The detail form, with an RSS feed and the options menu

If you click on the "RSS Feed" options menu item, it will bring up the
FeedActivity, which will momentarily show you the items in the feed:

233

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

Figure 72. FeedActivity, showing feed items

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• When the user clicks on an item in the FeedActivity's ListView, open
up the Web browser on that particular feed item.

• The options menu item is always enabled, even if there is no feed
URL available. Use onPrepareOptionsMenu() to check to see if there is
a feed URL, then disable the FeedActivity menu item if there is no
URL. Similarly, you can elect to disable the menu item if there is no
connectivity, rather than displaying the "sorry!" Toast as is shown
above.

• More gracefully handle various errors, such as supplying an Atom
feed URL instead of one for an RSS feed.

• Support multiple feed URLs (or possibly other data sources),
instead of just one.

234

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Feeding at Lunch

Further Reading

Additional examples of interacting with the Internet from Android can be
found in the "Communicating via the Internet" chapter of The Busy Coder's
Guide to Android Development. More information about dealing with
third-party libraries, such as our RSS JAR, can be found in the "Leveraging
Java Libraries" chapter of The Busy Coder's Guide to Android Development.

235

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android
http://commonsware.com/Android
http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 16

Serving Up Lunch

In the previous tutorial, we used an AsyncTask to retrieve the contents of the
RSS feed. That was so we could get the network I/O off the main
application thread, and therefore prevent our UI from becoming sluggish or
"janky".

Another way we could solve that same problem is to use an IntentService.
An IntentService is a separate component that accepts commands from
activities, performs those commands on background threads, and
optionally responds to the activities or the user. In this tutorial, we will set
up such an IntentService as a replacement for the AsyncTask.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 15-Internet edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Create and Register a Stub IntentService

Add a new Java class file to the project, named FeedService.java, where you
create a stub implementation of an IntentService:

237

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

package apt.tutorial;

import android.app.IntentService;
import android.content.Intent;

public class FeedService extends IntentService {
 public FeedService() {
 super("FeedService");
 }

 @Override
 public void onHandleIntent(Intent i) {
 // do something
 }
}

Eclipse users can add this class by right-clicking over the apt.tutorial
package in the Package Explorer, choosing New > Class from the context
menu, and specifying FeedService as the class name and
android.app.IntentService as the superclass.

IntentService, unlike Service, requires you to implement a no-argument
constructor and chain to the superclass, supplying a name for your
IntentService. We will put some actual business logic in the
implementation of onHandleIntent() in the next step.

We also need to add a <service> element to the manifest, identifying this
service to Android. Your resulting AndroidManifest.xml file should look
something like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />

238

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

 </intent-filter>
 </activity>
 <activity android:name=".DetailForm"></activity>
 <activity android:name=".EditPreferences"></activity>
 <activity android:name=".FeedActivity"></activity>
 <service android:name=".FeedService"></service>
 </application>
</manifest>

Eclipse users can do this by:

1. Double-clicking on the AndroidManifest.xml file in Package Explorer
to bring it up in the editor

2. Clicking on the Application sub-tab

3. Clicking on the Add... button next to the Application Nodes list

4. Choosing Service in the node type dialog and clicking OK

5. Clicking the Browse... button next to the Name field and choosing
FeedService

6. Saving changes (e.g., <Ctrl>-<S>)

Step #2: Move Feed Fetching and Parsing to the Ser­
vice

The onHandleIntent() method of IntentService will be called on a
background thread – one of the key reasons to use an IntentService. So, set
up a preliminary version of onHandleIntent() that mirrors some of the logic
from doInBackground() from the FeedTask set up in the previous tutorial:

@Override
public void onHandleIntent(Intent i) {
 RSSReader reader=new RSSReader();

 try {
 RSSFeed result=reader.load(i.getStringExtra(EXTRA_URL));
 }
 catch (Exception e) {
 Log.e("LunchList", "Exception parsing feed", e);
 }
}

239

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

All we do is load the RSS via an RSSReader and get an RSSFeed as a result. If
there is an exception, we log it.

For this to work, we need to define EXTRA_URL, the key to our Intent extra
that will identify the feed URL, so add this static data member to
FeedService:

public static final String EXTRA_URL="apt.tutorial.EXTRA_URL";

Also, you will need to add imports for android.util.Log,
org.mcsoxford.rss.RSSFeed, and org.mcsoxford.rss.RSSReader.

Step #3: Send the Feed to the Activity

Fetching and parsing the feed in the FeedService is all fine and well, but we
need the feed items to get to the FeedActivity. That requires a bit more
work, plus a new object: a Messenger.

A Messenger is tied to a Handler from an Activity (or, technically, any other
component that has a Handler). Just as somebody with a Handler can send
messages to the main application thread via the Handler, anyone with a
Handler's Messenger can send messages to the Handler. These are "handled"
the same as any other Handler messages, via handleMessage(). And, the
beauty of a Messenger is that it implements the Parcelable interface, and so
can be packaged in an Intent extra as easily as can a String.

So, we will require that FeedActivity supply us with a Messenger that we can
use to send results back to the FeedActivity itself.

With that in mind, update onHandleIntent() in FeedService to look like this:

@Override
public void onHandleIntent(Intent i) {
 RSSReader reader=new RSSReader();
 Messenger messenger=(Messenger)i.getExtras().get(EXTRA_MESSENGER);
 Message msg=Message.obtain();

 try {

240

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

 RSSFeed result=reader.load(i.getStringExtra(EXTRA_URL));

 msg.arg1=Activity.RESULT_OK;
 msg.obj=result;
 }
 catch (Exception e) {
 Log.e("LunchList", "Exception parsing feed", e);
 msg.arg1=Activity.RESULT_CANCELED;
 msg.obj=e;
 }

 try {
 messenger.send(msg);
 }
 catch (Exception e) {
 Log.w("LunchList", "Exception sending results to activity", e);
 }
}

Here, we get a Messenger object out of our Intent extras, keyed by an
EXTRA_MESSENGER key. We then get an empty Message object for the Messenger.
If the fetch-and-parse of the RSS feed succeeds, we put RESULT_OK in the arg1
public data member of the Message and put the RSSFeed in the obj public
field of the Message. If an Exception is raised, we set arg1 to RESULT_CANCELED
and obj to be the Exception.

Then, we tell the Messenger to send() the Message. If the activity is still on the
screen – or if we handle configuration changes properly – this will succeed
without incident. If, however, the activity has been permanently destroyed,
such as by the user pressing BACK, we will get an exception, which we
simply log as a warning.

For this to compile, we need to add a definition for EXTRA_MESSENGER:

public static final String EXTRA_MESSENGER="apt.tutorial.EXTRA_MESSENGER";

We also need to add four more imports:

• android.app.Activity

• android.os.Message

• android.os.Messenger

• org.mcsoxford.rss.RSSItem

241

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

The complete implementation of FeedService, therefore, should look a bit
like this:

package apt.tutorial;

import android.app.Activity;
import android.app.IntentService;
import android.content.Intent;
import android.os.Message;
import android.os.Messenger;
import android.util.Log;
import org.mcsoxford.rss.RSSItem;
import org.mcsoxford.rss.RSSFeed;
import org.mcsoxford.rss.RSSReader;

public class FeedService extends IntentService {
 public static final String EXTRA_URL="apt.tutorial.EXTRA_URL";
 public static final String EXTRA_MESSENGER="apt.tutorial.EXTRA_MESSENGER";

 public FeedService() {
 super("FeedService");
 }

 @Override
 public void onHandleIntent(Intent i) {
 RSSReader reader=new RSSReader();
 Messenger messenger=(Messenger)i.getExtras().get(EXTRA_MESSENGER);
 Message msg=Message.obtain();

 try {
 RSSFeed result=reader.load(i.getStringExtra(EXTRA_URL));

 msg.arg1=Activity.RESULT_OK;
 msg.obj=result;
 }
 catch (Exception e) {
 Log.e("LunchList", "Exception parsing feed", e);
 msg.arg1=Activity.RESULT_CANCELED;
 msg.obj=e;
 }

 try {
 messenger.send(msg);
 }
 catch (Exception e) {
 Log.w("LunchList", "Exception sending results to activity", e);
 }
 }
}

242

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

Step #4: Display the Feed Items, Redux

Now we need to make the requisite changes to FeedActivity to work with
FeedService instead of FeedTask.

We can start by converting FeedTask to FeedHandler, having it extend Handler
instead of AsyncTask. We can retain the attach() and detach() methods, as
we will need those for handling configuration changes. The
doInBackground() method can be removed, as that logic is now handled by
FeedService. The onPostExecute() method turns into a handleMessage()
method, to take the Message object from FeedService and either call
setFeed() or goBlooey() on FeedActivity, depending on whether we received
RESULT_OK or RESULT_CANCELED in the Message.

The resulting FeedHandler would look like this:

private static class FeedHandler extends Handler {
 FeedActivity activity=null;

 FeedHandler(FeedActivity activity) {
 attach(activity);
 }

 void attach(FeedActivity activity) {
 this.activity=activity;
 }

 void detach() {
 this.activity=null;
 }

 @Override
 public void handleMessage(Message msg) {
 if (msg.arg1==RESULT_OK) {
 activity.setFeed((RSSFeed)msg.obj);
 }
 else {
 activity.goBlooey((Exception)msg.obj);
 }
 }
}

Since we no longer have FeedTask, we no longer need it in InstanceState.
However, we do need to hold onto our Handler as part of our state, so when
the user rotates the screen, our Messenger object can still communicate with

243

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

the right FeedActivity. Hence, replace the FeedTask with FeedHandler in
InstanceState:

private static class InstanceState {
 RSSFeed feed=null;
 FeedHandler handler=null;
}

This means that onRetainNonConfigurationInstance() needs to change, to
accommodate the switch between task and handler:

@Override
public Object onRetainNonConfigurationInstance() {
 if (state.handler!=null) {
 state.handler.detach();
 }

 return(state);
}

Also, our onCreate() method needs to have a few changes:

• If getLastNonConfigurationInstance() is null, when we create the
fresh InstanceState, we also call startService() on our FeedService,
to request that it fetch and parse the RSS feed

• If getLastNonConfigurationInstance() is not null, we need to attach
the new FeedActivity to the handler, not the task as before

The resulting onCreate() method would look like:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 state=(InstanceState)getLastNonConfigurationInstance();

 if (state==null) {
 state=new InstanceState();
 state.handler=new FeedHandler(this);

 Intent i=new Intent(this, FeedService.class);

 i.putExtra(FeedService.EXTRA_URL,
 getIntent().getStringExtra(FEED_URL));
 i.putExtra(FeedService.EXTRA_MESSENGER,
 new Messenger(state.handler));

244

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

 startService(i);
 }
 else {
 if (state.handler!=null) {
 state.handler.attach(this);
 }

 if (state.feed!=null) {
 setFeed(state.feed);
 }
 }
}

Everything else can remain the same, other than replacing some imports
(e.g., AsyncTask with android.os.Handler), removing the import for
RSSReader, and adding some other imports:

• android.content.Intent

• android.os.Handler

• android.os.Message

• android.os.Messenger

The entire FeedActivity implementation should resemble:

package apt.tutorial;

import android.app.AlertDialog;
import android.app.ListActivity;
import android.content.Intent;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.os.Messenger;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.BaseAdapter;
import android.widget.TextView;
import org.mcsoxford.rss.RSSItem;
import org.mcsoxford.rss.RSSFeed;

public class FeedActivity extends ListActivity {
 public static final String FEED_URL="apt.tutorial.FEED_URL";
 private InstanceState state=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

245

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

 state=(InstanceState)getLastNonConfigurationInstance();

 if (state==null) {
 state=new InstanceState();
 state.handler=new FeedHandler(this);

 Intent i=new Intent(this, FeedService.class);

 i.putExtra(FeedService.EXTRA_URL,
 getIntent().getStringExtra(FEED_URL));
 i.putExtra(FeedService.EXTRA_MESSENGER,
 new Messenger(state.handler));

 startService(i);
 }
 else {
 if (state.handler!=null) {
 state.handler.attach(this);
 }

 if (state.feed!=null) {
 setFeed(state.feed);
 }
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 if (state.handler!=null) {
 state.handler.detach();
 }

 return(state);
 }

 private void setFeed(RSSFeed feed) {
 state.feed=feed;
 setListAdapter(new FeedAdapter(feed));
 }

 private void goBlooey(Throwable t) {
 AlertDialog.Builder builder=new AlertDialog.Builder(this);

 builder
 .setTitle("Exception!")
 .setMessage(t.toString())
 .setPositiveButton("OK", null)
 .show();
 }

 private static class InstanceState {
 RSSFeed feed=null;
 FeedHandler handler=null;

246

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

 }

 private class FeedAdapter extends BaseAdapter {
 RSSFeed feed=null;

 FeedAdapter(RSSFeed feed) {
 super();

 this.feed=feed;
 }

 public int getCount() {
 return(feed.getItems().size());
 }

 public Object getItem(int position) {
 return(feed.getItems().get(position));
 }

 public long getItemId(int position) {
 return(position);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(android.R.layout.simple_list_item_1,
 parent, false);
 }

 RSSItem item=(RSSItem)getItem(position);

 ((TextView)row).setText(item.getTitle());

 return(row);
 }
 }

 private static class FeedHandler extends Handler {
 FeedActivity activity=null;

 FeedHandler(FeedActivity activity) {
 attach(activity);
 }

 void attach(FeedActivity activity) {
 this.activity=activity;
 }

 void detach() {

247

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

 this.activity=null;
 }

 @Override
 public void handleMessage(Message msg) {
 if (msg.arg1==RESULT_OK) {
 activity.setFeed((RSSFeed)msg.obj);
 }
 else {
 activity.goBlooey((Exception)msg.obj);
 }
 }
 }
}

If you compile and run the new LunchList, nothing changes visibly. The
user experience is identical.

So why bother with an IntentService?

In this case, perhaps it is not necessary. The big advantage of an
IntentService, though, is that it can live beyond the scope of any activity.
Suppose instead of downloading an RSS feed, we were downloading a PDF
of a book that the user bought. We should not force the user to have to wait
in our activity for the download to complete, yet if the activity is destroyed,
any threads it forked may be killed off as well. The IntentService, on the
other hand, can continue downloading, and it will automatically destroy
itself when onHandleIntent() ends.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• To confirm that our configuration handling works properly, add a
call to sleep() on android.os.SystemClock in the FeedService,
somewhere in onHandleIntent() before calling send() on the
Messenger. While the service is asleep, you can rotate the screen of
your device or emulator, and confirm that the message still makes it
to the new FeedActivity instance.

• Experiment with other ways of having the FeedService send results
to the FeedActivity, such as via a broadcast Intent, the PendingIntent

248

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Serving Up Lunch

created by calling createPendingResult() on an Activity, or a
ResultReceiver.

• Experiment with having the FeedService go ahead and
download/parse the RSS feed when the DetailsForm comes up,
rather than waiting for the user to start the FeedActivity. This will
require having some way of caching the results, such that you can
make them available to the FeedActivity upon demand. You may
find that it is simpler to do the download and the parsing in
separate steps, caching the downloaded feed (pre-fetched when
DetailsForm comes up) and parsing the cached feed only when
FeedActivity requests it.

Further Reading

You can learn more about the roles of services and how to create them in a
pair of chapters of The Busy Coder's Guide to Android Development.

249

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 17

Locating Lunch

While we keep track of the address of our restaurants, it might also be
useful to keep track of the GPS coordinates as well. In this tutorial, we will
hook up to the LocationManager system service and find a restaurant's
location via GPS, saving it in the database for later use.

WARNING: The Android 2.3 emulator has bugs related to simulating
locations using DDMS. For this tutorial, you will need to use another
emulator or a piece of hardware. The Android 2.3 problem is limited to the
emulator – using a device's actual GPS should pose no problems, assuming
you are someplace where you can get a GPS signal.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 16-Services edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

251

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

Step #1: Add Latitude and Longitude to the Data Mod­
el

Two tutorials ago, we modified our database and RestaurantHelper to add
support for a feed URL. Now, we get to make more changes, to store the
latitude and longitude of a restaurant.

So, add in a pair of REAL columns named lat and lon to the schema used in
onCreate() of RestaurantHelper:

@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT, feed TEXT, lat REAL, lon
REAL);");
}

This will also require incrementing our SCHEMA_VERSION to 3:

private static final int SCHEMA_VERSION=3;

Modifying onUpgrade() in RestaurantHelper, though, becomes a bit trickier.
Many users of our app will be on SCHEMA_REVISION 2 when they install our
new copy of the application. However, it is possible that some users skipped
upgrading LunchList along the way and are still back on SCHEMA_REVISION 1.
As such, we need to handle upgrading 1->3 and 2->3, not just the latter. A
typical solution for this is to do the upgrades in series, 1->2 where needed,
then 2->3.

With that in mind, modify onUpgrade() to do our original ALTER TABLE for
the feed column if the SCHEMA_REVISION is less than 2, plus add a new stanza
to add our lat and lon columns if we are less than SCHEMA_REVISION 3:

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 if (oldVersion<2) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN feed TEXT");
 }

 if (oldVersion<3) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN lat REAL");

252

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 db.execSQL("ALTER TABLE restaurants ADD COLUMN lon REAL");
 }
}

Our two RestaurantHelper query methods, getAll() and getById(), will also
need to start returning the lat and lon columns:

public Cursor getAll(String orderBy) {
 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, lat, lon FROM
restaurants ORDER BY "+orderBy,
 null));
}

public Cursor getById(String id) {
 String[] args={id};

 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, feed, lat, lon FROM
restaurants WHERE _ID=?",
 args));
}

However, the user will not be modifying the location directly – expecting
somebody to manually type in a latitude and longitude is probably asking
too much. Later on, we will use an options menu item to allow the user to
request a location via GPS. Hence, we do not need to worry about
modifying insert() and update() in RestaurantHelper, as we will never be
setting or changing the latitude and longitude when we call them. Rather,
we need a new method in RestaurantHelper – call it updateLocation() – that
will do a SQL UPDATE statement to put the latitude and longitude in a
restaurant's row:

public void updateLocation(String id, double lat, double lon) {
 ContentValues cv=new ContentValues();
 String[] args={id};

 cv.put("lat", lat);
 cv.put("lon", lon);

 getWritableDatabase().update("restaurants", cv, "_ID=?",
 args);
}

This, of course, assumes that our restaurant already exists in the database, a
restriction we will need to enforce in the UI.

253

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

Finally, we need a couple of getter methods in RestaurantHelper to return
the latitude and longitude from a Cursor returned by getAll() or getById():

public double getLatitude(Cursor c) {
 return(c.getDouble(6));
}

public double getLongitude(Cursor c) {
 return(c.getDouble(7));
}

The revised RestaurantHelper should resemble:

package apt.tutorial;

import android.content.Context;
import android.content.ContentValues;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;

class RestaurantHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="lunchlist.db";
 private static final int SCHEMA_VERSION=3;

 public RestaurantHelper(Context context) {
 super(context, DATABASE_NAME, null, SCHEMA_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT, feed TEXT, lat REAL, lon
REAL);");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 if (oldVersion<2) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN feed TEXT");
 }

 if (oldVersion<3) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN lat REAL");
 db.execSQL("ALTER TABLE restaurants ADD COLUMN lon REAL");
 }
 }

 public Cursor getAll(String orderBy) {

254

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, lat, lon FROM
restaurants ORDER BY "+orderBy,
 null));
 }

 public Cursor getById(String id) {
 String[] args={id};

 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, feed, lat, lon
FROM restaurants WHERE _ID=?",
 args));
 }

 public void insert(String name, String address,
 String type, String notes,
 String feed) {
 ContentValues cv=new ContentValues();

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);
 cv.put("feed", feed);

 getWritableDatabase().insert("restaurants", "name", cv);
 }

 public void update(String id, String name, String address,
 String type, String notes, String feed) {
 ContentValues cv=new ContentValues();
 String[] args={id};

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);
 cv.put("feed", feed);

 getWritableDatabase().update("restaurants", cv, "_ID=?",
 args);
 }

 public void updateLocation(String id, double lat, double lon) {
 ContentValues cv=new ContentValues();
 String[] args={id};

 cv.put("lat", lat);
 cv.put("lon", lon);

 getWritableDatabase().update("restaurants", cv, "_ID=?",
 args);
 }

255

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 public String getName(Cursor c) {
 return(c.getString(1));
 }

 public String getAddress(Cursor c) {
 return(c.getString(2));
 }

 public String getType(Cursor c) {
 return(c.getString(3));
 }

 public String getNotes(Cursor c) {
 return(c.getString(4));
 }

 public String getFeed(Cursor c) {
 return(c.getString(5));
 }

 public double getLatitude(Cursor c) {
 return(c.getDouble(6));
 }

 public double getLongitude(Cursor c) {
 return(c.getDouble(7));
 }
}

Step #2: Save the Restaurant in onPause()

We need to add a spot for displaying the GPS coordinates on the screen.
Once again, we are running out of room.

One big chunk of screen space is taken up with our Save button. Most
Android activities do not have such a button. Instead, they take one of two
approaches:

• There is an options menu item to save

• The data is saved automatically when the activity is paused

Here, let's try the second approach – save the restaurant to the database
when the activity is paused, such as the user pressing BACK or HOME.

256

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

To do this, first get rid of all references to the "save" Button from the
DetailForm class. You can also get rid of the android.widget.Button import,
which may help you determine what you need to get rid of.

Then, in the DetailForm class, convert the onSave OnItemClickListener object
to a save() method, where that method just does what onClick() used to to
in the onSave object, except that it skips the finish() call and only saves if
the restaurant has a name.:

private void save() {
 if (name.getText().toString().length()>0) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 default:
 type="delivery";
 break;
 }

 if (restaurantId==null) {
 helper.insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 else {
 helper.update(restaurantId, name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 }
}

Then, add an implementation of onPause() to DetailForm that calls save():

@Override
public void onPause() {
 save();

 super.onPause();
}

257

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

Step #3: Add a TextView and Options Menu Item for
Location

Given that we have made the Save button obsolete, we can remove it from
our layouts, putting in place a spot to display the GPS coordinates (when
we have them). We also need to allow the user to request a location fix from
GPS, and the easiest way to do that is to add another options menu item.

In res/layout/detail_form.xml, remove the Save button and add in another
TableRow that has two TextView widgets, one with a "Location:" caption and
one (named location) that will hold our actual GPS coordinates. The
resulting layout file should look something like this:

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1"
 android:shrinkColumns="1"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name" />
 </TableRow>
 <TableRow>
 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr" />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />
 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"
 android:text="Delivery"
 />
 </RadioGroup>
 </TableRow>
 <TableRow>
 <TextView android:text="Location:" />
 <TextView android:id="@+id/location" android:text="(not set)" />

258

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 </TableRow>
 <EditText android:id="@+id/notes"
 android:inputType="textMultiLine"
 android:gravity="top"
 android:lines="2"
 android:scrollHorizontally="false"
 android:maxLines="2"
 android:layout_span="2"
 android:hint="Notes"
 android:layout_marginTop="4dip"
 />
 <EditText android:id="@+id/feed"
 android:layout_span="2"
 android:hint="Feed URL"
 />
 </TableLayout>
</ScrollView>

Eclipse users can accomplish this by:

1. Double-clicking on the res/layout/detail_form.xml file in the
Package Manager to bring it up in the graphical editor

2. Right-clicking over the Save button and choosing Delete from the
context menu

3. Dragging a TableRow widget from the Layouts section of the tool
palette into the TableLayout after the row containing the RadioGroup

4. Dragging a TextView widget from the "Form Widgets" section of the
tool palette into the left-hand column of the new TableRow

5. Right-clicking over the new TextView widget, choosing Properties >
Text... from the context menu, filling in Location: as the value, and
clicking OK

6. Dragging a TextView widget from the "Form Widgets" section of the
tool palette into the right-hand column of the new TableRow

7. Right-clicking over the new TextView widget, choosing Properties >
Text... from the context menu, filling in (not set) as the value, and
clicking OK

8. Right-clicking over the new TextView widget, choosing Edit ID from
the context menu, filling in location as the value, and clicking OK

9. Saving your changes (e.g., <Ctrl>-<S>)

259

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

Figure 73. The detail form in the Eclipse graphical editor, with the new table
row

Similarly, in res/layout-land/detail_form.xml, replace the Save button with
a nested horizontal LinearLayout holding onto the same two TextView
widgets:

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <TableLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="2"
 android:shrinkColumns="2"
 >
 <TableRow>
 <TextView android:text="Name:" />
 <EditText android:id="@+id/name"
 android:layout_span="2"
 />
 </TableRow>
 <TableRow>

260

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 <TextView android:text="Address:" />
 <EditText android:id="@+id/addr"
 android:layout_span="2"
 />
 </TableRow>
 <TableRow>
 <TextView android:text="Type:" />
 <RadioGroup android:id="@+id/types">
 <RadioButton android:id="@+id/take_out"
 android:text="Take-Out"
 android:checked="true"
 />
 <RadioButton android:id="@+id/sit_down"
 android:text="Sit-Down"
 />
 <RadioButton android:id="@+id/delivery"
 android:text="Delivery"
 />
 </RadioGroup>
 <LinearLayout android:orientation="vertical">
 <EditText android:id="@+id/notes"
 android:inputType="textMultiLine"
 android:gravity="top"
 android:lines="2"
 android:scrollHorizontally="false"
 android:maxLines="2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Notes"
 />
 <EditText android:id="@+id/feed"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Feed URL"
 />
 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 >
 <TextView android:text="Location:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <TextView android:id="@+id/location"
 android:text="(not set)"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 </LinearLayout>
 </TableRow>
 </TableLayout>
</ScrollView>

261

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

Eclipse users can accomplish this by:

1. Double-clicking on the res/layout-and/detail_form.xml file in the
Package Manager to bring it up in the graphical editor

2. Right-clicking over the Save button and choosing Delete from the
context menu

3. Dragging a LinearLayout (Horizontal) widget from the Layouts
section of the tool palette into the vertical LinearLayout holding the
notes and feed URL fields (drag it on top of the feed URL field)

4. Dragging a TextView widget from the "Form Widgets" section of the
tool palette into the new LinearLayout

5. Right-clicking over the new TextView widget, choosing Properties >
Text... from the context menu, filling in Location: as the value, and
clicking OK

6. Dragging a TextView widget from the "Form Widgets" section of the
tool palette into the new LinearLayout

7. Right-clicking over the new TextView widget, choosing Properties >
Text... from the context menu, filling in (not set) as the value, and
clicking OK

8. Right-clicking over the new TextView widget, choosing Edit ID from
the context menu, filling in location as the value, and clicking OK

9. Saving your changes (e.g., <Ctrl>-<S>)

262

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

Figure 74. The landscape detail form in the Eclipse graphical editor, with the
new widgets

In DetailForm, add in a data member for the location TextView:

TextView location=null;

Also, we need to retrieve that widget in the onCreate() method of
DetailForm, as we have with the other widgets we modify:

location=(TextView)findViewById(R.id.location);

Then, in the load() method of DetailForm, we can get our latitude and
longitude from RestaurantHelper and pour them into the TextView:

private void load() {
 Cursor c=helper.getById(restaurantId);

 c.moveToFirst();
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));
 notes.setText(helper.getNotes(c));
 feed.setText(helper.getFeed(c));

 if (helper.getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (helper.getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {

263

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 types.check(R.id.delivery);
 }

 location.setText(String.valueOf(helper.getLatitude(c))
 +", "
 +String.valueOf(helper.getLongitude(c)));

 c.close();
}

We also need to add a location options menu item to our
res/menu/details_option.xml file, for the user to request collecting the GPS
location for the restaurant. Grab some likely icon to go with the menu item,
such as ic_menu_compass.png from the Android SDK. Then, modify that file
to resemble:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/feed"
 android:title="RSS Feed"
 android:icon="@drawable/ic_menu_friendslist"
 />
 <item android:id="@+id/location"
 android:title="Save Location"
 android:icon="@drawable/ic_menu_compass"
 />
</menu>

Eclipse users can make this change by:

1. Double-clicking on the res/menu/details_option.xml file in the
Package Explorer to bring it up in the graphical editor

2. Clicking the Add... button to the right of the list of menu items

3. Choosing Item in the dialog box and clicking OK to add a blank
menu item

4. Specifying @+id/location as the Id of the new menu item

5. Setting the title of the new menu item to be Save Location

6. Setting the icon of the new menu item to be
@drawable/ic_menu_compass (or whatever icon it is that you are using)

7. Saving the changes (e.g., <Ctrl>-<S>)

264

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

Step #4: Update the Permissions

To use GPS, we will need to add the ACCESS_FINE_LOCATION permission to our
AndroidManifest.xml file. The resulting file should look a bit like:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm"></activity>
 <activity android:name=".EditPreferences"></activity>
 <activity android:name=".FeedActivity"></activity>
 <service android:name=".FeedService"></service>
 </application>
</manifest>

Eclipse users can add this by:

1. Double-clicking on the AndroidManifest.xml file in the Package
Explorer to bring it up in the graphical editor

2. Clicking on the Permissions sub-tab

3. Clicking the Add... button to the right of the list of permissions,
then choosing "Uses Permission" in the dialog and clicking OK to
create a new <uses-permission> element

4. Assigning that element the android.permission.ACCESS_FINE_LOCATION
value via the drop-down

5. Saving the changes (e.g., <Ctrl>-<S>)

265

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

Step #5: Find Our Location Using GPS

Now, we need to actually figure out where we are, when the user asks. Since
the GPS radio is normally not on, to save power, we cannot just ask
Android, "hey, where are we?" Instead, we will need to request location
updates, long enough to get a fix.

First, add a data member to DetailForm for LocationManager, the system
service that is our gateway to location information:

LocationManager locMgr=null;

Next, we need to initialize this data member by calling getSystemService(),
asking for the LOCATION_SERVICE. onCreate() of DetailForm is a likely place to
do this, so add that call somewhere in onCreate():

locMgr=(LocationManager)getSystemService(LOCATION_SERVICE);

Then, we need to detect when the user taps our location options menu
item. What we can do is ask the LocationManager to turn on GPS and start
fetching fixes, letting us know when they arrive. This is done via the
requestLocationUpdates() method. So, amend the onOptionsItemSelected()
method in DetailsForm to add in the requestLocationUpdates() call:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(this, FeedActivity.class);

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);
 }
 else {
 Toast
 .makeText(this, "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

 return(true);
 }
 else if (item.getItemId()==R.id.location) {

266

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 0, 0, onLocationChange);

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

The second and third parameters to requestLocationUpdates() are the
desired frequency of updates and the minimum distance moved to let us
know of a position change – we set these both to zero, so we get fixes as
soon as they arrive. The fourth parameter is a LocationListener object, here
named onLocationChange, which will be called with onLocationChanged()
when GPS fixes arrive. When a GPS fix arrives, we need to:

• Update the UI with the GPS coordinates

• Save those GPS coordinates in the database for this restaurant

• Stop requesting updates, since we only need the one

With that in mind, add the onLocationChange data member to DetailForm:

LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location fix) {
 helper.updateLocation(restaurantId, fix.getLatitude(),
 fix.getLongitude());
 location.setText(String.valueOf(fix.getLatitude())
 +", "
 +String.valueOf(fix.getLongitude()));
 locMgr.removeUpdates(onLocationChange);

 Toast
 .makeText(DetailForm.this, "Location saved",
 Toast.LENGTH_LONG)
 .show();
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {

267

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 // required for interface, not used
 }
};

Note that we also display a Toast, just to let the user know that we
successfully collected the location. There are other methods on
LocationListener that, for the purposes of this tutorial, we will ignore.

However, it is possible that the user will have left the activity while we are
still waiting on a GPS fix. In that case, it is safest to abandon the GPS
request – otherwise, we may leave the GPS radio on indefinitely,
particularly if we are in a large building where we cannot get a GPS fix. So,
amend onPause() in DetailForm to remove our request for updates:

@Override
public void onPause() {
 save();
 locMgr.removeUpdates(onLocationChange);

 super.onPause();
}

You will also need to add imports for:

• android.location.Location

• android.location.LocationListener

• android.location.LocationManager

Step #6: Only Enable Options Menu Item If Saved

The updateLocation() method on RestaurantHelper does a SQL UPDATE to add
our latitude and longitude to a restaurant. However, this only works if the
restaurant exists in the database. Right now, it is possible for the user to
start adding a new restaurant, then request saving the GPS coordinates –
that will not work. To combat this threat, we should disable the location
options menu item if the restaurant is not saved in the database. We can
tell whether or not it is saved by checking to see if restaurantId – the key of
our restaurant – is null or not. A non-null restaurantId means the
restaurant exists in the database.

268

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

One way to make this change is to add an onPrepareOptionsMenu() method
to DetailForm, such as this one:

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
 if (restaurantId==null) {
 menu.findItem(R.id.location).setEnabled(false);
 }

 return(super.onPrepareOptionsMenu(menu));
}

Here, we retrieve the menu item and disable it if restaurantId is null.
onPrepareOptionsMenu() is called every time the MENU button is pressed,
not just the first time.

The entire DetailForm class, incorporating all changes in this tutorial,
should look something like this:

package apt.tutorial;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.net.ConnectivityManager;
import android.net.NetworkInfo;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.TextView;
import android.widget.Toast;

public class DetailForm extends Activity {
 EditText name=null;
 EditText address=null;
 EditText notes=null;
 EditText feed=null;
 RadioGroup types=null;
 RestaurantHelper helper=null;
 String restaurantId=null;
 TextView location=null;
 LocationManager locMgr=null;

269

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.detail_form);

 locMgr=(LocationManager)getSystemService(LOCATION_SERVICE);
 helper=new RestaurantHelper(this);

 name=(EditText)findViewById(R.id.name);
 address=(EditText)findViewById(R.id.addr);
 notes=(EditText)findViewById(R.id.notes);
 types=(RadioGroup)findViewById(R.id.types);
 feed=(EditText)findViewById(R.id.feed);
 location=(TextView)findViewById(R.id.location);

 restaurantId=getIntent().getStringExtra(LunchList.ID_EXTRA);

 if (restaurantId!=null) {
 load();
 }
 }

 @Override
 public void onPause() {
 save();
 locMgr.removeUpdates(onLocationChange);

 super.onPause();
 }

 @Override
 public void onDestroy() {
 helper.close();

 super.onDestroy();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.details_option, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 if (restaurantId==null) {
 menu.findItem(R.id.location).setEnabled(false);
 }

 return(super.onPrepareOptionsMenu(menu));
 }

270

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(this, FeedActivity.class);

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);
 }
 else {
 Toast
 .makeText(this, "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

 return(true);
 }
 else if (item.getItemId()==R.id.location) {
 locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 0, 0, onLocationChange);

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 private boolean isNetworkAvailable() {
 ConnectivityManager
cm=(ConnectivityManager)getSystemService(CONNECTIVITY_SERVICE);
 NetworkInfo info=cm.getActiveNetworkInfo();

 return(info!=null);
 }

 private void load() {
 Cursor c=helper.getById(restaurantId);

 c.moveToFirst();
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));
 notes.setText(helper.getNotes(c));
 feed.setText(helper.getFeed(c));

 if (helper.getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (helper.getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

271

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 location.setText(String.valueOf(helper.getLatitude(c))
 +", "
 +String.valueOf(helper.getLongitude(c)));

 c.close();
 }

 private void save() {
 if (name.getText().toString().length()>0) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 default:
 type="delivery";
 break;
 }

 if (restaurantId==null) {
 helper.insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 else {
 helper.update(restaurantId, name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 }
 }

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location fix) {
 helper.updateLocation(restaurantId, fix.getLatitude(),
 fix.getLongitude());
 location.setText(String.valueOf(fix.getLatitude())
 +", "
 +String.valueOf(fix.getLongitude()));
 locMgr.removeUpdates(onLocationChange);

 Toast
 .makeText(DetailForm.this, "Location saved",
 Toast.LENGTH_LONG)
 .show();
 }

272

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };
}

At this point, if you compile and install the application, on the detail form,
you will see a place for the restaurant GPS coordinates:

Figure 75. The detail form, with default GPS coordinates

Pressing the MENU button will bring up the new options menu item:

273

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

Figure 76. The detail form and its new options menu

To test it, if you are running it on actual hardware, just tap the menu item
and wait for the Toast to appear. If you are running the application on an
emulator, you will need to use DDMS to send a fake GPS fix, after tapping
the menu item to "turn on the GPS radio", as it were. The Emulator
Controls tab of DDMS will have a spot for you to supply a longitude and
latitude, plus a Send button to push the fake fix over to LunchList.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Use the Criteria object to remove the hard-wired dependency on
GPS. However, in this case, we would still want ACCURACY_FINE
locations – we are trying to fix the position of a restaurant, which
would be useless if off by half a kilometer or more.

• Tie into a geocoding service to allow the user to fill in the address of
the restaurant from the GPS coordinates, rather than having to ask
somebody, let alone having to type it in. Note that while Android

274

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Locating Lunch

has a Geocoder, it appears to be somewhat buggy, so while you are
welcome to experiment with it, do not be shocked if you encounter
some problems.

• Add a "reset" or "revert" options menu item that allows the user to
restore the values that are in the database, in case they made edits
and do not want to save them. If the restaurant is not in the
database (i.e., has never been saved), this options menu item should
blank the detail form.

• If you have not added options for deleting a restaurant, this might
be a good time. After all, if the user accidentally taps on the add
options menu item in the LunchList activity, they are forced to save
a restaurant in our current UI. Add a "delete" options menu item on
DetailForm (preferably with an AlertDialog for confirmation) and/or
a "delete" context menu item on LunchList itself.

• Since the restaurant is either in or not in the database at the start of
DetailForm, and that state does not change while the activity is on-
screen, we would not need to use onPrepareOptionsMenu() – we could
disable the menu item in onCreateOptionsMenu(), after inflating the
menu. Make this change and experiment with the results.

Further Reading

Location tracking, via GPS or other technologies, is covered in the
"Accessing Location-Based Services" chapter of The Busy Coder's Guide to
Android Development.

275

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android
http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 18

Putting Lunch on the Map

Now that we have GPS coordinates for our restaurants, it might be useful to
show where those locations are on a map, so that the user can remember
how to get there. The simple way do to that would be to launch the built-in
maps application, via a geo: URL and an ACTION_VIEW Intent. However, we
cannot draw a marker on that sort of map, which might be interesting. So,
here, we will do things the hard way, by integrating MapActivity and MapView
into LunchList.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 17-Location edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Make Sure You Are Ready

You will need to register for an API key to use with the mapping services
and set it up in your development environment with your debug certificate.
Full instructions for generating API keys, for development and production
use, can be found on the Android Google Maps Add-On Web site. In the

277

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/add-ons/google-apis/mapkey.html

Putting Lunch on the Map

interest of brevity, let's focus on the narrow case of getting your app
running in your emulator. Doing this requires the following steps:

1. Visit the API key signup page and review the terms of service

2. Re-read those terms of service and make really really sure you want
to agree to them, then check the "I have read and agree..." checkbox

3. Find the MD5 digest of the certificate used for signing your debug-
mode applications (described in detail below)

4. On the API key signup page, paste in that MD5 signature and
submit the form

5. On the resulting page, save the API key that you are given

The trickiest part is finding the MD5 signature of the certificate used for
signing your debug-mode applications... and much of the complexity is
merely in making sense of the concept.

All Android applications are signed using a digital signature generated from
a certificate. You are automatically given a debug certificate when you set
up the SDK, and there is a separate process for creating a self-signed
certificate for use in your production applications. This signature process
involves the use of the Java keytool and jarsigner utilities. For the purposes
of getting your API key, you only need to worry about keytool. You will find
this in your Java SDK. Since it runs from the command line, it helps if you
put the Java SDK's bin/ directory in your PATH.

To get your MD5 digest of your debug certificate, if you are on OS X or
Linux, use the following command:

keytool -list -alias androiddebugkey -keystore ~/.android/debug.keystore
-storepass android -keypass android

On other development platforms, you will need to replace the value of the
-keystore switch with the location for your platform and user account:

• XP: C:\Documents and Settings\<user>\.android\debug.keystore

• Vista/Windows 7: C:\Users\<user>\.android\debug.keystore

278

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/maps-api-signup.html

Putting Lunch on the Map

(where <user> is your account name)

The second line of the output contains your MD5 digest, as a series of pairs
of hex digits separated by colons.

You will also need to be testing on an AVD or device that has Google Maps
installed. If the Google Maps application is available via the home screen's
launcher, then you should be good to go.

And, you need to make sure that your build target is set to an Android
edition that has the Google APIs, so you can compile your application with
references to Google Maps. In Eclipse, you will find this on the Android
entry in the project properties; outside of Eclipse, ensure that your
default.properties file has a "target" property set to one with the Google
APIs, such as:

This file is automatically generated by Android Tools.
Do not modify this file – YOUR CHANGES WILL BE ERASED!

This file must be checked in Version Control Systems.

To customize properties used by the Ant build system use,
"build.properties", and override values to adapt the script to your
project structure.

Project target.
target=Google Inc.:Google APIs:8

Step #2: Add an Options Menu Item for Map

First, we need to give the user a way to request a map of the restaurant. The
simplest solution: add another options menu item.

You will need an icon for this new menu item, perhaps the
ic_menu_mapmode.png file from the Android SDK, which you can copy into
the res/drawable/ directory of your project.

Then, add a map <item> element to the res/menu/details_option.xml file:

279

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/feed"
 android:title="RSS Feed"
 android:icon="@drawable/ic_menu_friendslist"
 />
 <item android:id="@+id/location"
 android:title="Save Location"
 android:icon="@drawable/ic_menu_compass"
 />
 <item android:id="@+id/map"
 android:title="Show on Map"
 android:icon="@drawable/ic_menu_mapmode"
 />
</menu>

Eclipse users can do this by:

1. Double-clicking on the res/menu/details_option.xml file in the
Package Explorer to bring it up in the graphical editor

2. Clicking the Add... button to the right of the list of menu items

3. Choosing Item in the dialog box and clicking OK to add a blank
menu item

4. Specifying @+id/map as the Id of the new menu item

5. Setting the title of the new menu item to be Show on Map

6. Setting the icon of the new menu item to be
@drawable/ic_menu_mapmode (or whatever icon it is that you are using)

7. Saving the changes (e.g., <Ctrl>-<S>)

Also, modify onPrepareOptionsMenu() in DetailForm to disable this menu
item if the restaurant is not saved (and therefore definitely lacks a
location):

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
 if (restaurantId==null) {
 menu.findItem(R.id.location).setEnabled(false);
 menu.findItem(R.id.map).setEnabled(false);
 }

 return(super.onPrepareOptionsMenu(menu));
}

280

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

Step #3: Create and Use a MapActivity

Next, let us integrate a basic MapActivity.

First, we need to tell Android that we intend to use the Google Maps
capability. This is accomplished via a <uses-library> element in the
manifest, indicating that we plan to use com.google.android.maps. This will
cause that firmware library to be loaded into our process when the
application starts up, and it makes classes like MapActivity available to us.

So, modify AndroidManifest.xml to add the <uses-library> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm"></activity>
 <activity android:name=".EditPreferences"></activity>
 <activity android:name=".FeedActivity"></activity>
 <activity android:name=".RestaurantMap"></activity>
 <service android:name=".FeedService"></service>
 </application>
</manifest>

Eclipse users can make this change by:

1. Double-clicking on the AndroidManifest.xml file to bring it up in the
graphical editor

281

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

2. Clicking on the Application sub-tab

3. Clicking the Add... button to the right of the Application Nodes list

4. Choosing Uses Library in the dialog and clicking OK

5. Choosing com.google.android.maps for the "name" in the drop-down
for the new element on the right

6. Setting the "required" value to be true via the drop-down for the
new element on the right

7. Saving your changes (e.g., <Ctrl>-<S>)

Next, add a rudimentary RestaurantMap class to the LunchList project, in the
apt.tutorial package, inheriting from MapActivity, and loading in the
R.layout.map layout resource. Eclipse users can do this by right-clicking
over the apt.tutorial package in Package Explorer, choosing New > Class
from the context menu, then specifying MapActivity as the class name and
com.google.android.maps.MapActivity as the superclass.

You will also need to add that activity to the manifest, with an appropriate
<activity> element, akin to the other activities that we have added. Eclipse
users can add this element by:

1. Double-clicking on the AndroidManifest.xml file in Package Explorer
to bring it up in the editor

2. Clicking on the Application sub-tab

3. Clicking on the Add... button next to the Application Nodes list

4. Choosing Activity in the node type dialog and clicking OK

5. Clicking the Browse... button next to the Name field and choosing
MapActivity

6. Saving changes (e.g., <Ctrl>-<S>)

In addition to onCreate(), the initial cut of RestaurantMap will need to
override isRouteDisplayed(), as that is an abstract method – just return
false. Here is what this class should look like at the outset:

282

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

package apt.tutorial;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

public class RestaurantMap extends MapActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.map);
 }

 @Override
 protected boolean isRouteDisplayed() {
 return(false);
 }
}

Now, we need to tie that into the DetailForm class, so when the user clicks
on the map options menu item, we launch RestaurantMap. That is merely a
matter of adding another condition to onOptionsItemSelected() and calling
startActivity():

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(this, FeedActivity.class);

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);
 }
 else {
 Toast
 .makeText(this, "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

 return(true);
 }
 else if (item.getItemId()==R.id.location) {
 locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 0, 0, onLocationChange);

 return(true);
 }
 else if (item.getItemId()==R.id.map) {
 Intent i=new Intent(this, RestaurantMap.class);

 startActivity(i);

283

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

We also need a layout file, res/layout/map.xml. It can just be a full-screen
MapView. However, there are three tricks:

1. Because MapView is not part of android.widget, you must fully-qualify
it as com.google.android.maps.MapView

2. You will need to have an android:apiKey attribute containing your
API key

3. You probably want to have android:clickable="true", so the user can
pan and zoom around the map by themselves

Here is a layout file that fits those requirements (though you will need to
replace the API key shown here with your own):

<?xml version="1.0" encoding="utf-8"?>
<com.google.android.maps.MapView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/map"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:apiKey="00yHj0k7_7vxbuQ9zwyXI4bNMJrAjYrJ9KKHgbQ"
 android:clickable="true" />

Eclipse users will need to create this layout by manually editing the XML –
as do non-Eclipse users – as MapView is not a widget available in the tool
palette at this time.

Step #4: Create an ItemizedOverlay

If we want to display a marker where the restaurant is, we are going to need
to get our latitude and longitude to the RestaurantMap, then use that with an
ItemizedOverlay to render our marker.

284

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

To get the latitude and longitude from DetailForm to RestaurantMap, we will
use Intent extras once again. So, define some public static String data
members to use as Intent extra keys in RestaurantMap:

public static final String EXTRA_LATITUDE="apt.tutorial.EXTRA_LATITUDE";
public static final String EXTRA_LONGITUDE="apt.tutorial.EXTRA_LONGITUDE";
public static final String EXTRA_NAME="apt.tutorial.EXTRA_NAME";

Then...we have a problem.

In DetailForm, the only point where we have the Cursor for loading our data
is in the load() method. By the time we get to onOptionsItemSelected() to
launch the RestaurantMap, we no longer have that Cursor. We could parse it
out of the TextView displaying those coordinates, but that would be a hassle.

So, in DetailForm, add a pair of data members to cache the latitude and
longitude:

double latitude=0.0d;
double longitude=0.0d;

Then, populate those in the load() method of DetailForm:

private void load() {
 Cursor c=helper.getById(restaurantId);

 c.moveToFirst();
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));
 notes.setText(helper.getNotes(c));
 feed.setText(helper.getFeed(c));

 if (helper.getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (helper.getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 latitude=helper.getLatitude(c);
 longitude=helper.getLongitude(c);

285

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

 location.setText(String.valueOf(latitude)
 +", "
 +String.valueOf(longitude));

 c.close();
}

Now, we can modify onOptionsItemSelected() to put the latitude and
longitude in as Intent extras, along with the name of the restaurant for
good measure:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(this, FeedActivity.class);

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);
 }
 else {
 Toast
 .makeText(this, "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

 return(true);
 }
 else if (item.getItemId()==R.id.location) {
 locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 0, 0, onLocationChange);

 return(true);
 }
 else if (item.getItemId()==R.id.map) {
 Intent i=new Intent(this, RestaurantMap.class);

 i.putExtra(RestaurantMap.EXTRA_LATITUDE, latitude);
 i.putExtra(RestaurantMap.EXTRA_LONGITUDE, longitude);
 i.putExtra(RestaurantMap.EXTRA_NAME, name.getText().toString());

 startActivity(i);

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

286

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

The complete DetailForm class, with all the modifications for this tutorial,
should resemble:

package apt.tutorial;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.net.ConnectivityManager;
import android.net.NetworkInfo;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.TextView;
import android.widget.Toast;

public class DetailForm extends Activity {
 EditText name=null;
 EditText address=null;
 EditText notes=null;
 EditText feed=null;
 RadioGroup types=null;
 RestaurantHelper helper=null;
 String restaurantId=null;
 TextView location=null;
 LocationManager locMgr=null;
 double latitude=0.0d;
 double longitude=0.0d;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.detail_form);

 locMgr=(LocationManager)getSystemService(LOCATION_SERVICE);
 helper=new RestaurantHelper(this);

 name=(EditText)findViewById(R.id.name);
 address=(EditText)findViewById(R.id.addr);
 notes=(EditText)findViewById(R.id.notes);
 types=(RadioGroup)findViewById(R.id.types);
 feed=(EditText)findViewById(R.id.feed);
 location=(TextView)findViewById(R.id.location);

 restaurantId=getIntent().getStringExtra(LunchList.ID_EXTRA);

287

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

 if (restaurantId!=null) {
 load();
 }
 }

 @Override
 public void onPause() {
 save();

 super.onPause();
 }

 @Override
 public void onDestroy() {
 helper.close();
 locMgr.removeUpdates(onLocationChange);

 super.onDestroy();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.details_option, menu);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 if (restaurantId==null) {
 menu.findItem(R.id.location).setEnabled(false);
 menu.findItem(R.id.map).setEnabled(false);
 }

 return(super.onPrepareOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(this, FeedActivity.class);

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);
 }
 else {
 Toast
 .makeText(this, "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

 return(true);

288

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

 }
 else if (item.getItemId()==R.id.location) {
 locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 0, 0, onLocationChange);

 return(true);
 }
 else if (item.getItemId()==R.id.map) {
 Intent i=new Intent(this, RestaurantMap.class);

 i.putExtra(RestaurantMap.EXTRA_LATITUDE, latitude);
 i.putExtra(RestaurantMap.EXTRA_LONGITUDE, longitude);
 i.putExtra(RestaurantMap.EXTRA_NAME, name.getText().toString());

 startActivity(i);

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 private boolean isNetworkAvailable() {
 ConnectivityManager
cm=(ConnectivityManager)getSystemService(CONNECTIVITY_SERVICE);
 NetworkInfo info=cm.getActiveNetworkInfo();

 return(info!=null);
 }

 private void load() {
 Cursor c=helper.getById(restaurantId);

 c.moveToFirst();
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));
 notes.setText(helper.getNotes(c));
 feed.setText(helper.getFeed(c));

 if (helper.getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (helper.getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 latitude=helper.getLatitude(c);
 longitude=helper.getLongitude(c);

 location.setText(String.valueOf(latitude)
 +", "

289

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

 +String.valueOf(longitude));

 c.close();
 }

 private void save() {
 if (name.getText().toString().length()>0) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 default:
 type="delivery";
 break;
 }

 if (restaurantId==null) {
 helper.insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 else {
 helper.update(restaurantId, name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 }
 }

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location fix) {
 helper.updateLocation(restaurantId, fix.getLatitude(),
 fix.getLongitude());
 location.setText(String.valueOf(fix.getLatitude())
 +", "
 +String.valueOf(fix.getLongitude()));
 locMgr.removeUpdates(onLocationChange);

 Toast
 .makeText(DetailForm.this, "Location saved",
 Toast.LENGTH_LONG)
 .show();
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

290

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };
}

In RestaurantMap, we can retrieve these extras by adding a couple of lines to
onCreate():

double lat=getIntent().getDoubleExtra(EXTRA_LATITUDE, 0);
double lon=getIntent().getDoubleExtra(EXTRA_LONGITUDE, 0);

It might be nice to center the map on this location, so we know the marker
will be visible. And, we can set the zoom level of the map to a reasonable
level, so we are not viewing a map of the world or something at the outset.
To do these things, we will need to access our MapView and its accompanying
MapController. And, we will need to convert our latitude and longitude into
a GeoPoint, which stores the latitude and longitude in microdegrees (10
times the number of degrees), so Google Maps can do all its necessary
calculations using fixed-point math.

To do all that, add a MapView data member named map:

private MapView map=null;

Then, add these few lines to onCreate(), after the lines you added above to
retrieve the latitude and longitude:

map=(MapView)findViewById(R.id.map);

map.getController().setZoom(17);

GeoPoint status=new GeoPoint((int)(lat*1000000.0),
 (int)(lon*1000000.0));

map.getController().setCenter(status);
map.setBuiltInZoomControls(true);

291

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

Of course, we still do not have our overlay.

While there is an Overlay class as part of the Google Maps add-on for
Android, ItemizedOverlay will be far simpler for our use case – Overlay is for
drawing lines and shaded areas, while ItemizedOverlay is for placing
markers on discrete points. Here is a minimalist ItemizedOverlay subclass,
named RestaurantOverlay, which we can use as an inner class of
RestaurantMap:

private class RestaurantOverlay extends ItemizedOverlay<OverlayItem> {
 private OverlayItem item=null;

 public RestaurantOverlay(Drawable marker, GeoPoint point,
 String name) {
 super(marker);

 boundCenterBottom(marker);

 item=new OverlayItem(point, name, name);

 populate();
 }

 @Override
 protected OverlayItem createItem(int i) {
 return(item);
 }

 @Override
 public int size() {
 return(1);
 }
}

In the constructor, we are receiving as parameters our GeoPoint, plus the
restaurant's name, and a Drawable image to use for the actual map marker.
The constructor calls boundCenterBottom() – if the marker's "point" is
centered on the bottom of the image, boundCenterBottom() will set up our
drop shadow for us. It also creates an OverlayItem for our restaurant,
passing it the GeoPoint, plus the name as both the name of the item and the
item's "snippet".

At this point, RestaurantOverlay calls populate(), which triggers Android to
call size() on the overlay (which returns 1, the sum total of points we are

292

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

drawing), and then getItem() for each item (which returns the OverlayItem
created in the constructor).

To use this, we need to add a few more lines to the bottom of onCreate() of
RestaurantMap:

Drawable marker=getResources().getDrawable(R.drawable.marker);

marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());

map
 .getOverlays()
 .add(new RestaurantOverlay(marker, status,
 getIntent().getStringExtra(EXTRA_NAME)));

Here, we load a Drawable resource (you will need a corresponding file in
res/drawable/ culled from somewhere) and tell the map to add our
RestaurantOverlay to its roster of overlays.

You will need to add a handful of imports:

• android.graphics.drawable.Drawable

• com.google.android.maps.GeoPoint

• com.google.android.maps.ItemizedOverlay

• com.google.android.maps.MapView

• com.google.android.maps.OverlayItem

Step #5: Handle Marker Taps

The last piece of the puzzle is to respond when the user taps on the
restaurant... just for fun. To do this, add an onTap() method to
RestaurantOverlay:

@Override
protected boolean onTap(int i) {
 Toast.makeText(RestaurantMap.this,
 item.getSnippet(),
 Toast.LENGTH_SHORT).show();

293

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

 return(true);
}

We are passed in the index of the marker the user tapped, which in this
case will always be 0 since there is but one marker. Here, we just display a
Toast, containing the name of the restaurant, stashed in the OverlayItem's
"snippet". You will need to add an import for android.widget.Toast, though.

The complete RestaurantMap class should look a wee bit like:

package apt.tutorial;

import android.graphics.drawable.Drawable;
import android.os.Bundle;
import android.widget.Toast;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import com.google.android.maps.OverlayItem;

public class RestaurantMap extends MapActivity {
 public static final String EXTRA_LATITUDE="apt.tutorial.EXTRA_LATITUDE";
 public static final String EXTRA_LONGITUDE="apt.tutorial.EXTRA_LONGITUDE";
 public static final String EXTRA_NAME="apt.tutorial.EXTRA_NAME";
 private MapView map=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.map);

 double lat=getIntent().getDoubleExtra(EXTRA_LATITUDE, 0);
 double lon=getIntent().getDoubleExtra(EXTRA_LONGITUDE, 0);

 map=(MapView)findViewById(R.id.map);

 map.getController().setZoom(17);

 GeoPoint status=new GeoPoint((int)(lat*1000000.0),
 (int)(lon*1000000.0));

 map.getController().setCenter(status);
 map.setBuiltInZoomControls(true);

 Drawable marker=getResources().getDrawable(R.drawable.marker);

 marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());

294

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

 map
 .getOverlays()
 .add(new RestaurantOverlay(marker, status,
 getIntent().getStringExtra(EXTRA_NAME)));
 }

 @Override
 protected boolean isRouteDisplayed() {
 return(false);
 }

 private class RestaurantOverlay extends ItemizedOverlay<OverlayItem> {
 private OverlayItem item=null;

 public RestaurantOverlay(Drawable marker, GeoPoint point,
 String name) {
 super(marker);

 boundCenterBottom(marker);

 item=new OverlayItem(point, name, name);

 populate();
 }

 @Override
 protected OverlayItem createItem(int i) {
 return(item);
 }

 @Override
 protected boolean onTap(int i) {
 Toast.makeText(RestaurantMap.this,
 item.getSnippet(),
 Toast.LENGTH_SHORT).show();

 return(true);
 }

 @Override
 public int size() {
 return(1);
 }
 }
}

If you compile and run this project, in the detail form for a restaurant, you
will see the new options menu item:

295

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

Figure 77. The detail form, with the new Map options menu item

Tapping it will bring up the map on the stated location:

296

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

Figure 78. The "restaurant" location shown on the map

And tapping on the marker displays the Toast:

297

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

Figure 79. The "restaurant" name in a Toast

If all you see is your marker floating atop a grey screen with gridlines, here
are the possible problems:

• You forgot your API key in the res/layout/map.xml file.

• Your device or emulator does not have Internet access (e.g., the
emulator shows zero bars of signal strength). In the case of the
emulator, if your development machine has Internet access, try
simply restarting the emulator. If that does not help, there may be
firewall issues at your location.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Give the user some means of opening the actual Google Maps
application on the location, instead of our own MapActivity. For
example, that way they can get driving directions to the restaurant.

• Experiment with different zoom levels as the starting point.

298

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Putting Lunch on the Map

• Add an options menu item on the LunchList activity to launch
RestaurantMap with no extras. When RestaurantMap detects the lack
of extras in onCreate(), it can use RestaurantHelper to load all the
restaurants that have a latitude and longitude and display all of
them on the map.

Further Reading

Integration with Google Maps is covered in the "Mapping with MapView
and MapActivity" chapter of The Busy Coder's Guide to Android
Development.

Also, bear in mind that the documentation for Android's mapping code is
not found in the Android developer guide directly, but rather at the site for
the Google add-on for Android.

299

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://code.google.com/android/add-ons/google-apis
http://commonsware.com/Android
http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 19

Is It Lunchtime Yet?

Now that we are keeping tabs on possible places to go to lunch, we still
have only addressed the "space" portion of "the space-time continuum".
There is a matter of time, especially lunchtime, to consider. If we help the
user choose where to go to lunch, we can also help remind the user when it
is time to go to lunch.

Of course, some users would just use whatever "alarm clock" application
exists on their device. Such users are boring, and we will not consider them
further.

Hence, in this tutorial, we will add some preferences related to alerting the
user when lunch is, then use AlarmManager – which, despite its name, has
nothing to do with alarm clocks – to let us know when that time arrives, so
we can in turn let the user know.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 18-Map edition of LunchList to use as a starting point. If you are using
Eclipse, these instructions will help you load the project into a workspace.

301

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

Note that if you are importing existing code, you will need to replace the
Maps API key found in the map layout file, since the "answers" to this and
future tutorials have an API key that is not yours.

Step #1: Create a TimePreference

We want the user to specify a time when we should remind them to go have
lunch. We could have a whole activity dedicated to this. However, this feels
like an application setting, so it would be nice if we could collect our alarm
information via SharedPreferences and our existing EditPreferences activity.

However, there is no TimePreference designed for collecting a time.
Fortunately, building one is not too difficult.

Add a new class, TimePreference.java, to the LunchList project, in the
apt.tutorial package, extending DialogPreference, that looks like this:

package apt.tutorial;

import android.content.Context;
import android.content.res.TypedArray;
import android.preference.DialogPreference;
import android.util.AttributeSet;
import android.view.View;
import android.widget.TimePicker;

public class TimePreference extends DialogPreference {
 private int lastHour=0;
 private int lastMinute=0;
 private TimePicker picker=null;

 public static int getHour(String time) {
 String[] pieces=time.split(":");

 return(Integer.parseInt(pieces[0]));
 }

 public static int getMinute(String time) {
 String[] pieces=time.split(":");

 return(Integer.parseInt(pieces[1]));
 }

 public TimePreference(Context ctxt, AttributeSet attrs) {
 super(ctxt, attrs);

302

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

 setPositiveButtonText("Set");
 setNegativeButtonText("Cancel");
 }

 @Override
 protected View onCreateDialogView() {
 picker=new TimePicker(getContext());

 return(picker);
 }

 @Override
 protected void onBindDialogView(View v) {
 super.onBindDialogView(v);

 picker.setCurrentHour(lastHour);
 picker.setCurrentMinute(lastMinute);
 }

 @Override
 protected void onDialogClosed(boolean positiveResult) {
 super.onDialogClosed(positiveResult);

 if (positiveResult) {
 lastHour=picker.getCurrentHour();
 lastMinute=picker.getCurrentMinute();

 String time=String.valueOf(lastHour)+":"+String.valueOf(lastMinute);

 if (callChangeListener(time)) {
 persistString(time);
 }
 }
 }

 @Override
 protected Object onGetDefaultValue(TypedArray a, int index) {
 return(a.getString(index));
 }

 @Override
 protected void onSetInitialValue(boolean restoreValue, Object defaultValue) {
 String time=null;

 if (restoreValue) {
 if (defaultValue==null) {
 time=getPersistedString("00:00");
 }
 else {
 time=getPersistedString(defaultValue.toString());
 }
 }
 else {

303

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

 time=defaultValue.toString();
 }

 lastHour=getHour(time);
 lastMinute=getMinute(time);
 }
}

Eclipse users can right-click over apt.tutorial in the Package Explorer and
choose New > Class from the context menu to bring up the new class
dialog. Set the class name to be TimePreference and set the parent class to
be android.preference.DialogPreference. Then, click OK and fill in the
implementation shown above.

There is a fair amount of code here. Let's review what the various methods
are for:

• getHour() and getMinute() are static helper methods, to extract the
hour and minute, as integers, from a string encoded in HH:MM format.
We have to store our time collected by TimePreference as a single
piece of data in the SharedPreferences, so storing it as an HH:MM
formatted string seems like a reasonable choice.

• We have a Preference constructor, where we indicate what captions
should be for the positive and negative buttons at the bottom of the
dialog.

• onCreateDialogView() will be called as part of the dialog box being
displayed. We need to return a View that represents the content of
the dialog. We could inflate a layout here, if we wanted. However,
for simplicity, we are simply using a TimePicker widget constructed
directly in Java.

• onBindDialogView() will be called after onCreateDialogView(), and our
job is to fill in whatever preference data should go into that dialog.
Some other methods described later in this list will have been called
first, populating a lastHour and lastMinute pair of data members
with the hour and minute from the SharedPreferences. We just turn
around and pop those into the TimePicker.

• onDialogClosed() will be called when the user clicks either the
positive or negative button, or clicks the BACK button (same as

304

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

clicking the negative button). If they clicked the positive button, we
assemble a new HH:MM string from the values in the TimePicker, then
tell DialogPreference to persist that value to the SharedPreferences.

• onGetDefaultValue() will be called when Android needs us to
convert an android:defaultValue attribute into an object of the
appropriate data type. For example, an integer preference would
need to convert the android:defaultValue String to an Integer. In
our case, our preference is being stored as a String, so we can
extract the String from the TypedArray that represents all of the
attributes on this preference in the preference XML resource.

• Finally, onSetInitialValue() will be called before onBindDialogView(),
where we are told the actual preference value to start with. That
could be an actual saved preference value from before, or the
android:defaultValue value, or nothing at all (in which case, we start
with "00:00"). Wherever the string comes from, we parse it into the
lastHour and lastMinute integer data members for use by
onBindDialogView().

Step #2: Collect Alarm Preferences

Now that we have a TimePreference, we can use it to find out when the user
wants to be alerted for lunchtime. However, users might not want to be
alerted at all, so we should really add two preferences: a CheckBoxPreference
to enable lunchtime alerts, plus the TimePreference to find out when that
alert should show.

So, add a couple of new elements to res/xml/preferences.xml in your
LunchList project:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <ListPreference
 android:key="sort_order"
 android:title="Sort Order"
 android:summary="Choose the order the list uses"
 android:entries="@array/sort_names"
 android:entryValues="@array/sort_clauses"
 android:dialogTitle="Choose a sort order" />
 <CheckBoxPreference

305

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

 android:key="alarm"
 android:title="Sound a Lunch Alarm"
 android:summary="Check if you want to know when it is time for lunch" />
 <apt.tutorial.TimePreference
 android:key="alarm_time"
 android:title="Lunch Alarm Time"
 android:defaultValue="12:00"
 android:summary="Set your desired time for the lunch alarm"
 android:dependency="alarm" />
</PreferenceScreen>

Since there is no decent graphical editor for preferences, Eclipse users will
want to edit the XML directly.

The CheckBoxPreference, keyed as alarm, is not particularly unusual. Our
TimePreference, keyed as alarm_time, has a few things worth mentioning:

• Since our custom class is not a standard preference class, the
element name is the fully-qualified class name
(apt.tutorial.TimePreference).

• It has android:defaultValue set to "12:00" (the ANSI standard time
for lunch), in case the user toggles on the CheckBoxPreference but
fails to update the time itself.

• By having android:dependency="alarm", the TimePreference will be
disabled if the CheckBoxPreference is unchecked. Since that
preference starts off unchecked, the TimePreference starts off
disabled.

To collect these preferences from the user, all we have to do is adjust this
resource. EditPreferences will automatically start collecting the new
information. However, for other reasons, we will be making some
modifications to EditPreferences, later in this tutorial.

Step #3: Set Up a Boot-Time Receiver

We are going to use AlarmManager for returning control to us every day when
the user's specified lunchtime arrives. However, AlarmManager has one
serious limitation when compared with cron or Windows Scheduled Tasks:
on a reboot, the alarm schedule is wiped clean. Hence, many applications

306

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

that intend to use AlarmManager will also need to get control at boot time,
simply to set up the alarm again. So, we will add that logic to LunchList.

Create a new Java class, OnBootReceiver.java, in the apt.tutorial package,
inheriting from BroadcastReceiver, that looks like this:

package apt.tutorial;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class OnBootReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context ctxt, Intent intent) {
 // do something
 }
}

Eclipse users can right-click over apt.tutorial in the Package Explorer and
choose New > Class from the context menu to bring up the new class
dialog. Set the class name to be OnBootReceiver and set the parent class to
be android.content.BroadcastReceiver. Then, click OK and fill in the
implementation shown above.

The "real" work for a BroadcastReceiver is in the onReceive() method. In our
case, that is a placeholder for the moment, to be addressed in the next step.

We also need to add a <receiver> element to the manifest, identifying that
OnBootReceiver should get control when the system broadcasts the
BOOT_COMPLETED event. However, to be able to register such a receiver, we
need to hold the RECEIVE_BOOT_COMPLETED permission, so users know that we
are trying to get control at boot time.

So, add that permission and the corresponding <receiver> element to
AndroidManifest.xml, resulting in a file that should resemble:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="apt.tutorial"
 android:versionCode="1"
 android:versionName="1.0">

307

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
 <application android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />
 <activity android:name=".LunchList"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm">
 </activity>
 <activity android:name=".EditPreferences">
 </activity>
 <activity android:name=".FeedActivity">
 </activity>
 <activity android:name=".RestaurantMap">
 </activity>
 <service android:name=".FeedService">
 </service>
 <receiver android:name=".OnBootReceiver" android:enabled="false">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
 </receiver>
 </application>
</manifest>

If you look closely, you will notice something a bit unusual about that
<receiver> element: we have android:enabled="false", meaning that the
BroadcastReceiver is disabled by default. There is a reason for that, which
we'll see in the next step.

Eclipse users can add this element by:

1. Double-clicking on the AndroidManifest.xml file to bring it up in the
graphical editor

2. Clicking on the Application sub-tab

3. Clicking the Add... button to the right of the Application Nodes list

4. Choosing Receiver in the dialog and clicking OK

5. Clicking the Browse... button next to the Name field on the right
and choosing OnBootReceiver as the implementation

308

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

6. Setting the "enabled" value to be false via the drop-down for the
new element on the right

7. Saving your changes (e.g., <Ctrl>-<S>)

Step #4: Manage Preference Changes

When the user toggles on the alarm CheckBoxPreference, we want to set up
AlarmManager to wake us up daily at the requested time.

If the user changes the alarm time (e.g., from 12:00 to 12:30), we want to
cancel the existing alarm and set up a new one with AlarmManager.

If the user toggles off the alarm CheckBoxPreference, we want to cancel the
existing alarm.

And, on a reboot, if the alarm was requested, we want to set up
AlarmManager.

That sounds like a fair amount of work, but it is not really all that bad.
There are two major operations (set and cancel alarms) and two major
triggers (preference changes and a reboot).

First, let us set up the code to set and cancel the alarms. Since we need this
both from whatever detects the preference changes and OnBootReceiver, we
should have these methods be reachable from both places. The easiest way
to do that is to make them static methods, and lacking a better spot, we
may as well tuck those static methods on OnBootReceiver.

So, add these methods to OnBootReceiver:

public static void setAlarm(Context ctxt) {
 AlarmManager mgr=(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
 Calendar cal=Calendar.getInstance();
 SharedPreferences prefs=PreferenceManager.getDefaultSharedPreferences(ctxt);
 String time=prefs.getString("alarm_time", "12:00");

 cal.set(Calendar.HOUR_OF_DAY, TimePreference.getHour(time));

309

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

 cal.set(Calendar.MINUTE, TimePreference.getMinute(time));
 cal.set(Calendar.SECOND, 0);
 cal.set(Calendar.MILLISECOND, 0);

 if (cal.getTimeInMillis()<System.currentTimeMillis()) {
 cal.add(Calendar.DAY_OF_YEAR, 1);
 }

 mgr.setRepeating(AlarmManager.RTC_WAKEUP, cal.getTimeInMillis(),
 AlarmManager.INTERVAL_DAY,
 getPendingIntent(ctxt));
}

public static void cancelAlarm(Context ctxt) {
 AlarmManager mgr=(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);

 mgr.cancel(getPendingIntent(ctxt));
}

private static PendingIntent getPendingIntent(Context ctxt) {
 Intent i=new Intent(ctxt, OnAlarmReceiver.class);

 return(PendingIntent.getBroadcast(ctxt, 0, i, 0));
}

Also, update onReceive() of OnBootReceiver to call our setAlarm() method:

@Override
public void onReceive(Context ctxt, Intent intent) {
 setAlarm(ctxt);
}

Now, let's take a look at what we have added.

setAlarm() will be called from onReceive(). Here, we get access to
AlarmManager via getSystemService(), plus access our SharedPreferences. We
find the alarm_time preference and create a Calendar object that has the
requested hour and minute. However, we may need to adjust the day – if it
is before the alarm time today, we want the next alarm to be today's; if it is
after today's alarm should have gone off, we want the next alarm to be
tomorrow's.

Then, we call setRepeating() on AlarmManager to actually schedule the alarm.
We specify an RTC_WAKEUP alarm, meaning that we will get control at the
time specified by the Calendar object, even if the device is asleep at the

310

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

time. We specify INTERVAL_DAY, so the alarm will go off every 24 hours after
the first one. And, we call our getPendingIntent() method to say what we
are going to do when the alarm goes off – here, we are going to send a
broadcast to another BroadcastReceiver, OnAlarmReceiver, that we will set up
in the next step.

cancelAlarm() simply creates an equivalent PendingIntent and calls cancel()
on AlarmManager. This can be called blindly, since if the alarm is not
scheduled, AlarmManager will simply ignore the cancel request.

You will need to add the following imports:

• android.app.AlarmManager

• android.app.PendingIntent

• android.content.SharedPreferences

• android.preference.PreferenceManager

• java.util.Calendar

The complete OnBootReceiver class, with these changes, should look a bit
like:

package apt.tutorial;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.SharedPreferences;
import android.preference.PreferenceManager;
import java.util.Calendar;

public class OnBootReceiver extends BroadcastReceiver {
 public static void setAlarm(Context ctxt) {
 AlarmManager mgr=(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
 Calendar cal=Calendar.getInstance();
 SharedPreferences prefs=PreferenceManager.getDefaultSharedPreferences(ctxt);
 String time=prefs.getString("alarm_time", "12:00");

 cal.set(Calendar.HOUR_OF_DAY, TimePreference.getHour(time));
 cal.set(Calendar.MINUTE, TimePreference.getMinute(time));
 cal.set(Calendar.SECOND, 0);
 cal.set(Calendar.MILLISECOND, 0);

311

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

 if (cal.getTimeInMillis()<System.currentTimeMillis()) {
 cal.add(Calendar.DAY_OF_YEAR, 1);
 }

 mgr.setRepeating(AlarmManager.RTC_WAKEUP, cal.getTimeInMillis(),
 AlarmManager.INTERVAL_DAY,
 getPendingIntent(ctxt));
 }

 public static void cancelAlarm(Context ctxt) {
 AlarmManager mgr=(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);

 mgr.cancel(getPendingIntent(ctxt));
 }

 private static PendingIntent getPendingIntent(Context ctxt) {
 Intent i=new Intent(ctxt, OnAlarmReceiver.class);

 return(PendingIntent.getBroadcast(ctxt, 0, i, 0));
 }

 @Override
 public void onReceive(Context ctxt, Intent intent) {
 setAlarm(ctxt);
 }
}

You will notice that we are blindly setting up the alarm via onReceive(). This
would seem to be a mistake – after all, if the user has not requested the
alarm, we should not be setting it up. Conversely, if you recall from the
previous step that OnBootReceiver is initially disabled, that too would seem
to be a bug, since we will never set up the alarm on a reboot. In truth, we
will be toggling whether or not OnBootReceiver is enabled based upon
preference changes, so it will only get control if it is needed. This means
that users who elect to have alarms will have them even after a reboot, but
users who skip the alarms get a slightly faster reboot, since our code will
not be executed.

We also need to get control when the user changes their preferences. The
standard way to do this is to register an OnSharedPreferenceChangeListener,
which will be notified on SharedPreferences changes. Since the only place
we are actually changing the SharedPreferences is from the EditPreferences
activity, we may as well use OnSharedPreferenceChangeListener there.

Add the following code to EditPreferences:

312

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

@Override
public void onResume() {
 super.onResume();

 prefs=PreferenceManager.getDefaultSharedPreferences(this);
 prefs.registerOnSharedPreferenceChangeListener(onChange);
}

@Override
public void onPause() {
 prefs.unregisterOnSharedPreferenceChangeListener(onChange);

 super.onPause();
}

SharedPreferences.OnSharedPreferenceChangeListener onChange=
 new SharedPreferences.OnSharedPreferenceChangeListener() {
 public void onSharedPreferenceChanged(SharedPreferences prefs,
 String key) {
 if ("alarm".equals(key)) {
 boolean enabled=prefs.getBoolean(key, false);
 int flag=(enabled ?
 PackageManager.COMPONENT_ENABLED_STATE_ENABLED :
 PackageManager.COMPONENT_ENABLED_STATE_DISABLED);
 ComponentName component=new ComponentName(EditPreferences.this,
 OnBootReceiver.class);

 getPackageManager()
 .setComponentEnabledSetting(component,
 flag,
 PackageManager.DONT_KILL_APP);

 if (enabled) {
 OnBootReceiver.setAlarm(EditPreferences.this);
 }
 else {
 OnBootReceiver.cancelAlarm(EditPreferences.this);
 }
 }
 else if ("alarm_time".equals(key)) {
 OnBootReceiver.cancelAlarm(EditPreferences.this);
 OnBootReceiver.setAlarm(EditPreferences.this);
 }
 }
};

You will also need to add a SharedPreferences data member named prefs:

SharedPreferences prefs=null;

And, you will need to add some imports:

313

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

• android.content.ComponentName

• android.content.SharedPreferences

• android.content.pm.PackageManager

• android.preference.PreferenceManager

In onResume(), we get at the SharedPreferences and call
registerOnSharedPreferenceChangeListener(), registering our
OnSharedPreferenceChangeListener (named onChange). We unregister this in
onPause(). That way, while the user has the activity up and is interacting
with it, we will find out about changes in preferences.

Our OnSharedPreferenceChangeListener will be called with
onSharedPreferenceChanged() whenever the user changes any of the
preferences. If they toggle the alarm preference, we find out what the
current setting is. Then, we call setComponentEnabledSetting() on the
PackageManager to enable or disable OnBootReceiver. Since our alarm
preference is set to be off by default, and our <receiver> element said that
OnBootReceiver was disabled by default, we should remain in sync. Also, we
call setAlarm() or cancelAlarm() depending on the state of the alarm
preference. If they change the alarm_time preference, we know that the
alarm preference must be on (otherwise, they cannot change alarm_time), so
we cancel the old alarm and schedule a new one for the new time.

The complete edition of EditPreferences, with these changes, should
resemble:

package apt.tutorial;

import android.app.Activity;
import android.content.ComponentName;
import android.content.SharedPreferences;
import android.content.pm.PackageManager;
import android.os.Bundle;
import android.preference.PreferenceActivity;
import android.preference.PreferenceManager;

public class EditPreferences extends PreferenceActivity {
 SharedPreferences prefs=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

314

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

 addPreferencesFromResource(R.xml.preferences);
 }

 @Override
 public void onResume() {
 super.onResume();

 prefs=PreferenceManager.getDefaultSharedPreferences(this);
 prefs.registerOnSharedPreferenceChangeListener(onChange);
 }

 @Override
 public void onPause() {
 prefs.unregisterOnSharedPreferenceChangeListener(onChange);

 super.onPause();
 }

 SharedPreferences.OnSharedPreferenceChangeListener onChange=
 new SharedPreferences.OnSharedPreferenceChangeListener() {
 public void onSharedPreferenceChanged(SharedPreferences prefs,
 String key) {
 if ("alarm".equals(key)) {
 boolean enabled=prefs.getBoolean(key, false);
 int flag=(enabled ?
 PackageManager.COMPONENT_ENABLED_STATE_ENABLED :
 PackageManager.COMPONENT_ENABLED_STATE_DISABLED);
 ComponentName component=new ComponentName(EditPreferences.this,
 OnBootReceiver.class);

 getPackageManager()
 .setComponentEnabledSetting(component,
 flag,
 PackageManager.DONT_KILL_APP);

 if (enabled) {
 OnBootReceiver.setAlarm(EditPreferences.this);
 }
 else {
 OnBootReceiver.cancelAlarm(EditPreferences.this);
 }
 }
 else if ("alarm_time".equals(key)) {
 OnBootReceiver.cancelAlarm(EditPreferences.this);
 OnBootReceiver.setAlarm(EditPreferences.this);
 }
 }
 };
}

What is still missing is OnAlarmReceiver, which we will implement in the
next step.

315

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

Step #5: Display the Alarm

Given all the work done in the previous step, our PendingIntent scheduled
with AlarmManager should be invoked at the specified time each day, if the
user has enabled alarms.

Now, we just need to do something at that time.

The code above has the PendingIntent send a broadcast to trigger an
OnAlarmReceiver class. That will not be able to directly display anything to
the user, since a BroadcastReceiver has no direct access to the UI. However,
it can start an activity. So, let's create an AlarmActivity that will be what we
display to the user.

First, we need a layout, so create a res/layout/alarm.xml file that contains
something like this:

<?xml version="1.0" encoding="utf-8"?>
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="It's time for lunch!"
 android:textSize="30sp"
 android:textStyle="bold"
/>

The AlarmActivity itself – another Activity subclass in the apt.tutorial
package – can be very trivial:

package apt.tutorial;

import android.app.Activity;
import android.os.Bundle;

public class AlarmActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.alarm);
 }
}

316

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

Eclipse users can create this activity this by right-clicking over the
apt.tutorial package in Package Explorer, choosing New > Class from the
context menu, then specifying AlarmActivity as the class name and
android.app.Activity as the superclass.

Also create an OnAlarmReceiver subclass of BroadcastReceiver in the
apt.tutorial package, and have it call startActivity() to bring up
AlarmActivity:

package apt.tutorial;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class OnAlarmReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context ctxt, Intent intent) {
 Intent i=new Intent(ctxt, AlarmActivity.class);

 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 ctxt.startActivity(i);
 }
}

Eclipse users can create this activity this by right-clicking over the
apt.tutorial package in Package Explorer, choosing New > Class from the
context menu, then specifying OnAlarmReceiver as the class name and
android.content.BroadcastReceiver as the superclass.

We need to add FLAG_ACTIVITY_NEW_TASK to the Intent, because if we do not,
our startActivity() call will fail with an error telling us to add
FLAG_ACTIVITY_NEW_TASK. Calling startActivity() from someplace other than
an activity typically requires this flag, though sometimes it is automatically
added for you.

Finally, we need to add both of these to the manifest, via an <activity> and
<receiver> element, respectively:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"

317

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm"></activity>
 <activity android:name=".EditPreferences"></activity>
 <activity android:name=".FeedActivity"></activity>
 <activity android:name=".RestaurantMap"></activity>
 <activity android:name=".AlarmActivity"></activity>
 <service android:name=".FeedService"></service>
 <receiver android:enabled="false"
 android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 <receiver android:name=".OnAlarmReceiver"></receiver>
 </application>
</manifest>

Eclipse users can make this change by:

1. Double-clicking on the AndroidManifest.xml file to bring it up in the
graphical editor

2. Clicking on the Application sub-tab

3. Clicking the Add... button to the right of the Application Nodes list

4. Choosing Activity in the dialog and clicking OK

5. Clicking the Browse... button next to the Name field and choosing
AlarmActivity as the activity implementation

6. Clicking the Add... button again

318

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

7. Choosing Receiver in the dialog and clicking OK

8. Clicking the Browse... button next to the Name field and choosing
OnAlarmReceiver as the BroadcastReceiver implementation

9. Saving your changes (e.g., <Ctrl>-<S>)

The net effect is that when the AlarmManager alarm "sounds",
OnAlarmReceiver will get control and call startActivity() to open up
AlarmActivity. We could have bypassed OnAlarmReceiver, by using a
getActivity() PendingIntent and have it open AlarmActivity directly. The
fact that we added OnAlarmReceiver suggests that maybe – just maybe – we
will be doing something more in this area in a future tutorial.

If you compile and install LunchList, the preference screen will have our
two new preferences:

Figure 80. The preferences, including a pair of new ones

Toggling the alarm on will enable the time preference:

319

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

Figure 81. The preferences, all enabled this time

Tapping on the time preference will bring up our TimePreference dialog with
the TimePicker:

320

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

Figure 82. The TimePreference in action

When lunchtime rolls around, our AlarmActivity will appear out of
nowhere:

321

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

Figure 83. The extremely bland AlarmActivity

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Rather than rolling our own alarm, use android.provider.AlarmClock
to set an alarm in the alarm clock app on the device.

• Give the user some way to dismiss today's alarm in advance – for
example, they may have a lunch meeting scheduled before their
normal time.

• Allow the user to specify the time not via a TimePreference, but via
an EditTextPreference. Grumble as you work your way through
parsing algorithms for various ways the user might encode the time.
Curse under your breath when you realize that some users might try
typing in "half past noon". Realize why we went through the trouble
to create TimePreference in the first place.

• Use the curiously-named Vibrator system service to shake the
phone when the alarm activity is displayed. You will need to hold

322

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Is It Lunchtime Yet?

the VIBRATE permission, and you will need a device that has a
vibration motor (e.g., not the emulator and not some tablets like
the Motorola XOOM).

• Make the alarm activity look more interesting.

Further Reading

You can learn more about the AlarmManager in the "Advanced Service
Patterns" chapter of The Busy Coder's Guide to Advanced Android
Development. You can read more about creating custom preferences in
"Creating Custom Dialogs and Preferences", also found in The Busy Coder's
Guide to Advanced Android Development.

323

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 20

More Subtle Lunch Alarms

Displaying the lunchtime alarm via a full-screen activity certainly works,
and if the user is looking at the screen, it will get their attention. However,
it is also rather disruptive if they happen to be using the phone right that
instant. For example, if they are typing a text message while driving, your
alarm activity popping up out of nowhere might distract them enough to
cause an accident.

So, in the interest of public safety, we should give the user an option to
have a more subtle way to remind them to have lunch.

The best solution for this sort of a notification is a Notification, strangely
enough, so this tutorial will have us tie into NotificationManager when the
user asks for that style of lunch alarm.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 19-Alarm edition of LunchList to use as a starting point. If you are using
Eclipse, these instructions will help you load the project into a workspace.

325

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Subtle Lunch Alarms

Step #1: Collect Alarm Style Preference

Since we need to give the users a choice between displaying AlarmActivity
or a Notification, and since we are collecting other alarm data via
SharedPreferences, it seems like a good idea to simply add another
preference, this time for alarm style.

Edit res/xml/preferences.xml to add a new CheckBoxPreference named
use_notification. Make it depend upon the alarm preference (as does
alarm_time), and have it default to true, just to be safe:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <ListPreference
 android:key="sort_order"
 android:title="Sort Order"
 android:summary="Choose the order the list uses"
 android:entries="@array/sort_names"
 android:entryValues="@array/sort_clauses"
 android:dialogTitle="Choose a sort order" />
 <CheckBoxPreference
 android:key="alarm"
 android:title="Sound a Lunch Alarm"
 android:summary="Check if you want to know when it is time for lunch" />
 <apt.tutorial.TimePreference
 android:key="alarm_time"
 android:title="Lunch Alarm Time"
 android:defaultValue="12:00"
 android:summary="Set your desired time for the lunch alarm"
 android:dependency="alarm" />
 <CheckBoxPreference
 android:key="use_notification"
 android:title="Use a Notification"
 android:defaultValue="true"
 android:summary="Check if you want a status bar icon at lunchtime, or
uncheck for a full-screen notice"
 android:dependency="alarm" />
</PreferenceScreen>

Once again, Eclipse users should simply modify the XML directly.

There is nothing we need to do to the EditPreferences activity this time.

326

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Subtle Lunch Alarms

Step #2: Display the Alarm, Redux

The reason we set up the OnAlarmReceiver in the previous tutorial was to
support alerting the user by either a Notification or AlarmActivity.
OnAlarmReceiver can make the determination which approach to use, based
on the use_notification preference value. If we want the Notification, it can
raise that directly; otherwise, it can call startActivity() as before.

Modify onReceive() of OnAlarmReceiver as follows:

@Override
public void onReceive(Context ctxt, Intent intent) {
 SharedPreferences prefs=PreferenceManager.getDefaultSharedPreferences(ctxt);
 boolean useNotification=prefs.getBoolean("use_notification",
 true);

 if (useNotification) {
 NotificationManager mgr=
 (NotificationManager)ctxt.getSystemService(Context.NOTIFICATION_SERVICE);
 Notification note=new Notification(R.drawable.stat_notify_chat,
 "It's time for lunch!",
 System.currentTimeMillis());
 PendingIntent i=PendingIntent.getActivity(ctxt, 0,
 new Intent(ctxt, AlarmActivity.class),
 0);

 note.setLatestEventInfo(ctxt, "LunchList",
 "It's time for lunch! Aren't you hungry?",
 i);
 note.flags|=Notification.FLAG_AUTO_CANCEL;

 mgr.notify(NOTIFY_ME_ID, note);
 }
 else {
 Intent i=new Intent(ctxt, AlarmActivity.class);

 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 ctxt.startActivity(i);
 }
}

You will also need a static data member for NOTIFY_ME_ID, a locally-unique
integer to identify this Notification from any others we might raise:

private static final int NOTIFY_ME_ID=1337;

327

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Subtle Lunch Alarms

You will need a new drawable resource, res/drawable/stat_notify_chat.png,
perhaps obtained from your Android SDK.

You will also need to add some imports:

• android.app.Notification

• android.app.NotificationManager

• android.app.PendingIntent

• android.content.SharedPreferences

• android.preference.PreferenceManager

First, we get the SharedPreferences and look up use_notification. If
use_notification is false, we continue as before, calling startActivity().

If use_notification is true, however, we:

• Obtain access to the NotificationManager via getSystemService()

• Create a Notification object, indicating the icon, the "ticker text"
(which appears briefly in the status bar when the Notification is
displayed), and the timestamp associated with the event

• Create a getActivity() PendingIntent for our AlarmActivity

• Attaching that PendingIntent to the Notification via
setLatestEventInfo(), where we also supply a title and description to
go in the tile for this Notification in the status drawer

• Add the FLAG_AUTO_CANCEL flag to the Notification, so tapping on its
tile will automatically dismiss the Notification

• Call notify() on NotificationManager with our Notification, to have
it be displayed

The complete OnAlarmReceiver with these modifications should resemble:

package apt.tutorial;

import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;

328

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Subtle Lunch Alarms

import android.content.Context;
import android.content.Intent;
import android.content.SharedPreferences;
import android.preference.PreferenceManager;

public class OnAlarmReceiver extends BroadcastReceiver {
 private static final int NOTIFY_ME_ID=1337;

 @Override
 public void onReceive(Context ctxt, Intent intent) {
 SharedPreferences prefs=PreferenceManager.getDefaultSharedPreferences(ctxt);
 boolean useNotification=prefs.getBoolean("use_notification",
 true);

 if (useNotification) {
 NotificationManager mgr=
 (NotificationManager)ctxt.getSystemService(Context.NOTIFICATION_SERVICE)
;
 Notification note=new Notification(R.drawable.stat_notify_chat,
 "It's time for lunch!",
 System.currentTimeMillis());
 PendingIntent i=PendingIntent.getActivity(ctxt, 0,
 new Intent(ctxt, AlarmActivity.class),
 0);

 note.setLatestEventInfo(ctxt, "LunchList",
 "It's time for lunch! Aren't you hungry?",
 i);
 note.flags|=Notification.FLAG_AUTO_CANCEL;

 mgr.notify(NOTIFY_ME_ID, note);
 }
 else {
 Intent i=new Intent(ctxt, AlarmActivity.class);

 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 ctxt.startActivity(i);
 }
 }
}

If you compile and install the application, the preference screen will show
the new preference:

329

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Subtle Lunch Alarms

Figure 84. The new notification style preference

If you choose the Notification mode, when lunchtime arrives, your
Notification will appear in the status bar:

330

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Subtle Lunch Alarms

Figure 85. The notification, right as it is being added, showing the "ticker text"

Sliding down the drawer will show the entry for the Notification:

331

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Subtle Lunch Alarms

Figure 86. The notification drawer, showing the full notification

Tapping that entry will bring up AlarmActivity, as if OnAlarmReceiver had
launched it directly.

On an Android 3.x device, though, the look will be somewhat different. The
Notification will appear initially as a bubble:

332

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Subtle Lunch Alarms

Figure 87. The notification on an Android 3.0 tablet

The drawer now appears when tapping on the clock in the lower-right
corner:

Figure 88. The notification drawer on an Android 3.0 tablet

333

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

More Subtle Lunch Alarms

Tapping on either the bubble or the item in the drawer will trigger
AlarmActivity.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Experiment with the LED options with a Notification (e.g., ledARGB).
Note, though, that not all devices have LEDs, and those that do may
not support third-party applications playing with the LEDs. You will
need to add the FLAG_SHOW_LIGHTS flag as well for this to work.

• Play with the sound field on Notification, pointing it to a file on
external storage containing an MP3 that you want to have played
when the Notification is displayed.

Further Reading

Notifications are covered in the "Alerting Users Via Notifications" chapter
of The Busy Coder's Guide to Android Development.

334

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android

TUTORIAL 21

A Restaurant In Your Own
Home

In this tutorial, we will create an "app widget", the term Android uses for
interactive elements a user can add to their home screen. In particular, we
will create an app widget that shows a random restaurant out of the
LunchList database. It will also have a button to choose another random
restaurant. Also, if the user taps on the name of the restaurant, we will open
up the detail form activity for that restaurant.

Step-By-Step Instructions

First, you need to have completed the previous LunchList tutorial. If you are
starting the tutorials here, or if you wish to not use your existing work, you
can download a ZIP file with all of the tutorial results, and you can copy the
20-Notification edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Find An App Widget Background and Some
Icons

We are going to need a background to use for our app widget, so its
contents do not seem to float in empty space in the home screen. Ideally,

335

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

this background is resizeable, so we have a choice of using an XML-defined
drawable resource, or a nine-patch PNG.

If you examine the 21-AppWidget project in the book's source code
repository, you will see that there is a widget_frame.9.png file in
LunchList/res/drawable. That nine-patch image works nicely for your app
widget. It is actually a clone of the nine-patch used as the background for
the Toast class, culled from the Android open source project. You are
welcome to use this image or find (or create) another of your choosing. If
you wish to download it directly, here is the link.

You will also need an icon, which will go alongside the LunchList name in
Android's list of available widgets. Find some likely icon (32px square or so)
and add it as LunchList/res/drawable/icon.png. You will also need a
similarly-sized icon for our choose-another-random-restaurant ImageButton,
named LunchList/res/drawable/ff.png. You are welcome to copy these icons
from the 21-AppWidget project from the book's source code as well, if you
wish, or here is a link to icon.png and ff.png respectively.

Step #2: Design the App Widget Layout

Next, we need to define a layout for our app widgets. App widgets are
created via layout files, no different than activities, ListView rows, and the
like. Right now, all we want is to show the name of the app widget, inside of
something to serve as the widget's background.

So, create a LunchList/res/layout/widget.xml file with the following content:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@drawable/widget_frame"
>
 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerVertical="true"
 android:layout_alignParentLeft="true"
 android:layout_toLeftOf="@+id/next"

336

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

https://github.com/commonsguy/cw-lunchlist/raw/master/21-AppWidget/LunchList/res/drawable/ff.png
https://github.com/commonsguy/cw-lunchlist/raw/master/21-AppWidget/LunchList/res/drawable/icon.png
https://github.com/commonsguy/cw-lunchlist/raw/master/21-AppWidget/LunchList/res/drawable/widget_frame.9.png

A Restaurant In Your Own Home

 android:textSize="10pt"
 android:textColor="#FFFFFFFF"
 />
 <ImageButton android:id="@id/next"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerVertical="true"
 android:layout_alignParentRight="true"
 android:src="@drawable/ff"
 />
</RelativeLayout>

Here we have a RelativeLayout wrapping around a TextView (to hold the
name of the restaurant) and an ImageButton (to let the user pick another
random restaurant). The RelativeLayout has our background image, to
ensure that the TextView and ImageButton have a consistent background, as
opposed to whatever might be on the home screen's wallpaper.

Unfortunately for Eclipse users, the drag-and-drop support for
RelativeLayout is fairly broken, and so you will need to edit the XML
directly. Eclipse users can create the empty file by right-clicking over
res/layout/ in the Package Explorer, choosing New > File from the context
menu, giving the new file a name of widget.xml, and clicking Finish.

Step #3: Add an (Empty) AppWidgetProvider

Next, we need to create an AppWidgetProvider. AppWidgetProvider, a subclass
of BroadcastReceiver, provides the base implementation for an app widget
and gives us lifecycle methods like onUpdate() we can override to add
custom behavior.

For now, though, just create an empty AppWidgetProvider implementation,
with the truly unique name of AppWidget:

package apt.tutorial;

import android.appwidget.AppWidgetProvider;

public class AppWidget extends AppWidgetProvider {
}

337

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

Eclipse users can right-click over apt.tutorial in the Package Explorer and
choose New > Class from the context menu to bring up the new class
dialog. Set the class name to be AppWidget and set the parent class to be
android.appwidget.AppWidgetProvider. Then, click OK and fill in the
implementation shown above.

Step #4: Add the Widget Metadata

As part of wiring our app widget into our application, we need to create a
"widget metadata" XML document. This file provides additional
configuration definitions for the app widget, for things that cannot readily
go into the manifest.

So, create a LunchList/res/xml/widget_provider.xml file with the following
content:

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="300dip"
 android:minHeight="79dip"
 android:updatePeriodMillis="1800000"
 android:initialLayout="@layout/widget"
/>

Eclipse users can create the empty file by right-clicking over res/xml/ in the
Package Explorer, choosing New > File from the context menu, giving the
new file a name of widget_provider.xml, and clicking Finish. Then, give that
newly-created file the content shown above.

Here, we provide a height and width suggestion, which Android will
convert into a number of "cells" given the actual screen size and density.
Our height and width will give us a 4x1 cell widget, which means it will take
up the entire width of a portrait mode screen.

The metadata also indicates the starting layout to use (the one we created
earlier in this tutorial) and an "update period", which tells Android how
frequently to ask us to update the app widget's contents (set to 30 minutes,
in milliseconds).

338

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

Step #5: Update the Manifest

Now, we can add our widget to the manifest file. Edit AndroidManifest.xml
to look like the following:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="apt.tutorial"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
 <supports-screens
 android:xlargeScreens="true"
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"
 />
 <application android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />
 <activity android:name=".LunchList"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm">
 </activity>
 <activity android:name=".EditPreferences">
 </activity>
 <activity android:name=".FeedActivity">
 </activity>
 <activity android:name=".RestaurantMap">
 </activity>
 <activity android:name=".AlarmActivity">
 </activity>

 <service android:name=".FeedService">
 </service>

 <receiver android:name=".OnBootReceiver" android:enabled="false">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
 </receiver>
 <receiver android:name=".OnAlarmReceiver">
 </receiver>
 <receiver android:name=".AppWidget"
 android:label="@string/app_name"

339

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

 android:icon="@drawable/icon">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE"
/>
 </intent-filter>
 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider"
 />
 </receiver>
 </application>
</manifest>

In particular, note the new <receiver> element towards the bottom – that is
where we are teaching Android where our code and metadata resides for
this app widget. The filter for APPWIDGET_UPDATE means that we will get
control when Android wants us to update the app widget's contents, such
as when the app widget is first added to the home screen.

Eclipse users can add this element by:

1. Double-clicking on the AndroidManifest.xml file to bring it up in the
graphical editor

2. Clicking on the Application sub-tab

3. Clicking the Add... button to the right of the Application Nodes list

4. Choosing Receiver in the dialog and clicking OK

5. Clicking the Browse... button next to the Name field on the right
and choosing AppWidget as the implementation

6. With the AppWidget receiver item selected in the Application Nodes
list, click the Add... button and choose "Intent Filter" in the
selection dialog

7. With the newly-added Intent filter selected in the Application
Nodes list, click the Add... button and choose Action in the
selection dialog

8. Type the value android.appwidget.action.APPWIDGET_UPDATE in the
Name combobox, since it may not be one of the choices available in
the drop-down

9. Saving your changes (e.g., <Ctrl>-<S>)

340

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

At this point, you can compile and install the updated version of the
application. Then, long-tap somewhere on the background of your home
screen, to bring up the list of options for things to add to it:

Figure 89. The list of things to add to the home screen

Choose Widgets, to bring up the list of available widgets:

341

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

Figure 90. The list of available widgets

Then, choose our LunchList widget. It will show up, but have no contents,
because we have not defined any contents yet.

Step #6: Delegate to an IntentService

For simple app widgets, you can update the app widget's UI just in
onUpdate() of your AppWidgetProvider.

However, in order to load the random restaurant, we need to query the
database to find such a restaurant. Ideally, we do not do this on the main
application thread, yet onUpdate() will be called on the main application
thread.

For app widgets that have slow operations like flash I/O or network I/O, the
recommended pattern is to have the AppWidgetProvider delegate to an
IntentService to do the real work. That way, the work will automatically be
performed on a background thread.

342

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

Modify AppWidget to look like this:

package apt.tutorial;

import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.Context;
import android.content.Intent;

public class AppWidget extends AppWidgetProvider {
 @Override
 public void onUpdate(Context ctxt,
 AppWidgetManager mgr,
 int[] appWidgetIds) {
 ctxt.startService(new Intent(ctxt, WidgetService.class));
 }
}

Here, we are simply calling startService() on our IntentService, so it will
wake up and do what is needed.

You will need to add imports for:

• android.appwidget.AppWidgetManager

• android.appwidget.AppWidgetProvider

• android.content.Context

• android.content.Intent

Step #7: Show a Random Restaurant

Finally, we need to implement the WidgetService that will actually display a
random restaurant in the app widget. To do this, we will override the
onUpdate() method in our AppWidget class and have it do the database I/O to
find a random restaurant.

With that in mind, add the following WidgetService class to the LunchList
project, in the apt.tutorial package:

package apt.tutorial;

import android.app.IntentService;
import android.app.PendingIntent;

343

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

import android.appwidget.AppWidgetManager;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.widget.RemoteViews;

public class WidgetService extends IntentService {
 public WidgetService() {
 super("WidgetService");
 }

 @Override
 public void onHandleIntent(Intent intent) {
 ComponentName me=new ComponentName(this, AppWidget.class);
 RemoteViews updateViews=new RemoteViews("apt.tutorial",
 R.layout.widget);
 RestaurantHelper helper=new RestaurantHelper(this);
 AppWidgetManager mgr=AppWidgetManager.getInstance(this);

 try {
 Cursor c=helper
 .getReadableDatabase()
 .rawQuery("SELECT COUNT(*) FROM restaurants", null);

 c.moveToFirst();

 int count=c.getInt(0);

 c.close();

 if (count>0) {
 int offset=(int)(count*Math.random());
 String args[]={String.valueOf(offset)};

 c=helper
 .getReadableDatabase()
 .rawQuery("SELECT _ID, name FROM restaurants LIMIT 1 OFFSET ?",
args);
 c.moveToFirst();
 updateViews.setTextViewText(R.id.name, c.getString(1));

 Intent i=new Intent(this, DetailForm.class);

 i.putExtra(LunchList.ID_EXTRA, c.getString(0));

 PendingIntent pi=PendingIntent.getActivity(this, 0, i,
 PendingIntent.FLAG_UPDATE_CURR
ENT);

 updateViews.setOnClickPendingIntent(R.id.name, pi);

 c.close();

344

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

 }
 else {
 updateViews.setTextViewText(R.id.title,
 this.getString(R.string.empty));
 }
 }
 finally {
 helper.close();
 }

 Intent i=new Intent(this, WidgetService.class);
 PendingIntent pi=PendingIntent.getService(this, 0, i, 0);

 updateViews.setOnClickPendingIntent(R.id.next, pi);
 mgr.updateAppWidget(me, updateViews);
 }
}

Eclipse users can right-click over in the Package Explorer and choose New >
Class from the context menu to bring up the new class dialog. Set the class
name to be WidgetService and set the parent class to be
android.app.IntentService. Then, click OK and fill in the implementation
shown above.

Here, we:

• Create a RemoteViews object, which represents a set of GUI
"commands" to invoke on the home screen that defines how to
modify the app widget

• Get access to an AppWidgetManager, which is the bridge between our
application and the home screen hosting the app widget

• Open up a database connection

• Find out how many restaurants there are via a SQL query

• Load a random restaurant via another SQL query

• Set the name TextView in the app widget (via the RemoteViews) to have
either the name of the restaurant or an error message

• If there is a restaurant, set up a PendingIntent to be triggered when
the user taps on the name of the restaurant, set to start up the
DetailForm with the ID_EXTRA in place to bring up the proper
restaurant

345

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

• Set up a PendingIntent to be triggered when the user taps on the
ImageButton that will simply invoke WidgetService again, thereby
updating the app widget with a random restaurant again

• Update the app widget itself

You will also need to add a new string resource, named empty, that will go
into the app widget if there is no restaurant available (e.g., the database is
empty):

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">LunchList</string>
 <string name="empty">No restaurants!</string>
</resources>

Then, update the AndroidManifest.xml again, this time adding in a <service>
element for a to-be-defined WidgetService:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm"></activity>
 <activity android:name=".EditPreferences"></activity>
 <activity android:name=".FeedActivity"></activity>
 <activity android:name=".RestaurantMap"></activity>
 <activity android:name=".AlarmActivity"></activity>
 <service android:name=".FeedService"></service>
 <service android:name=".WidgetService"></service>
 <receiver android:enabled="false"

346

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

 android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 <receiver android:name=".OnAlarmReceiver"></receiver>
 <receiver android:icon="@drawable/icon"
 android:label="@string/app_name"
 android:name=".AppWidget">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider" />
 </receiver>
 </application>
</manifest>

Eclipse users can add this element by:

1. Double-clicking on the AndroidManifest.xml file to bring it up in the
graphical editor

2. Clicking on the Application sub-tab

3. Clicking the Add... button to the right of the Application Nodes list

4. Choosing Service in the dialog and clicking OK

5. Clicking the Browse... button next to the Name field on the right
and choosing WidgetService as the implementation

6. Saving your changes (e.g., <Ctrl>-<S>)

Make sure you have at least two restaurants in LunchList – otherwise,
clicking the button is guaranteed to have no visible effect. Even with two
restaurants, there is a 50% chance that tapping the button will randomly
choose the same restaurant again.

At this point, compile and reinstall the application. Also, if you got rid of
the empty app widget, add a new one to your home screen. You should see
the name of one of your restaurants:

347

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

Figure 91. The app widget, showing the random restaurant

Tapping the name of the restaurant will launch the DetailForm activity,
while tapping the ImageButton will update the app widget in place with a
random restaurant (hopefully different than the one presently shown).

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Add other widgets to the app widget layout, such as a logo icon

• Reduce the font size of the name and add a second TextView to the
layout to show the restaurant's address

• Experiment with other widget sizes instead of the 4x1 cell format
used in the widget metadata

• Rather than show a random restaurant, keep track of the last
restaurant viewed and cycle through them in progression, looping
back to the first in the list when you reach the end. Consider adding
a second ImageButton to move backwards through the list.

348

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Restaurant In Your Own Home

• Add another button that, when clicked, displays a Toast of the notes
for the currently-viewed restaurant.

Further Reading

App widgets are covered in a chapter of The Busy Coder's Guide to
Advanced Android Development.

349

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 22

A Lunch *List* At Home

The previous tutorial set up an app widget, showing one restaurant at a
time. For quite a while, this was about as good as we could get with app
widgets – there was no way to show the full list of restaurants right on the
home screen.

In the words of Bob Dylan, "the times, they are a-changin'".

The new Honeycomb UI introduced with Android 3.0 now allows ListView
to be used with app widgets. Of course, this only works on newer versions
of Android, not older ones. So, if we want to take advantage of this, we will
need two implementations of the app widget layout and logic: one for
Android 1.x/2.x, and one for Android 3.0+.

On the other hand, it allows us to actually have a lunch list on the home
screen, and portraying a list of restaurants is the point behind the app, so it
would seem worthwhile to go through this effort.

Step-By-Step Instructions

First, you need to have completed the previous LunchList tutorial. If you are
starting the tutorials here, or if you wish to not use your existing work, you
can download a ZIP file with all of the tutorial results, and you can copy the
21-AppWidget edition of LunchList to use as a starting point. If you are using

351

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

Eclipse, these instructions will help you load the project into a workspace –
but please read through this tutorial first, particularly Step #1 below.

Step #1: Update Your Build Environment

Your build environment needs two things:

1. It needs an Android 3.x SDK, so you can use Android 3.x capabilities
(carefully!) in your application

2. It needs something to test the resulting app upon, which could
either be an Android 3.x device or an Android 3.x emulator

First, open up the Android SDK and AVD Manager. In Eclipse, this is in the
Window menu. Outside of Eclipse, run the android command. Check your
list of installed packages and see if you have:

• SDK Platform Android 3.0, API 11; or Android 3.1, API 12, or Android
3.2, API 13

• Google APIs by Google Inc., Android API 11 or API 12 or API 13

If you are missing one or both, visit the Available Packages portion of the
SDK and AVD Manager and download the missing pieces. The plain
Android SDK will be in the "Android Repository", while the Google APIs
will be in the "Third party Add-ons" area. You will want the API levels to
match (i.e., if you have SDK Platform for API 13, you want the Google APIs
for API 13 as well).

Then, if you have a piece of Android 3.x hardware that you will be using for
these tutorials, skip ahead to Step #2. Otherwise, in the Android SDK and
AVD Manager (in Eclipse, available via Window | Android SDK and AVD
Manager from the main menu), click on the Virtual Devices option on the
right, and check your list of prepared AVDs. If you have one for "Google
APIs (Google Inc.)" for Android 3.x, that will be the AVD you will want to
use in an emulator for testing the app. If not, click the New... button and
define an AVD for "Google APIs (Google Inc.) - API Level 11" (or 12 or 13,
whichever you downloaded). Be sure to give it a small virtual SD card
(32MB should suffice) for use in later tutorials.

352

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

Note that the Android 3.x emulator is extremely slow as of the time of this
writing. On most development hardware, it will be unusable. If you have
access to Android 3.x hardware, using that is strongly encouraged.

Step #2: Update Your Provider and Widget Layout XML

If we want to have a version of our app widget that looks and works
distinctly differently from the original app widget, we will need widget
provider and widget layout XML resources to match. However, for any
given device, we only want one app widget to be available – the "classic" app
widget for Android 1.x and 2.x devices, and the new ListView-based app
widget for Android 3.0. Hence, we do not want have two separate app
widget definitions... yet we need two separate app widget definitions.

This conundrum is solved by version-specific resource sets.

You can add a -vNN suffix to a resource directory, where NN is an API level
(e.g., 11). The resources contained in that resource directory will only be
used on devices running that version of Android or higher. Hence, we can
create -v11 resources for our Honeycomb-based app widget, with the same
names as we used for the original resources for the original app widget. On
an Android 3.x environment, the -v11 versions of the resources will be used.
On an Android 1.x or 2.x device, the original versions of the resources will
be used.

With that in mind, create a res/xml-v11/ directory in your project (Eclipse
users: right-click on the res/ directory and choose New > Folder from the
context menu), and create a widget_provider.xml file in there with the
following content:

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="220dip"
 android:minHeight="220dip"
 android:updatePeriodMillis="1800000"
 android:initialLayout="@layout/widget"
/>

353

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

Eclipse users can create the empty file by right-clicking over res/xmlv-11/ in
the Package Explorer, choosing New > File from the context menu, giving
the new file a name of widget_provider.xml, and clicking Finish. Then, give
that newly-created file the content shown above.

Other than declaring the width and height to be 220dip (3 cells), the
provider XML is no different than what we had originally.

Then, create a res/layout-v11/ directory in your project, and create a
widget.xml file in there with the following content:

<?xml version="1.0" encoding="utf-8"?>
<ListView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/restaurants"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="3dp"
 android:background="@drawable/widget_frame"
/>

Here, we declare that the UI for our app widget will be a ListView. As with
the original widget, we set up a background, so there is contrast between
the ListView and whatever wallpaper the user may have on the home
screen. Otherwise, this layout file is unremarkable... until we start trying to
use it from the app widget code.

Eclipse users can create this new layout by:

1. Creating the res/layout-v11/ directory by right-clicking on the res/
directory and choose New > Folder from the context menu

2. Right-clicking over the res/layout-v11/ directory, choosing New >
File from the context menu, giving the file the name of widget.xml,
and clicking Finish

3. Dragging a ListView from the Composite section of the tool palette
into the main editing area

4. Right-clicking over the ListView, choosing "Edit ID..." from the
context menu, and giving it a value of restaurants

354

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

5. Right-clicking over the ListView, choosing Properties > Layout
margin... from the context menu, and specifying a value of 3dp

6. Right-clicking over the ListView, choosing Properties > Background
from the context menu, and choosing the widget_frame drawable
resource

7. Saving your changes (e.g., <Ctrl>-<S>)

Also, change your build target to API Level 11 (or 12 or 13, whatever you
downloaded). In Eclipse, the build target is in the Android section of the
project properties, which you get to from the Project | Properties menu:

355

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

Figure 92. The Eclipse Project Properties dialog

Outside of Eclipse, change the default.properties file in the root of your
project to have a target defined as:

target=Google Inc.:Google APIs:11

(substituting 12 or 13 if that is what you downloaded)

356

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

If you compile and install this version of LunchList on an Android 1.x or 2.x
device or emulator, it should behave as it did before.

Step #3: Detect Which App Widget To Display

If we tried running this version of LunchList on an Android 3.x device or
emulator, it will happily crash.

Why?

All our Java code is expecting the old widget layout. It will not be able to
use the new widget layout with the ListView, yet that will be the layout that
is loaded.

Hence, we need to route our Honeycomb-specific app widget logic through
a different code path. The simplest way to do that is to add a bit of smarts
to our onUpdate() method in AppWidget. Modify onUpdate() to look like this:

@Override
public void onUpdate(Context ctxt,
 AppWidgetManager mgr,
 int[] appWidgetIds) {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
 onHCUpdate(ctxt, mgr, appWidgetIds);
 }
 else {
 ctxt.startService(new Intent(ctxt, WidgetService.class));
 }
}

Here, we use the Build class to detect if we are on HONEYCOMB or higher. If so,
we route the update logic to an as-yet-unwritten onHCUpdate() method.
Otherwise, we proceed as normal.

Step #4: Implement and Connect to the Remote­
ViewsService

If you recall from earlier tutorials, providing the contents for a ListView
came in the form of an Adapter. The Adapter was responsible for defining the

357

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

rows in the ListView, on demand, based on various events (initial load of
the list, user scrolling, etc.).

With a ListView-based app widget, the same basic needs exist. We somehow
have to tell the ListView how many rows there are and supply the rows
themselves as needed. However, just as writing a regular app widget is not
nearly as straight-forward as is writing the same logic in an activity, using
an AdapterView in an app widget is significantly more complex than is using
an AdapterView in an activity.

However, if you have made it this far through the book, you are presumably
up to the challenge. Or, possibly, you are simply a glutton for punishment.

In the previous step, we made a call to an onHCUpdate() method. Let's add
the implementation of that method to the AppWidget class, as shown below:

public void onHCUpdate(Context ctxt, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 for (int i=0; i<appWidgetIds.length; i++) {
 Intent svcIntent=new Intent(ctxt, ListWidgetService.class);

 svcIntent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetIds[i]);
 svcIntent.setData(Uri.parse(svcIntent.toUri(Intent.URI_INTENT_SCHEME)));

 RemoteViews widget=new RemoteViews(ctxt.getPackageName(),
 R.layout.widget);

 widget.setRemoteAdapter(appWidgetIds[i], R.id.restaurants,
 svcIntent);

 Intent clickIntent=new Intent(ctxt, DetailForm.class);
 PendingIntent clickPI=PendingIntent
 .getActivity(ctxt, 0,
 clickIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 widget.setPendingIntentTemplate(R.id.restaurants, clickPI);

 appWidgetManager.updateAppWidget(appWidgetIds[i], widget);
 }

 super.onUpdate(ctxt, appWidgetManager, appWidgetIds);
}

What this method does is:

358

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

• Iterates over all of the app widgets defined on the home screen that
we are implementing (typically only one, but perhaps some user
really likes lunch and therefore has several copies of the app widget)

• Creates an Intent, following the rules for AdapterView-based app
widgets, that identifies a RemoteViewsService that we will implement
shortly, named ListWidgetService

• Creates a RemoteViews for the app widget, attaching the Intent from
the previous step as being the "remote adapter" for the AdapterView
in our layout

• Creates a PendingIntent, identifying that we want clicks on items in
the ListView to route to our DetailForm activity, and associate that as
the "PendingIntent template" for the rows in the ListView

• Updates the app widget on the screen as with any other app widget

The entire AppWidget class, after all these changes, should resemble:

package apt.tutorial;

import android.app.PendingIntent;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.Context;
import android.content.Intent;
import android.net.Uri;
import android.os.Build;
import android.widget.RemoteViews;

public class AppWidget extends AppWidgetProvider {
 @Override
 public void onUpdate(Context ctxt,
 AppWidgetManager mgr,
 int[] appWidgetIds) {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
 onHCUpdate(ctxt, mgr, appWidgetIds);
 }
 else {
 ctxt.startService(new Intent(ctxt, WidgetService.class));
 }
 }

 public void onHCUpdate(Context ctxt, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 for (int i=0; i<appWidgetIds.length; i++) {
 Intent svcIntent=new Intent(ctxt, ListWidgetService.class);

359

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

 svcIntent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetIds[i]);
 svcIntent.setData(Uri.parse(svcIntent.toUri(Intent.URI_INTENT_SCHEME)));

 RemoteViews widget=new RemoteViews(ctxt.getPackageName(),
 R.layout.widget);

 widget.setRemoteAdapter(appWidgetIds[i], R.id.restaurants,
 svcIntent);

 Intent clickIntent=new Intent(ctxt, DetailForm.class);
 PendingIntent clickPI=PendingIntent
 .getActivity(ctxt, 0,
 clickIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 widget.setPendingIntentTemplate(R.id.restaurants, clickPI);

 appWidgetManager.updateAppWidget(appWidgetIds[i], widget);
 }

 super.onUpdate(ctxt, appWidgetManager, appWidgetIds);
 }
}

Then, we need to create this ListWidgetService we reference in the Intent.
So, add a new Java class for ListWidgetService to your project, in the
apt.tutorial package, with the following implementation:

package apt.tutorial;

import android.content.Intent;
import android.widget.RemoteViewsService;

public class ListWidgetService extends RemoteViewsService {
 @Override
 public RemoteViewsFactory onGetViewFactory(Intent intent) {
 return(new ListViewsFactory(this.getApplicationContext(),
 intent));
 }
}

Eclipse users can right-click over apt.tutorial in the Package Explorer and
choose New > Class from the context menu to bring up the new class
dialog. Set the class name to be ListWidgetService and set the parent class
to be android.widget.RemoteViewsService. Then, click OK and fill in the
implementation shown above.

360

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

A RemoteViewsService only needs to do one thing: return a
RemoteViewsFactory from the onGetViewFactory() method. This will be called
as soon as the app widget with the AdapterView is being put onto the screen,
to supply the rows for the AdapterView. We will create the implementation
of RemoteViewsFactory – here called ListViewsFactory – in the next step.

You will need to add imports for:

• android.app.PendingIntent

• android.net.Uri

• android.os.Build

• android.widget.RemoteViews

Since this is a new service, we also need to add the associated <service>
element to the manifest, giving us a manifest akin to the one shown below:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm"></activity>
 <activity android:name=".EditPreferences"></activity>
 <activity android:name=".FeedActivity"></activity>
 <activity android:name=".RestaurantMap"></activity>
 <activity android:name=".AlarmActivity"></activity>
 <service android:name=".FeedService"></service>
 <service android:name=".WidgetService"></service>
 <service android:name=".ListWidgetService"
 android:permission="android.permission.BIND_REMOTEVIEWS">

361

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

 </service>
 <receiver android:enabled="false"
 android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 <receiver android:name=".OnAlarmReceiver"></receiver>
 <receiver android:icon="@drawable/icon"
 android:label="@string/app_name"
 android:name=".AppWidget">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider" />
 </receiver>
 </application>
</manifest>

Note that our service has an android:permission attribute, saying that the
sender must hold the BIND_REMOTEVIEWS permission to talk to our service.
This is so third parties do not try to call our RemoteViewsFactory and grab
data they should not have access to. Only the firmware will be able to hold
the BIND_REMOTEVIEWS permission.

Eclipse users can add this element by:

1. Double-clicking on the AndroidManifest.xml file to bring it up in the
graphical editor

2. Clicking on the Application sub-tab

3. Clicking the Add... button to the right of the Application Nodes list

4. Choosing Service in the dialog and clicking OK

5. Clicking the Browse... button next to the Name field on the right
and choosing ListWidgetService as the implementation

6. Type the value android.permission.BIND_REMOTEVIEWS in the
Permission combobox, since it may not be one of the choices
available in the drop-down

7. Saving your changes (e.g., <Ctrl>-<S>)

362

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

Step #5: Implement the RemoteViewsFactory

Now, we need to add the ListViewsFactory class – add the following to your
project, in the apt.tutorial package:

package apt.tutorial;

import android.appwidget.AppWidgetManager;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.os.Bundle;
import android.widget.RemoteViews;
import android.widget.RemoteViewsService;

public class ListViewsFactory
 implements RemoteViewsService.RemoteViewsFactory {
 private Context ctxt=null;
 private RestaurantHelper helper=null;
 private Cursor restaurants=null;

 public ListViewsFactory(Context ctxt, Intent intent) {
 this.ctxt=ctxt;
 }

 @Override
 public void onCreate() {
 helper=new RestaurantHelper(ctxt);
 restaurants=helper
 .getReadableDatabase()
 .rawQuery("SELECT _ID, name FROM restaurants", null);
 }

 @Override
 public void onDestroy() {
 restaurants.close();
 helper.close();
 }

 @Override
 public int getCount() {
 return(restaurants.getCount());
 }

 @Override
 public RemoteViews getViewAt(int position) {
 RemoteViews row=new RemoteViews(ctxt.getPackageName(),
 R.layout.widget_row);

 restaurants.moveToPosition(position);
 row.setTextViewText(android.R.id.text1,

363

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

 restaurants.getString(1));

 Intent i=new Intent();
 Bundle extras=new Bundle();

 extras.putString(LunchList.ID_EXTRA,
 String.valueOf(restaurants.getInt(0)));
 i.putExtras(extras);
 row.setOnClickFillInIntent(android.R.id.text1, i);

 return(row);
 }

 @Override
 public RemoteViews getLoadingView() {
 return(null);
 }

 @Override
 public int getViewTypeCount() {
 return(1);
 }

 @Override
 public long getItemId(int position) {
 restaurants.moveToPosition(position);

 return(restaurants.getInt(0));
 }

 @Override
 public boolean hasStableIds() {
 return(true);
 }

 @Override
 public void onDataSetChanged() {
 // no-op
 }
}

Eclipse users can right-click over apt.tutorial in the Package Explorer and
choose New > Class from the context menu to bring up the new class
dialog. Set the class name to be ListViewsFactory and set the parent class to
be android.widget.RemoteViewsService.RemoteViewsFactory. Then, click OK
and fill in the implementation shown above.

A RemoteViewsFactory looks a lot like an Adapter. Many methods (e.g.,
getCount()) are direct analogues. Some of the noteworthy bits include:

364

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

• It has onCreate() and onDestroy() lifecycle methods, akin to an
Activity or Service. Here, we query to find our restaurants in
onCreate() and close up our Cursor and DatabaseHelper in
onDestroy().

• getViewAt() – the equivalent of getView() on an Adapter – populates
a RemoteViews for the row, rather than a regular View. Notably, it
creates an Intent just with a LunchList.ID_EXTRA extra, with our
restaurant's primary key. That is then supplied to the RemoteViews
via setOnClickFillInIntent(). The net effect is that when the user
taps on one of our rows, the extra from this Intent will be merged
into the "PendingIntent template" from before, to create the actual
PendingIntent that will be used to perform whatever operation we
requested.

• getItemId() returns a unique long value for the row; in this case, we
use the primary key

We will also need our layout for the rows of the widget. You can copy the
android.R.layout.simple_list_item_1 resource from your SDK into
res/layout/widget_row.xml, or use the version that appears below:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2006 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/text1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:gravity="center_vertical"
 android:paddingLeft="6dip"

365

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

 android:minHeight="?android:attr/listPreferredItemHeight"
/>

At this point, you can compile and install the updated version of the
application into your Android 3.x emulator or device. Go into LunchList
from the launcher and add a few restaurants – if this is the first time you
have run the app on this device or emulator, your database will be empty.
Then, tap on the + sign in the upper-right corner, or long-tap somewhere
on the background, to bring up the app widget gallery:

Figure 93. The gallery of things to add to the home screen

Scroll the gallery horizontally to find the LunchList app widget, with a fairly
empty preview:

366

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

Figure 94. The gallery of available widgets, showing LunchList

Then, drag the LunchList app widget to one of your home screens. Tap on
that home screen, and you should see your list of restaurants:

Figure 95. The LunchList Honeycomb app widget

367

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

The list should scroll up and down, assuming you have enough restaurants.
Tapping on a restaurant should bring up the DetailForm activity on that
restaurant.

Step #6: Set Up the Preview Image

When you added the app widget, while all the other app widgets had these
nice previews showing what they would look like, the app widget for
LunchList looked very plain and drab.

Clearly, this cannot stand.

We can add a reference to a preview image to our widget provider XML
resource. The big question is: where do we get the preview image?

You have a few choices:

• You could use the screenshot feature of DDMS to take a picture of
your home screen with the app widget on there, then crop to leave
only the app widget behind

• You could create your own artwork from scratch, though this is
certainly not the preferred approach

• You could use the Widget Preview app in the Android 3.x emulator
(just very, very slowly)

If you wish to take the latter approach, in your Android 3.x emulator with
the current LunchList installed, run the Widget Preview app. When it
launches, it will bring up a list of the defined app widgets on your emulator:

368

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

Figure 96. The list of available widgets, in the Widget Preview app

Choose LunchList, and it will give you a preview of the app widget:

Figure 97. The Honeycomb LunchList app widget, as seen in the Widget
Preview app

Then, click the "Take Snapshot" button at the bottom. You will find the
image in the /mnt/sdcard/Download directory in DDMS.

369

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Lunch *List* At Home

Regardless of where you got your image, drop it in the res/drawable/
directory in your project as hc_widget_preview.png, then add the
android:previewImage attribute to your res/xml-v11/widget_provider.xml file:

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="220dip"
 android:minHeight="220dip"
 android:updatePeriodMillis="1800000"
 android:initialLayout="@layout/widget"
 android:previewImage="@drawable/hc_widget_preview"
/>

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Provide a button in the app widget to add a new restaurant,
launching a blank DetailForm

• Create a more interesting layout to use for the rows in the list than
just the name of the restaurant

• Switch from a ListView to a StackView, with a custom layout showing
a restaurant as a "card" in the stack – you may need to consider a
different widget size than the 3x3 cell format used presently

• Use android:autoAdvanceViewId to have the StackView switch to a new
restaurant automatically

Further Reading

Honeycomb-powered app widgets are covered in a chapter of The Busy
Coder's Guide to Advanced Android Development.

370

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

TUTORIAL 23

A Fragment of Lunch at the
Action Bar

The changes introduced in Android 3.0 (Honeycomb) do not stop with app
widgets that can have a ListView in them. There is a new framework for
interacting with the user. Part of this is the action bar, a combination of the
old Android title bar, options menu, and a new toolbar feature. Part of this
are fragments, which allow you to decompose your application into pieces
that can be displayed in different combinations based upon screen size, to
simplify handling of phones, tablets, TVs, etc.

This tutorial will experiment a bit with the action bar plus will move our
existing LunchList and DetailForm logic into fragments. The benefit of the
move to fragments will not truly be visible until the next tutorial, when we
start providing a different UI for tablets than for phones.

Step-By-Step Instructions

First, you need to have completed the previous LunchList tutorial. If you are
starting the tutorials here, or if you wish to not use your existing work, you
can download a ZIP file with all of the tutorial results, and you can copy the
22-HCAppWidget edition of LunchList to use as a starting point. If you are
using Eclipse, these instructions will help you load the project into a
workspace – but please read through this tutorial first, particularly Step #3
below.

371

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

Step #1: Set the Proper Target

In your manifest, update the <uses-sdk> element to declare that:

• The application overall supports Android 2.2 (API Level 8) and
newer (android:minSdkVersion="8")

• The application is targeting Android 3.0 (API Level 11), to get the
new look and feel (android:targetSdkVersion="11")

Eclipse users can accomplish this by:

1. Double-clicking on the AndroidManifest.xml file to bring it up in the
graphical editor

2. Clicking on the Uses Sdk entry in the Manifest Extras list

3. Filling in 11 for the Target SDK Version

4. Saving your changes (e.g., <Ctrl>-<S>)

The resulting AndroidManifest.xml file will resemble:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-sdk android:minSdkVersion="4" android:targetSdkVersion="11" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm"></activity>
 <activity android:name=".EditPreferences"></activity>

372

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

 <activity android:name=".FeedActivity"></activity>
 <activity android:name=".RestaurantMap"></activity>
 <activity android:name=".AlarmActivity"></activity>
 <service android:name=".FeedService"></service>
 <service android:name=".WidgetService"></service>
 <service android:name=".ListWidgetService"
 android:permission="android.permission.BIND_REMOTEVIEWS">
 </service>
 <receiver android:enabled="false"
 android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 <receiver android:name=".OnAlarmReceiver"></receiver>
 <receiver android:icon="@drawable/icon"
 android:label="@string/app_name"
 android:name=".AppWidget">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider" />
 </receiver>
 </application>
</manifest>

If you compile and run your project, it will look identical to the previous
version for an Android 1.x or 2.x device or emulator. However, on an
Android 3.x device or emulator, it will now have the action bar at the top,
with the options menu items available via the menu button in the upper-
right corner:

373

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

Figure 98. LunchList with the Honeycomb look and feel

Step #2: Promote "Add" to the Action Bar

The action bar looks a bit boring, with just the icon and name in the upper
left and the options menu in the upper right. We have a lot of room, so it
makes sense to do something with that room.

One easy thing to do – that works in a backwards-compatible fashion – is to
selectively promote options menu items to be toolbar buttons.

Modify res/menu/option.xml to add an android:showAsAction attribute to the
Add menu item:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/add"
 android:title="Add"
 android:icon="@drawable/ic_menu_add"
 android:showAsAction="ifRoom|withText"
 />
 <item android:id="@+id/prefs"
 android:title="Settings"
 android:icon="@drawable/ic_menu_preferences"
 />
</menu>

374

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

Eclipse users will need to make this change in the XML directly.

The value of "ifRoom|withText" means that the Add menu item should be
promoted to a toolbar button if there is room in the action bar for it
(ifRoom) and that it should show both the icon and the title, rather than just
the icon (withText).

Without any other changes, if you compile and build this, you will once
again see no change on an Android 1.x or 2.x device or emulator. But, on an
Android 3.x device or emulator, Add should now appear as a toolbar button
and no longer be in the options menu itself:

Figure 99. LunchList with the Add menu choice promoted to a toolbar button

Step #3: Add the ACL

It is possible to do more with the action bar and fragments, but to do so in a
backwards-compatible fashion, we need the Android Compatibility Library
(ACL). This gives us access to a subset of the new classes introduced in
Android 3.0 on older versions of Android.

375

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

First, open up the Android SDK and AVD Manager. In Eclipse, this is in the
Window menu. Outside of Eclipse, run the android command. Check your
list of installed packages and see if you have "Android Compatibility
package". If not, install it from the "Android Repository" portion of the
"Available packages" list.

Then, wherever you have your SDK installed, go into the
extras/android/compatibility/v4 directory (note: that v4 portion may
change over time). There should be an android-support-v4.jar in that
directory (note: again, the v4 portion may be different). Copy that into the
libs/ directory of your project.

Eclipse users will also need to add it to the build path. Eclipse users should
right-click over the project name in the project explorer, then choose Build
Path > Configure Build Path from the context menu. Click on the Libraries
tab, then click the "Add JARs" button. Find the android-support-v4.jar file
in your project's libs/ directory and select it. Then, you can close up this
project properties window.

Step #4: Split LunchList Into a Fragment

When converting an existing application into one that uses fragments, one
recipe is:

1. Clone an activity class into a fragment class

2. Update that fragment class as needed to actually be a fragment,
inheriting from the proper class, updating lifecycle methods, and so
on

3. Change the activity to one that hosts the fragment

4. Repeat steps 1-3 for each activity

5. Start to consider putting multiple fragments in a single activity
when on larger-screen devices

376

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

In this tutorial, we will follow steps 1-4 from that list, starting first with the
LunchList class. The next tutorial will get into step 5, where we really use
fragments to their fullest extent.

Copy LunchList to LunchFragment

Create a copy of your current LunchList class into a LunchFragment.java file,
in the apt.tutorial package. You will need to rename the class in the Java
source, lest you get compiler complaints. Eclipse makes this easy: right-
click over the LunchList class and choose Copy from the context menu, then
right-click over the apt.tutorial package and choose Paste.

Just naming it LunchFragment does not make it a fragment, of course, which
is what we get into next.

Reconfigure LunchFragment

While a fragment is reminiscent of an activity, they are certainly not the
same. Hence, there is a fair bit of conversion work to be done to make
LunchFragment work properly.

First, replace the import for ListActivity to one for
android.support.v4.app.ListFragment, and have LunchFragment inherit from
ListFragment. If you are using Eclipse, this will cause all sorts of warnings
and errors, which we will progressively fix, so please do not panic.

The biggest change is that LunchFragment is no longer an Activity. Many
places in the code use this to refer to a Context – Activity inherits from
Context, but ListFragment does not. Hence, find and replace all this or
LunchList.this occurrences and replace them with calls to getActivity(),
such as in onOptionsItemSelected():

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.add) {
 startActivity(new Intent(getActivity(), DetailForm.class));

377

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

 return(true);
 }
 else if (item.getItemId()==R.id.prefs) {
 startActivity(new Intent(getActivity(), EditPreferences.class));

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

Managed cursors have been deprecated in Android 3.0, but we can do a bit
of "management" ourselves. Split the existing implementation of onCreate()
into onCreate() and onResume(), also adding in setHasOptionsMenu() into
onCreate() to let Android know that our fragment would like to contribute
to the options menu:

@Override
public void onCreate(Bundle state) {
 super.onCreate(state);

 setHasOptionsMenu(true);
}

@Override
public void onResume() {
 super.onResume();

 helper=new RestaurantHelper(getActivity());
 prefs=PreferenceManager.getDefaultSharedPreferences(getActivity());
 initList();
 prefs.registerOnSharedPreferenceChangeListener(prefListener);
}

Also, convert onDestroy() into an equivalent onPause() implementation:

@Override
public void onPause() {
 helper.close();

 super.onPause();
}

And get rid of the startManagingCursor() and stopManagingCursor() calls
from initList():

378

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

private void initList() {
 if (model!=null) {
 model.close();
 }

 model=helper.getAll(prefs.getString("sort_order", "name"));
 adapter=new RestaurantAdapter(model);
 setListAdapter(adapter);
}

The onCreateOptionsMenu() method is slightly different for a Fragment, in
that we get a MenuInflater passed in as a parameter. So, modify
onCreateOptionsMenu() to have the proper signature and use that
MenuInflater:

@Override
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.option, menu);
}

In our RestaurantAdapter, we used to simply call getLayoutInflater(), but
that no longer works, since that is not a method available on Fragment. So,
call getLayoutInflater() on the Activity we get from getActivity():

class RestaurantAdapter extends CursorAdapter {
 RestaurantAdapter(Cursor c) {
 super(getActivity(), c);
 }

 @Override
 public void bindView(View row, Context ctxt,
 Cursor c) {
 RestaurantHolder holder=(RestaurantHolder)row.getTag();

 holder.populateFrom(c, helper);
 }

 @Override
 public View newView(Context ctxt, Cursor c,
 ViewGroup parent) {
 LayoutInflater inflater=getActivity().getLayoutInflater();
 View row=inflater.inflate(R.layout.row, parent, false);
 RestaurantHolder holder=new RestaurantHolder(row);

 row.setTag(holder);

 return(row);
 }
}

379

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

Finally, we need to do something different with our list item clicks. Before,
LunchList would simply open up DetailForm. Now, though, we really want to
delegate that to something else, probably the activity that is hosting the
LunchFragment. Activities now serve as the orchestration layer, coordinating
communication between fragments, whether those fragments are all in the
same activity or are hosted by different activities, based upon screen size.

So, let's create a OnRestaurantListener inner interface declaration inside of
LunchFragment:

public interface OnRestaurantListener {
 void onRestaurantSelected(long id);
}

Add a setOnRestaurantListener() setter method to supply an instance of
that interface:

public void setOnRestaurantListener(OnRestaurantListener listener) {
 this.listener=listener;
}

You will also need to add a data member to LunchFragment named listener to
hold onto this OnRestaurantListener object.

Finally, in onListItemClick(), instead of spawning an activity, just pass the
Restaurant object's ID to the listener:

@Override
public void onListItemClick(ListView list, View view,
 int position, long id) {
 if (listener!=null) {
 listener.onRestaurantSelected(id);
 }
}

The entire LunchFragment implementation, therefore, should resemble this:

package apt.tutorial;

import android.content.Context;
import android.content.Intent;
import android.content.SharedPreferences;

380

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

import android.database.Cursor;
import android.os.Bundle;
import android.preference.PreferenceManager;
import android.support.v4.app.ListFragment;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.view.LayoutInflater;
import android.widget.AdapterView;
import android.widget.CursorAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;

public class LunchFragment extends ListFragment {
 public final static String ID_EXTRA="apt.tutorial._ID";
 Cursor model=null;
 RestaurantAdapter adapter=null;
 RestaurantHelper helper=null;
 SharedPreferences prefs=null;
 OnRestaurantListener listener=null;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setHasOptionsMenu(true);
 }

 @Override
 public void onResume() {
 super.onResume();

 helper=new RestaurantHelper(getActivity());
 prefs=PreferenceManager.getDefaultSharedPreferences(getActivity());
 initList();
 prefs.registerOnSharedPreferenceChangeListener(prefListener);
 }

 @Override
 public void onPause() {
 helper.close();

 super.onPause();
 }

 @Override
 public void onListItemClick(ListView list, View view,
 int position, long id) {
 if (listener!=null) {
 listener.onRestaurantSelected(id);
 }

381

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

 }

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.option, menu);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.add) {
 startActivity(new Intent(getActivity(), DetailForm.class));

 return(true);
 }
 else if (item.getItemId()==R.id.prefs) {
 startActivity(new Intent(getActivity(), EditPreferences.class));

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 public void setOnRestaurantListener(OnRestaurantListener listener) {
 this.listener=listener;
 }

 private void initList() {
 if (model!=null) {
 model.close();
 }

 model=helper.getAll(prefs.getString("sort_order", "name"));
 adapter=new RestaurantAdapter(model);
 setListAdapter(adapter);
 }

 private SharedPreferences.OnSharedPreferenceChangeListener prefListener=
 new SharedPreferences.OnSharedPreferenceChangeListener() {
 public void onSharedPreferenceChanged(SharedPreferences sharedPrefs,
 String key) {
 if (key.equals("sort_order")) {
 initList();
 }
 }
 };

 public interface OnRestaurantListener {
 void onRestaurantSelected(long id);
 }

 class RestaurantAdapter extends CursorAdapter {
 RestaurantAdapter(Cursor c) {
 super(getActivity(), c);

382

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

 }

 @Override
 public void bindView(View row, Context ctxt,
 Cursor c) {
 RestaurantHolder holder=(RestaurantHolder)row.getTag();

 holder.populateFrom(c, helper);
 }

 @Override
 public View newView(Context ctxt, Cursor c,
 ViewGroup parent) {
 LayoutInflater inflater=getActivity().getLayoutInflater();
 View row=inflater.inflate(R.layout.row, parent, false);
 RestaurantHolder holder=new RestaurantHolder(row);

 row.setTag(holder);

 return(row);
 }
 }

 static class RestaurantHolder {
 private TextView name=null;
 private TextView address=null;
 private ImageView icon=null;

 RestaurantHolder(View row) {
 name=(TextView)row.findViewById(R.id.title);
 address=(TextView)row.findViewById(R.id.address);
 icon=(ImageView)row.findViewById(R.id.icon);
 }

 void populateFrom(Cursor c, RestaurantHelper helper) {
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));

 if (helper.getType(c).equals("sit_down")) {
 icon.setImageResource(R.drawable.ball_red);
 }
 else if (helper.getType(c).equals("take_out")) {
 icon.setImageResource(R.drawable.ball_yellow);
 }
 else {
 icon.setImageResource(R.drawable.ball_green);
 }
 }
 }
}

383

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

Make LunchList Host LunchFragment

With all the widgets and business logic moved into LunchFragment, there is
not that much left for LunchList itself to do. It needs to:

• Arrange to have LunchFragment be displayed

• Arrange to find out when the user taps on a Restaurant in the list
and do something with that event – in the short term, we will
launch the DetailForm activity

With that in mind, change res/layout/main.xml to look like this:

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 class="apt.tutorial.LunchFragment"
 android:id="@+id/lunch"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
/>

Eclipse users can delete the current res/layout/main.xml file and create a
new one, dragging a Fragment from the Layouts section of the tool palette
into the graphical editor. Set the Class property (Properties > Class from
the context menu) to be apt.tutorial.LunchFragment, and set the ID (Edit
ID... from the context menu) to be lunch.

Here, we declare that the contents of the activity simply consists of the
LunchFragment itself, filling the screen.

Then, replace the existing LunchList code with the following:

package apt.tutorial;

import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class LunchList extends FragmentActivity
 implements LunchFragment.OnRestaurantListener {
 public final static String ID_EXTRA="apt.tutorial._ID";

 @Override

384

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 LunchFragment lunch
 =(LunchFragment)getSupportFragmentManager()
 .findFragmentById(R.id.lunch);

 lunch.setOnRestaurantListener(this);
 }

 public void onRestaurantSelected(long id) {
 Intent i=new Intent(this, DetailForm.class);

 i.putExtra(ID_EXTRA, String.valueOf(id));
 startActivity(i);
 }
}

Note that we now inherit from FragmentActivity, as opposed to ListActivity
or Activity. This is a requirement of the ACL – applications using the
Android 3.0 APIs directly would not necessarily need to inherit from any
particular Activity class.

Our onCreate() method calls setContentView() as normal. Then, it finds our
LunchFragment and registers itself as the OnRestaurantListener, since
LunchList now implements that interface. That interface requires an
onRestaurantSelected() method, which just invokes the DetailForm activity
as before.

Step #5: Split DetailForm Into a Fragment

Just as we converted LunchList into LunchFragment and a hosting activity, so
too must we convert DetailForm into DetailFragment and a hosting activity.
And, as with LunchList, we will keep the activity name as DetailForm, so we
do not need to change the manifest or any code that refers to DetailForm,
such as our app widget implementations.

Copy DetailForm to DetailFragment

Create a copy of your current DetailForm class into a DetailFragment.java
file, in the apt.tutorial package. You will need to rename the class in the

385

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

Java source, lest you get compiler complaints. In Eclipse, right-click over
the DetailForm class and choose Copy from the context menu, then right-
click over the apt.tutorial package and choose Paste.

Reconfigure DetailFragment

First, replace the import for Activity to one for
android.support.v4.app.Fragment, and have DetailFragment inherit from
Fragment. Again, if you are using Eclipse, do not worry about all the errors
this introduces.

Next, find and replace all this or DetailForm.this occurrences and replace
them with calls to getActivity(), such as in isNetworkAvailable():

private boolean isNetworkAvailable() {
 ConnectivityManager cm=(ConnectivityManager)getActivity().
 getSystemService(Context.CONNECTIV
ITY_SERVICE);
 NetworkInfo info=cm.getActiveNetworkInfo();

 return(info!=null);
}

Our ListFragment (LunchFragment) did not need a layout, as it simply needed
a ListView. With DetailFragment, we need a layout. We will continue to use
res/layout/detail_form.xml for the layout, using something else for the
DetailForm activity later.

However, we now need to implement an onCreateView() method that we did
not need with LunchFragment, to actually inflate the layout and return it:

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return(inflater.inflate(R.layout.detail_form, container, false));
}

Also, since we are not inflating the layout in onCreate() anymore, and
therefore we cannot access the widgets in onCreate(), split some of the logic

386

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

in onCreate() into an onActivityCreated() method, which is invoked after
onCreateView():

@Override
public void onCreate(Bundle state) {
 super.onCreate(state);

 setHasOptionsMenu(true);
}

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 locMgr=(LocationManager)getActivity().
 getSystemService(Context.LOCATION_SERVICE);

 name=(EditText)getView().findViewById(R.id.name);
 address=(EditText)getView().findViewById(R.id.addr);
 notes=(EditText)getView().findViewById(R.id.notes);
 types=(RadioGroup)getView().findViewById(R.id.types);
 feed=(EditText)getView().findViewById(R.id.feed);
 location=(TextView)getView().findViewById(R.id.location);
}

Note that onCreate() also registers DetailFragment to participate in the
options menu. For that to work, once again we need to adjust the
onCreateOptionsMenu() method to reflect the new signature and use the
supplied inflater:

@Override
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.details_option, menu);
}

Similarly, onPrepareOptionsMenu() now no longer needs to chain to the
superclass or return a boolean:

@Override
public void onPrepareOptionsMenu(Menu menu) {
 if (restaurantId==null) {
 menu.findItem(R.id.location).setEnabled(false);
 menu.findItem(R.id.map).setEnabled(false);
 }
}

Some of the original onCreate() logic moves to onResume():

387

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

@Override
public void onResume() {
 super.onResume();

 helper=new RestaurantHelper(getActivity());
 restaurantId=getActivity().getIntent().getStringExtra(LunchList.ID_EXTRA);

 if (restaurantId!=null) {
 load();
 }
}

Also, fold the code from onDestroy() into onPause():

@Override
public void onPause() {
 save();
 helper.close();
 locMgr.removeUpdates(onLocationChange);

 super.onPause();
}

You will also need to add imports for android.content.Context,
android.view.LayoutInflater, and android.view.ViewGroup.

The resulting DetailFragment class should resemble:

package apt.tutorial;

import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.net.ConnectivityManager;
import android.net.NetworkInfo;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.TextView;

388

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

import android.widget.Toast;

public class DetailFragment extends Fragment {
 EditText name=null;
 EditText address=null;
 EditText notes=null;
 EditText feed=null;
 RadioGroup types=null;
 RestaurantHelper helper=null;
 String restaurantId=null;
 TextView location=null;
 LocationManager locMgr=null;
 double latitude=0.0d;
 double longitude=0.0d;

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setHasOptionsMenu(true);
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return(inflater.inflate(R.layout.detail_form, container, false));
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 locMgr=(LocationManager)getActivity().
 getSystemService(Context.LOCATION_SERVICE);

 name=(EditText)getView().findViewById(R.id.name);
 address=(EditText)getView().findViewById(R.id.addr);
 notes=(EditText)getView().findViewById(R.id.notes);
 types=(RadioGroup)getView().findViewById(R.id.types);
 feed=(EditText)getView().findViewById(R.id.feed);
 location=(TextView)getView().findViewById(R.id.location);
 }

 @Override
 public void onResume() {
 super.onResume();

 helper=new RestaurantHelper(getActivity());
 restaurantId=getActivity().getIntent().getStringExtra(LunchList.ID_EXTRA);

 if (restaurantId!=null) {
 load();
 }
 }

389

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

 @Override
 public void onPause() {
 save();
 helper.close();
 locMgr.removeUpdates(onLocationChange);

 super.onPause();
 }

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.details_option, menu);
 }

 @Override
 public void onPrepareOptionsMenu(Menu menu) {
 if (restaurantId==null) {
 menu.findItem(R.id.location).setEnabled(false);
 menu.findItem(R.id.map).setEnabled(false);
 }
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(getActivity(), FeedActivity.class);

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);
 }
 else {
 Toast
 .makeText(getActivity(), "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

 return(true);
 }
 else if (item.getItemId()==R.id.location) {
 locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 0, 0, onLocationChange);

 return(true);
 }
 else if (item.getItemId()==R.id.map) {
 Intent i=new Intent(getActivity(), RestaurantMap.class);

 i.putExtra(RestaurantMap.EXTRA_LATITUDE, latitude);
 i.putExtra(RestaurantMap.EXTRA_LONGITUDE, longitude);
 i.putExtra(RestaurantMap.EXTRA_NAME, name.getText().toString());

390

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

 startActivity(i);

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 private boolean isNetworkAvailable() {
 ConnectivityManager cm=(ConnectivityManager)getActivity().
 getSystemService(Context.CONNECT
IVITY_SERVICE);
 NetworkInfo info=cm.getActiveNetworkInfo();

 return(info!=null);
 }

 private void load() {
 Cursor c=helper.getById(restaurantId);

 c.moveToFirst();
 name.setText(helper.getName(c));
 address.setText(helper.getAddress(c));
 notes.setText(helper.getNotes(c));
 feed.setText(helper.getFeed(c));

 if (helper.getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (helper.getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 latitude=helper.getLatitude(c);
 longitude=helper.getLongitude(c);

 location.setText(String.valueOf(latitude)
 +", "
 +String.valueOf(longitude));

 c.close();
 }

 private void save() {
 if (name.getText().toString().length()>0) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;

391

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

 case R.id.take_out:
 type="take_out";
 break;
 default:
 type="delivery";
 break;
 }

 if (restaurantId==null) {
 helper.insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 else {
 helper.update(restaurantId, name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 }
 }

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location fix) {
 helper.updateLocation(restaurantId, fix.getLatitude(),
 fix.getLongitude());
 location.setText(String.valueOf(fix.getLatitude())
 +", "
 +String.valueOf(fix.getLongitude()));
 locMgr.removeUpdates(onLocationChange);

 Toast
 .makeText(getActivity(), "Location saved",
 Toast.LENGTH_LONG)
 .show();
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };
}

392

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

Make DetailForm Host DetailFragment

Now, we need to do something with this DetailFragment.

Create a new layout file, res/layout/detail_activity.xml, that loads in
DetailFragment:

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 class="apt.tutorial.DetailFragment"
 android:id="@+id/details"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
/>

Eclipse users can create an empty res/layout/detail_activity.xml, then
drag a Fragment from the Layouts section of the tool palette into the
graphical editor. Set the Class property (Properties > Class from the context
menu) to be apt.tutorial.DetailFragment, and set the ID (Edit ID... from the
context menu) to be details.

Then, replace the existing DetailForm logic with:

package apt.tutorial;

import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class DetailForm extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.detail_activity);
 }
}

Here, all we do is load in the layout.

After having done all of that work, you should be able to compile and install
your project onto a device or emulator... and see the exact same UI that you
had after Step #2.

393

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

A Fragment of Lunch at the Action Bar

At this time, you may be tempted to hurt the author. The author would
appreciate your restraint, as he bruises easily.

Besides, all of this work will pay off in the next tutorial, when we display
LunchFragment and DetailFragment side-by-side on a tablet (or tablet-sized
emulator).

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Promote some of the options menu items from DetailFragment into
the action bar.

• Create a copy of your project, remove the ACL from libs/ and your
build path, and alter the project to use the native Honeycomb
fragment and action bar classes and methods. This will only work
on an Android 3.x device or emulator, since you are no longer
backwards-compatible.

Further Reading

Basic work with fragments and the action bar – the level shown in this
tutorial – can be found in a chapter of The Busy Coder's Guide to Android
Development.

394

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android
http://commonsware.com/Android

TUTORIAL 24

Lunches, Large and Small

Now that we have fragments set up, we can leverage them in the way they
were intended: to allow us to mix and match what fragments are displayed
at any time. In the case of this sample application, on a tablet, it would
seem to make sense to have the list of restaurants and the selected
restaurant side-by-side when the tablet is in landscape mode. So, that's
what we will do here.

Step-By-Step Instructions

First, you need to have completed the previous LunchList tutorial. If you are
starting the tutorials here, or if you wish to not use your existing work, you
can download a ZIP file with all of the tutorial results, and you can copy the
23-Honeycomb edition of LunchList to use as a starting point. If you are using
Eclipse, these instructions will help you load the project into a workspace.

Step #1: Add a Large Landscape Layout

First, we need to specify a separate layout for use on large screens in the
landscape orientation. This will serve two roles:

1. It will let us declare where the two fragments (LunchFragment and
DetailFragment) will go and how big they will be

2. It will let us determine at runtime that we have a space for the
DetailFragment in the layout being used by LunchList, so we know to

395

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

add that fragment as needed based upon the user's restaurant
choice

With that in mind, create a res/layout-large-land/ directory in your
project, and in there put a new copy of main.xml that looks like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal"
>
 <fragment
 class="apt.tutorial.LunchFragment"
 android:id="@+id/lunch"
 android:layout_width="0dip"
 android:layout_height="match_parent"
 android:layout_weight="40"
 />
 <FrameLayout
 android:id="@+id/details"
 android:layout_width="0dip"
 android:layout_height="match_parent"
 android:layout_weight="60"
 />
</LinearLayout>

This simply lays out the two fragments side-by-side, with the LunchFragment
getting 40% of the width and the rest going to... a FrameLayout?

The reason for the FrameLayout is that we do not want to show an empty
DetailFragment when there is no restaurant selected, as that could get
confusing. Hence, we will dynamically add the DetailFragment once a
restaurant is selected, and to do that, we need a container to put it in.
FrameLayout is ideal for this purpose.

Eclipse users can create this layout by:

1. Right-clicking over the res/ directory and choosing New > Folder,
giving the new folder the name layout-large-land

2. Right-clicking over the new res/layout-large-land/ directory and
choosing New > File, giving the new file the name main.xml

396

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

3. Entering the aforementioned XML code, as setting this up by drag-
and-drop does not work especially well.

Step #2: Detect Large Landscape Mode

When the user clicks on a restaurant in the LunchFragment, which then
notifies LunchList of the event, we need to now be aware of whether we are
supposed to display the DetailFragment in LunchList itself or the "old way" of
launching DetailForm. The determining factor is whether we have that
FrameLayout (R.id.details) or not.

So, modify onRestaurantSelected() to look like this:

public void onRestaurantSelected(long id) {
 if (findViewById(R.id.details)==null) {
 Intent i=new Intent(this, DetailForm.class);

 i.putExtra(ID_EXTRA, String.valueOf(id));
 startActivity(i);
 }
 else {
 // ummm... do something!
 }
}

Here, we simply look to see if we have the R.id.details widget or not. If we
do not, we go through the original logic of calling startActivity(). If we do
have the FrameLayout, though, we have some more work to do.

Step #3: Pass the Restaurant ID to DetailFragment

Right now, DetailFragment makes an implicit assumption that is is being
hosted by DetailForm. While you will not find any references to DetailForm
in DetailFragment, DetailFragment does ask its activity for the
LunchList.ID_EXTRA value. That will not be the case when DetailFragment is
being hosted by LunchList – instead, LunchList will need to supply the
restaurant to load as needed.

Setting this up is surprisingly annoying.

397

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

First, add an ARG_REST_ID static data member:

private static final String ARG_REST_ID="apt.tutorial.ARG_REST_ID";

Then, use it in a revised version of onActivityCreated():

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 locMgr=(LocationManager)getActivity().
 getSystemService(Context.LOCATION_SERVICE);

 name=(EditText)getView().findViewById(R.id.name);
 address=(EditText)getView().findViewById(R.id.addr);
 notes=(EditText)getView().findViewById(R.id.notes);
 types=(RadioGroup)getView().findViewById(R.id.types);
 feed=(EditText)getView().findViewById(R.id.feed);
 location=(TextView)getView().findViewById(R.id.location);

 Bundle args=getArguments();

 if (args!=null) {
 loadRestaurant(args.getString(ARG_REST_ID));
 }
}

Here, instead of asking the containing activity for the ID_EXTRA as before, we
call getArguments(). This may return a Bundle, supplied to the fragment by
the parent activity. If we have such a bundle, there should be an ARG_REST_ID
value in it, which is the restaurant ID. If so, we can go load that restaurant
into the form via a loadRestaurant() method that you will need to add to
DetailFragment:

public void loadRestaurant(String restaurantId) {
 this.restaurantId=restaurantId;

 if (restaurantId!=null) {
 load();
 }
}

The arguments path will be used when DetailFragment is hosted by the
LunchList activity. For when DetailFragment is hosted by DetailForm, we get
no opportunity to pass in arguments – the fragment is "wired into" the
layout. However, we can simply call loadRestaurant() directly, as you will

398

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

see. We cannot do this in the LunchList host scenario, because the timing is
off, as you will also see.

To assist LunchList in getting this right, add a static newInstance() factory
method on DetailFragment:

public static DetailFragment newInstance(long id) {
 DetailFragment result=new DetailFragment();
 Bundle args=new Bundle();

 args.putString(ARG_REST_ID, String.valueOf(id));
 result.setArguments(args);

 return(result);
}

This gives LunchList a simple API for adding the fragment, encapsulating all
the argument stuff.

Then, we need to get rid of the old extra-based way of loading the
restaurant, presently in onResume(). Convert onResume() into a getHelper()
lazy-creator method:

private RestaurantHelper getHelper() {
 if (helper==null) {
 helper=new RestaurantHelper(getActivity());
 }

 return(helper);
}

Then, replace all spots where we are using helper directly to call getHelper()
instead, such as:

private void load() {
 Cursor c=getHelper().getById(restaurantId);

 c.moveToFirst();
 name.setText(getHelper().getName(c));
 address.setText(getHelper().getAddress(c));
 notes.setText(getHelper().getNotes(c));
 feed.setText(getHelper().getFeed(c));

 if (getHelper().getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);

399

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

 }
 else if (getHelper().getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 latitude=getHelper().getLatitude(c);
 longitude=getHelper().getLongitude(c);

 location.setText(String.valueOf(latitude)
 +", "
 +String.valueOf(longitude));

 c.close();
}

DetailForm has to change as well – here, we need to extra that extra value
and use it with loadRestaurant(). So, add an onResume() method to
DetailForm, as follows:

@Override
public void onResume() {
 super.onResume();

 String restaurantId=getIntent().getStringExtra(LunchList.ID_EXTRA);

 if (restaurantId!=null) {
 DetailFragment details=(DetailFragment)getSupportFragmentManager()
 .findFragmentById(R.id.details);

 if (details!=null) {
 details.loadRestaurant(restaurantId);
 }
 }
}

So, if we are hosting DetailFragment via DetailForm, DetailForm will get the
Intent extra, find the DetailFragment (inflated via the layout), and call
loadRestaurant() on it, causing it to populate the form with the restaurant
information.

The entire DetailFragment class after these changes should resemble:

package apt.tutorial;

import android.content.Context;

400

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

import android.content.Intent;
import android.database.Cursor;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.net.ConnectivityManager;
import android.net.NetworkInfo;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.TextView;
import android.widget.Toast;

public class DetailFragment extends Fragment {
 private static final String ARG_REST_ID="apt.tutorial.ARG_REST_ID";
 EditText name=null;
 EditText address=null;
 EditText notes=null;
 EditText feed=null;
 RadioGroup types=null;
 RestaurantHelper helper=null;
 String restaurantId=null;
 TextView location=null;
 LocationManager locMgr=null;
 double latitude=0.0d;
 double longitude=0.0d;

 public static DetailFragment newInstance(long id) {
 DetailFragment result=new DetailFragment();
 Bundle args=new Bundle();

 args.putString(ARG_REST_ID, String.valueOf(id));
 result.setArguments(args);

 return(result);
 }

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setHasOptionsMenu(true);
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

401

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

 return(inflater.inflate(R.layout.detail_form, container, false));
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 locMgr=(LocationManager)getActivity().
 getSystemService(Context.LOCATION_SERVICE);

 name=(EditText)getView().findViewById(R.id.name);
 address=(EditText)getView().findViewById(R.id.addr);
 notes=(EditText)getView().findViewById(R.id.notes);
 types=(RadioGroup)getView().findViewById(R.id.types);
 feed=(EditText)getView().findViewById(R.id.feed);
 location=(TextView)getView().findViewById(R.id.location);

 Bundle args=getArguments();

 if (args!=null) {
 loadRestaurant(args.getString(ARG_REST_ID));
 }
 }

 @Override
 public void onPause() {
 save();
 getHelper().close();
 locMgr.removeUpdates(onLocationChange);

 super.onPause();
 }

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.details_option, menu);
 }

 @Override
 public void onPrepareOptionsMenu(Menu menu) {
 if (restaurantId==null) {
 menu.findItem(R.id.location).setEnabled(false);
 menu.findItem(R.id.map).setEnabled(false);
 }
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(getActivity(), FeedActivity.class);

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);

402

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

 }
 else {
 Toast
 .makeText(getActivity(), "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

 return(true);
 }
 else if (item.getItemId()==R.id.location) {
 locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 0, 0, onLocationChange);

 return(true);
 }
 else if (item.getItemId()==R.id.map) {
 Intent i=new Intent(getActivity(), RestaurantMap.class);

 i.putExtra(RestaurantMap.EXTRA_LATITUDE, latitude);
 i.putExtra(RestaurantMap.EXTRA_LONGITUDE, longitude);
 i.putExtra(RestaurantMap.EXTRA_NAME, name.getText().toString());

 startActivity(i);

 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }

 public void loadRestaurant(String restaurantId) {
 this.restaurantId=restaurantId;

 if (restaurantId!=null) {
 load();
 }
 }

 private boolean isNetworkAvailable() {
 ConnectivityManager cm=(ConnectivityManager)getActivity().
 getSystemService(Context.CONNECT
IVITY_SERVICE);
 NetworkInfo info=cm.getActiveNetworkInfo();

 return(info!=null);
 }

 private RestaurantHelper getHelper() {
 if (helper==null) {
 helper=new RestaurantHelper(getActivity());
 }

 return(helper);

403

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

 }

 private void load() {
 Cursor c=getHelper().getById(restaurantId);

 c.moveToFirst();
 name.setText(getHelper().getName(c));
 address.setText(getHelper().getAddress(c));
 notes.setText(getHelper().getNotes(c));
 feed.setText(getHelper().getFeed(c));

 if (getHelper().getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (getHelper().getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 latitude=getHelper().getLatitude(c);
 longitude=getHelper().getLongitude(c);

 location.setText(String.valueOf(latitude)
 +", "
 +String.valueOf(longitude));

 c.close();
 }

 private void save() {
 if (name.getText().toString().length()>0) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 default:
 type="delivery";
 break;
 }

 if (restaurantId==null) {
 getHelper().insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 else {

404

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

 getHelper().update(restaurantId, name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString());
 }
 }
 }

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location fix) {
 getHelper().updateLocation(restaurantId, fix.getLatitude(),
 fix.getLongitude());
 location.setText(String.valueOf(fix.getLatitude())
 +", "
 +String.valueOf(fix.getLongitude()));
 locMgr.removeUpdates(onLocationChange);

 Toast
 .makeText(getActivity(), "Location saved",
 Toast.LENGTH_LONG)
 .show();
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };
}

The entire DetailForm class after these changes should look a bit like:

package apt.tutorial;

import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class DetailForm extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.detail_activity);
 }

405

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

 @Override
 public void onResume() {
 super.onResume();

 String restaurantId=getIntent().getStringExtra(LunchList.ID_EXTRA);

 if (restaurantId!=null) {
 DetailFragment details=(DetailFragment)getSupportFragmentManager()
 .findFragmentById(R.id.details);

 if (details!=null) {
 details.loadRestaurant(restaurantId);
 }
 }
 }
}

Step #4: Dynamically Add DetailFragment

Now all that remains is to use the revised DetailFragment from within
LunchList, when we have the placeholder FrameLayout for it. Modify
onRestaurantSelected() in LunchList to look like this:

public void onRestaurantSelected(long id) {
 if (findViewById(R.id.details)==null) {
 Intent i=new Intent(this, DetailForm.class);

 i.putExtra(ID_EXTRA, String.valueOf(id));
 startActivity(i);
 }
 else {
 FragmentManager fragMgr=getSupportFragmentManager();
 DetailFragment
details=(DetailFragment)fragMgr.findFragmentById(R.id.details);

 if (details==null) {
 details=DetailFragment.newInstance(id);

 FragmentTransaction xaction=fragMgr.beginTransaction();

 xaction
 .add(R.id.details, details)
 .setTransition(FragmentTransaction.TRANSIT_FRAGMENT_OPEN)
 .addToBackStack(null)
 .commit();
 }
 else {
 details.loadRestaurant(String.valueOf(id));
 }

406

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

 }
}

We get a FragmentManager via getSupportFragmentManager(). That is the ACL
approach – if we were using the Honeycomb APIs directly, we would simply
use getFragmentManager().

Then, we may need to create a FragmentTransaction. As the name suggests,
this performs some sort of operation on the roster of dynamic fragments in
the activity: add, replace, or remove. In this case, we want to add the
DetailFragment... but only if it is not already there.

So, we call findFragmentById(), which takes the ID of the containing
FrameLayout as a parameter. If this returns the DetailFragment, we do not
need to create a new one, so we simply call loadRestaurant() on it. If,
however, there is no DetailFragment, we create one via the static
newInstance() factory method, and set up the FragmentTransaction to add it
to the activity plus add it to the "back stack". The latter means that pressing
the BACK button once, with the DetailFragment in the LunchList, will
remove the DetailFragment. We also set the transition to be "open" (which
may apply default animations), and wrap by committing the transaction,
which means it will occur as soon as the main application thread gets
around to it.

You will need to add imports for android.support.v4.app.FragmentManager
and android.support.v4.app.FragmentTransaction.

The complete LunchList class should look something like:

package apt.tutorial;

import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.FragmentActivity;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentTransaction;

public class LunchList extends FragmentActivity
 implements LunchFragment.OnRestaurantListener {
 public final static String ID_EXTRA="apt.tutorial._ID";

407

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 LunchFragment lunch
 =(LunchFragment)getSupportFragmentManager()
 .findFragmentById(R.id.lunch);

 lunch.setOnRestaurantListener(this);
 }

 public void onRestaurantSelected(long id) {
 if (findViewById(R.id.details)==null) {
 Intent i=new Intent(this, DetailForm.class);

 i.putExtra(ID_EXTRA, String.valueOf(id));
 startActivity(i);
 }
 else {
 FragmentManager fragMgr=getSupportFragmentManager();
 DetailFragment
details=(DetailFragment)fragMgr.findFragmentById(R.id.details);

 if (details==null) {
 details=DetailFragment.newInstance(id);

 FragmentTransaction xaction=fragMgr.beginTransaction();

 xaction
 .add(R.id.details, details)
 .setTransition(FragmentTransaction.TRANSIT_FRAGMENT_OPEN)
 .addToBackStack(null)
 .commit();
 }
 else {
 details.loadRestaurant(String.valueOf(id));
 }
 }
 }
}

If you compile and install this on an phone-sized device or emulator, you
should see no difference. If you compile and install this on a tablet-sized
device or emulator, you will start off with the LunchFragment on the left:

408

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

Figure 100. LunchList on a XOOM, with restaurants on the left

Then, tapping a restaurant will bring up the DetailFragment on the right:

Figure 101. LunchList on a XOOM, with details on the right

409

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Lunches, Large and Small

Tapping a different restaurant changes the DetailFragment contents.
Tapping the BACK button will remove the DetailFragment; tapping it again
will close the LunchList activity.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Experiment with having the list of restaurants be in the action bar
in the so-called "list" navigation mode (NAVIGATION_MODE_LIST). This
will be a bit silly for tablets, but it might make sense for smaller
devices, if and when they get the action bar and fragments. The
techniques for this are found in a chapter of The Busy Coder's Guide
to Advanced Android Development.

• We have lost our ability to save changes to the restaurant, except by
using the BACK button to get rid of the DetailFragment. This makes
for an awkward user experience. Come up with something better,
such as automatically saving changes if we are loading a new
restaurant into the existing fragment.

• Normally, when having a ListFragment on-screen along with a
dynamic fragment tied to that list, the user's choice in the
ListFragment is "activated". This is a persistent highlight, reminding
the user the context of whatever the dynamic fragment is showing.
Add this capability to LunchFragment, in the form of a
CHOICE_MODE_SINGLE ListView and a row that supports the "activated"
state... but only on API Level 11 or higher. The techniques for this
are found in a chapter of The Busy Coder's Guide to Advanced
Android Development.

Further Reading

Dynamic fragments via FragmentTransaction can be found in a chapter of
The Busy Coder's Guide to Advanced Android Development.

410

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

TUTORIAL 25

Getting Some Help With Lunch

We already arranged to display Web content using the user's default Web
browser, as part of our rudimentary feed reader. Now, let us turn to WebView
for Web content, in this case some basic online help.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 24-MultScreenSizes edition of LunchList to use as a starting point. If you
are using Eclipse, these instructions will help you load the project into a
workspace.

Step #1: Draft and Package the Help HTML

Next, we need some placeholder HTML to serve as our help prose. This
does not need to be terribly fancy – in fact, simpler HTML works better,
simply because it loads faster.

So, write a Web page that will serve as the placeholder for the LunchList
help. The key is where you put the page: create an assets/ directory in your
project and store it as help.html in there. That will line up with the URL we
will use in the next section to reference that help file.

411

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Some Help With Lunch

Step #2: Create a Help Activity

Now, we can create a help activity class that will load our Web page and do
some other useful things.

First, create LunchList/res/layout/help.xml with the following content:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >
 <WebView android:id="@+id/webkit"
 android:layout_width="match_parent"
 android:layout_height="0px"
 android:layout_weight="1"
 />
</LinearLayout>

Then, create LunchList/src/apt/tutorial/HelpPage.java with the following
code:

package apt.tutorial.two;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.webkit.WebView;

public class HelpPage extends Activity {
 private WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.help);

 browser=(WebView)findViewById(R.id.webkit);
 browser.loadUrl("file:///android_asset/help.html");
 }
}

Note how we use file:///android_asset/help.html as the URL syntax to
reach into our APK's assets to load the desired Web page.

412

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Some Help With Lunch

Finally, as normal, we need to add another <activity> element to our
AndroidManifest.xml file:

<activity android:name=".HelpPage"></activity>

Step #3: Splice In the Help Activity

Finally, we need to integrate HelpPage into the application, so users can
display the help. As we have done in previous tutorials, we will accomplish
this by extending the option menu with another menu item.

First, add the following <item> to LunchList/res/menu/option.xml and to
LunchList/res/menu/detail-option.xml:

<item android:id="@+id/help"
 android:title="Help"
 android:icon="@drawable/ic_menu_help"
/>

You will also need a suitable menu icon, such as the ic_menu_help.png image
from the Android SDK.

Then, update onOptionsItemSelected() in both LunchFragment and
DetailFragment to launch HelpPage when our new help item is selected. The
else if block you will need to add to both implementations of
onOptionsItemSelected() is:

else if (item.getItemId()==R.id.help) {
 startActivity(new Intent(getActivity(), HelpPage.class));
}

For example, the complete onOptionsItemSelected() for LunchFragment
should now look like:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.add) {
 startActivity(new Intent(getActivity(), DetailForm.class));

 return(true);

413

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Some Help With Lunch

 }
 else if (item.getItemId()==R.id.prefs) {
 startActivity(new Intent(getActivity(), EditPreferences.class));

 return(true);
 }
 else if (item.getItemId()==R.id.help) {
 startActivity(new Intent(getActivity(), HelpPage.class));
 }

 return(super.onOptionsItemSelected(item));
}

Now, if you recompile and reinstall the application, clicking the help menu
item from either activity brings up HelpPage with your help content:

Figure 102. The HelpPage activity

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Support multiple pages of help text, by using WebViewClient and
shouldOverrideUrlLoading().

414

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Getting Some Help With Lunch

• Experiment with adding images or CSS stylesheets to the help page.

• When running on a larger-screen device, display the help in a
DialogFragment

Further Reading

You can learn more about the basics of integrating a WebView widget into
your activities in the "Embedding the WebKit Browser" chapter of The Busy
Coder's Guide to Android Development.

415

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android
http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 26

Take a Monkey to Lunch

In this tutorial, we will use the Monkey utility to stress test the LunchList
application.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 25-WebKit edition of LunchList to use as a starting point. If you are using
Eclipse, these instructions will help you load the project into a workspace.

Step #1: Prep LunchList

Ensure your LunchList has a few restaurants, of different types. Then, leave
the LunchList at the LunchList activity itself (i.e., the list of available
restaurants).

Step #2: Run the Monkey

Launch a command prompt or shell, and run the following command:

adb shell monkey -p apt.tutorial -v --throttle 100 600

417

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Take a Monkey to Lunch

Note that if you did not add your SDK's platform-tools/ directory to your
system PATH, you may need to change to that directory to get this command
to execute properly.

This command indicates:

• You want to run the Monkey

• You want the Monkey to limit itself to testing your application (-p
apt.tutorial), so if the Monkey attempts to do something that
would exit your application (e.g., click the HOME button), that
simulated input will be skipped

• You want the Monkey to execute one event every 100 milliseconds
(--throttle 100)

• You want the Monkey to be verbose and report what events it
simulates (-v)

• You want the Monkey to perform 600 simulated events

What you should see is the LunchList application running amok, as if some
monkey were trying out different UI operations (clicking buttons, typing in
fields, choosing menu options). If all goes well, LunchList will survive
without errors. If something goes wrong, you will get an exception, and can
use the log information (via DDMS or adb logcat) to see what failed and,
possibly, how to fix it.

Your shell will show a running tally of what has been done, such as
simulating screen taps or key presses.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Try updating your test process to be repeatable, so if you encounter
some sort of exception, you can make it happen again. To do this,
you will need to save your database file (stored in
/data/data/apt.tutorial/databases/lunchlist.db) before running
Monkey with the -s switch to provide a known seed value. Each test

418

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Take a Monkey to Lunch

run should back up the database, run Monkey with a fresh seed, and
restore the database. If you got a crash or some other problem, re-
run the process with the same seed, and you should be able to
reproduce the failure.

• Experiment with additional options to configure the Monkey's
operation, as described in the Monkey documentation.

• Experiment with Android's built-in copy of the JUnit test
framework to exercise the restaurant model class programmatically.

Further Reading

More about Android's test-related features, including more on the Monkey,
can be found in the "Testing" chapter of The Busy Coder's Guide to
Advanced Android Development.

419

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://developer.android.com/guide/developing/tools/monkey.html

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 27

Ringing the Lunch Bell

Our time-for-lunch alarm is a visual alert, but right now we are not beeping
the phone or otherwise audibly alerting the user to the fact that it is time
for lunch. This feature might be useful, for users who have their phones in
their pockets, purses, packs, ponchos, or parkas. So, in this tutorial, we will
let the user choose a ringtone, then use it both with our Notification and
with the full-activity alert.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 25-WebKit edition of LunchList to use as a starting point. Note that the
previous tutorial had no code changes.

Step #1: Add a Ringtone to the Emulator

If you are using a piece of hardware for developing and testing this
application, you should already have ringtones available and can skip this
step. However, the Android emulator does not come with any ringtones, for
inexplicable reasons. So, we need to add one, so you can choose it during
testing.

421

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Ringing the Lunch Bell

First, you need to find a likely piece of media for your ringtone and get it on
your development machine.

Next, you need to upload that media to the external storage of the
emulator. The easiest way to do this is to use the File Explorer in DDMS. In
the Eclipse DDMS perspective, the File Explorer is a tab, by default in the
upper-right main tab group. In the standalone DDMS, the File Explorer is
obtained from the Device menu.

In DDMS, navigate into the /mnt/sdcard directory (note: this might be
/sdcard in older Android emulators):

Figure 103. DDMS, viewing /mnt/sdcard

Then, click the to-phone toolbar icon, choose your ringtone file from the
Open dialog, and upload it.

While this puts the file on the emulator, uploading a file from DDMS does
not cause the MediaStore to index it. The simplest quick way to do this is to

422

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Ringing the Lunch Bell

go into the Settings application, and from there into the "SD card & phone
storage" screen:

Figure 104. The "SD card & phone storage" settings screen

Tap on the "Unmount SD card" entry, wait a bit, then tap on the "Mount SD
card" entry when it appears.

At this point, you should be able to go into the Music application and see
your ringtone as a song. Try playing the song – if you do not hear anything,
and playing with the volume (back in the Settings application) does not
help, then the emulator and your development machine are not getting
along from an audio playback standpoint. That is not a major problem,
though it will mean that you will be unable to hear the ringtones you are
setting up in this tutorial.

Finally, long-press on the song in the Music app and choose it to be your
ringtone.

423

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Ringing the Lunch Bell

Step #2: Set the Alarm Volume

Next, you will want to check the alarm volume on the emulator, to ensure
that you will hear the media when it plays back. To do this, go into the
Sound screen in the Settings application:

Figure 105. The Sound settings screen

Choose the Volume setting:

424

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Ringing the Lunch Bell

Figure 106. The Volume settings dialog

Make sure the "Alarm" volume is sufficiently high, then press OK.

Step #3: Add a RingtonePreference

Next, we need to add a preference to allow the user to choose the ringtone
to associate with lunchtime.

To do this, add a RingtonePreference named alarm_ringtone to the
res/xml/preferences.xml file:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <ListPreference
 android:key="sort_order"
 android:title="Sort Order"
 android:summary="Choose the order the list uses"
 android:entries="@array/sort_names"
 android:entryValues="@array/sort_clauses"
 android:dialogTitle="Choose a sort order" />
 <CheckBoxPreference

425

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Ringing the Lunch Bell

 android:key="alarm"
 android:title="Sound a Lunch Alarm"
 android:summary="Check if you want to know when it is time for lunch" />
 <apt.tutorial.TimePreference
 android:key="alarm_time"
 android:title="Lunch Alarm Time"
 android:defaultValue="12:00"
 android:summary="Set your desired time for the lunch alarm"
 android:dependency="alarm" />
 <CheckBoxPreference
 android:key="use_notification"
 android:title="Use a Notification"
 android:defaultValue="true"
 android:summary="Check if you want a status bar icon at lunchtime, or
uncheck for a full-screen notice"
 android:dependency="alarm" />
 <RingtonePreference
 android:key="alarm_ringtone"
 android:title="Alarm Ringtone"
 android:summary="Indicate the ringtone to play when it is lunchtime"
 android:showSilent="true"
 android:dependency="alarm" />
</PreferenceScreen>

If you compile and reinstall the application, then go into the preferences via
the options menu on the LunchList activity, you will see your new
preference:

426

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Ringing the Lunch Bell

Figure 107. The new preferences, complete with ringtone

Tap on the Alarm Ringtone preference and choose the ringtone you want,
such as the one set up in Step #1.

Step #4: Play the Ringtone... with the Notification

Now, we can start using the ringtone, beginning with the Notification.

A Notification already knows how to play a ringtone, by way of the sound
data member. All we need to do is detect that the user wanted an alarm
ringtone and use it.

With that in mind, update onReceive() of AlarmReceiver to add in a check of
the alarm_ringtone preference and such, as shown below:

@Override
public void onReceive(Context ctxt, Intent intent) {
 SharedPreferences prefs=PreferenceManager.getDefaultSharedPreferences(ctxt);
 boolean useNotification=prefs.getBoolean("use_notification",

427

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Ringing the Lunch Bell

 true);

 if (useNotification) {
 NotificationManager mgr=
 (NotificationManager)ctxt.getSystemService(Context.NOTIFICATION_SERVICE);
 Notification note=new Notification(R.drawable.stat_notify_chat,
 "It's time for lunch!",
 System.currentTimeMillis());
 PendingIntent i=PendingIntent.getActivity(ctxt, 0,
 new Intent(ctxt, AlarmActivity.class),
 0);

 note.setLatestEventInfo(ctxt, "LunchList",
 "It's time for lunch! Aren't you hungry?",
 i);
 note.flags|=Notification.FLAG_AUTO_CANCEL;

 String sound=prefs.getString("alarm_ringtone", null);

 if (sound!=null) {
 note.sound=Uri.parse(sound);
 note.audioStreamType=AudioManager.STREAM_ALARM;
 }

 mgr.notify(NOTIFY_ME_ID, note);
 }
 else {
 Intent i=new Intent(ctxt, AlarmActivity.class);

 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 ctxt.startActivity(i);
 }
}

Here, if there is a preference for the alarm, we convert the string
representation into a Uri and put that in the sound data member of the
Notification. We also set the audioStreamType data member to be
AudioManager.STREAM_ALARM, meaning that the ringtone should be played at
the alarm volume level (instead of, say, the media volume level).

You will need to add imports for android.media.AudioManager and
android.net.Uri.

If you compile and install this version of the application, request lunchtime
alerts via a Notification, and adjust your alarm time to be a minute or two
from now, in a minute or two you will see the same Notification as before,
but you will also hear the ringtone.

428

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Ringing the Lunch Bell

Step #5: Play the Ringtone... with the Activity

Finally, we can also arrange to play the same ringtone when the
AlarmActivity appears. Our original AlarmActivity implementation did
nothing but load the layout, so replace it entirely with the following:

package apt.tutorial;

import android.app.Activity;
import android.content.SharedPreferences;
import android.media.AudioManager;
import android.media.MediaPlayer;
import android.net.Uri;
import android.os.Bundle;
import android.preference.PreferenceManager;
import android.util.Log;

public class AlarmActivity extends Activity
 implements MediaPlayer.OnPreparedListener {
 MediaPlayer player=new MediaPlayer();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.alarm);

 SharedPreferences prefs=PreferenceManager.getDefaultSharedPreferences(this);
 String sound=prefs.getString("alarm_ringtone", null);

 if (sound!=null) {
 player.setAudioStreamType(AudioManager.STREAM_ALARM);

 try {
 player.setDataSource(sound);
 player.setOnPreparedListener(this);
 player.prepareAsync();
 }
 catch (Exception e) {
 Log.e("LunchList", "Exception in playing ringtone", e);
 }
 }
 }

 @Override
 public void onPause() {
 if (player.isPlaying()) {
 player.stop();
 }

 super.onPause();
 }

429

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Ringing the Lunch Bell

 public void onPrepared(MediaPlayer player) {
 player.start();
 }
}

Here, we do setContentView() as before, then check to see if we have a
ringtone set for the alarm. If so, we create a new MediaPlayer object to play
back that ringtone. Here, we:

• Set the volume stream to be STREAM_ALARM, as we did with the
Notification

• Set the path to the ringtone via setDataSource()

• Indicate that the AlarmActivity itself should be notified after the
MediaPlayer is "prepared" (i.e., metadata has been read in and
buffers filled up enough to ensure smooth playback of the clip)

• Start the preparation process via prepareAsync()

The prepareAsync() method will do the I/O for loading in the initial clip
data on an Android-supplied background thread. AlarmActivity will be
notified when that is complete via the onPrepared() method, where we call
start() on the MediaPlayer to begin playing the ringtone.

By default, the ringtone would play to completion, which might be a bit
long. So, in onPause(), if the ringtone is still being played by the
MediaPlayer, we stop it.

If you compile and install this version of the application, uncheck the "Use
a Notification" checkbox in the settings , and adjust your alarm time to be a
minute or two from now, in a minute or two you will see the AlarmActivity
appear and hear your ringtone.

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Add an option to allow the user to download a piece of media to
serve as the ringtone.

430

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Ringing the Lunch Bell

• For AlarmActivity, try using ToneGenerator to emit a simple beep, as
opposed to playing a ringtone.

Further Reading

More about Android's multimedia playback capabilities can be found in the
"Media" chapter of The Busy Coder's Guide to Advanced Android
Development.

431

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

PART II – Hardware Tutorials

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

TUTORIAL 28

Asking Permission to Place a
Call

In this tutorial, we will add a bit of code that asks permission to place a call,
and we will add a phone number to our restaurant data model and detail
form. Then, we will actually place the call.

Step-By-Step Instructions

First, you need to have completed the previous tutorial. If you are
beginning the tutorials here, or if you wish to not use your existing work,
you can download a ZIP file with all of the tutorial results, and you can copy
the 27-Media edition of LunchList to use as a starting point. If you are using
Eclipse, these instructions will help you load the project into a workspace.

Step #1: Add a Phone Number to the Database
Schema

If we want our phone numbers to stick around, we need to put them in the
database.

With that in mind, update RestaurantHelper to use the following
implementation of onCreate():

435

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT, feed TEXT, lat REAL, lon REAL,
phone TEXT);");
}

Any time you make a material modification to the schema, you also need to
increment the schema version number. For RestaurantHelper, that is held in
SCHEMA_VERSION, so increment to 4:

private static final int SCHEMA_VERSION=4;

Step #2: Intelligently Handle Database Updates

As before, when the schema version increments, onUpgrade() is called on
RestaurantHelper rather than onCreate(). It is our job to update the schema,
preferably without losing any user data. Here, we just use an ALTER TABLE
SQL statement, since all we are doing is adding a column, to go along with
all our other ALTER TABLE statements from previous schema upgrades:

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 if (oldVersion<2) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN feed TEXT");
 }

 if (oldVersion<3) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN lat REAL");
 db.execSQL("ALTER TABLE restaurants ADD COLUMN lon REAL");
 }

 if (oldVersion<4) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN phone TEXT");
 }
}

Step #3: Add Phone Number Support to the Rest of
the Helper

We also need to update our insert() method on RestaurantHelper to accept
a phone number:

436

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

public void insert(String name, String address,
 String type, String notes,
 String feed, String phone) {
 ContentValues cv=new ContentValues();

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);
 cv.put("feed", feed);
 cv.put("phone", phone);

 getWritableDatabase().insert("restaurants", "name", cv);
}

and the corresponding update() method, also to accept a phone number:

public void update(String id, String name, String address,
 String type, String notes, String feed,
 String phone) {
 ContentValues cv=new ContentValues();
 String[] args={id};

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);
 cv.put("feed", feed);
 cv.put("phone", phone);

 getWritableDatabase().update("restaurants", cv, "_ID=?",
 args);
}

The two query methods, getAll() and getById(), also should return the
phone number from each of their respective queries:

public Cursor getAll(String orderBy) {
 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, lat, lon, phone
FROM restaurants ORDER BY "+orderBy,
 null));
}

public Cursor getById(String id) {
 String[] args={id};

 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, feed, lat, lon,
phone FROM restaurants WHERE _ID=?",

437

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

 args));
}

Also, add a getPhone() method to RestaurantHelper, akin to the other
methods that extract columns out of a Cursor:

public String getPhone(Cursor c) {
 return(c.getString(8));
}

The complete revised RestaurantHelper should now resemble:

package apt.tutorial;

import android.content.Context;
import android.content.ContentValues;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;

class RestaurantHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="lunchlist.db";
 private static final int SCHEMA_VERSION=4;

 public RestaurantHelper(Context context) {
 super(context, DATABASE_NAME, null, SCHEMA_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE restaurants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT, address TEXT, type TEXT, notes TEXT, feed TEXT, lat REAL, lon REAL,
phone TEXT);");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 if (oldVersion<2) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN feed TEXT");
 }

 if (oldVersion<3) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN lat REAL");
 db.execSQL("ALTER TABLE restaurants ADD COLUMN lon REAL");
 }

 if (oldVersion<4) {
 db.execSQL("ALTER TABLE restaurants ADD COLUMN phone TEXT");
 }

438

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

 }

 public Cursor getAll(String orderBy) {
 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, lat, lon, phone
FROM restaurants ORDER BY "+orderBy,
 null));
 }

 public Cursor getById(String id) {
 String[] args={id};

 return(getReadableDatabase()
 .rawQuery("SELECT _id, name, address, type, notes, feed, lat, lon,
phone FROM restaurants WHERE _ID=?",
 args));
 }

 public void insert(String name, String address,
 String type, String notes,
 String feed, String phone) {
 ContentValues cv=new ContentValues();

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);
 cv.put("feed", feed);
 cv.put("phone", phone);

 getWritableDatabase().insert("restaurants", "name", cv);
 }

 public void update(String id, String name, String address,
 String type, String notes, String feed,
 String phone) {
 ContentValues cv=new ContentValues();
 String[] args={id};

 cv.put("name", name);
 cv.put("address", address);
 cv.put("type", type);
 cv.put("notes", notes);
 cv.put("feed", feed);
 cv.put("phone", phone);

 getWritableDatabase().update("restaurants", cv, "_ID=?",
 args);
 }

 public void updateLocation(String id, double lat, double lon) {
 ContentValues cv=new ContentValues();
 String[] args={id};

439

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

 cv.put("lat", lat);
 cv.put("lon", lon);

 getWritableDatabase().update("restaurants", cv, "_ID=?",
 args);
 }

 public String getName(Cursor c) {
 return(c.getString(1));
 }

 public String getAddress(Cursor c) {
 return(c.getString(2));
 }

 public String getType(Cursor c) {
 return(c.getString(3));
 }

 public String getNotes(Cursor c) {
 return(c.getString(4));
 }

 public String getFeed(Cursor c) {
 return(c.getString(5));
 }

 public double getLatitude(Cursor c) {
 return(c.getDouble(6));
 }

 public double getLongitude(Cursor c) {
 return(c.getDouble(7));
 }

 public String getPhone(Cursor c) {
 return(c.getString(8));
 }
}

Step #4: Collect the Phone Number on the Detail Form

If we actually want to have phone numbers, though, we need to actually
collect them on DetailFragment.

First, update LunchList/res/layout/detail_form.xml to add the following
after the address row in our TableLayout:

440

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

<TableRow>
 <TextView android:text="Phone:" />
 <EditText android:id="@+id/phone" android:inputType="phone" />
</TableRow>

Notice that we are using android:inputType="phone" on the new EditText
widget. This will cause Android to use a soft keyboard set up for entering a
phone number (where available), rather than a standard keyboard layout.

Similarly, add the following after the address row in LunchList/res/layout-
land/detail_form.xml:

<TableRow>
 <TextView android:text="Phone:" />
 <EditText android:id="@+id/phone"
 android:layout_span="2"
 />
</TableRow>

Then, as in the previous section, clone all references to address in
DetailFragment to make references to our phone widgets, such as:

EditText address=null;
EditText phone=null;

and:

address=(EditText)getView().findViewById(R.id.addr);
phone=(EditText)getView().findViewById(R.id.phone);

At this point, you can recompile and reinstall the application. When you
first run it, there will be a tiny pause as the database is updated. After that
point, you can use the new field to add phone numbers to whichever
restaurants you want:

441

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

Figure 108. The new DetailForm layout

Step #5: Ask for Permission to Make Calls

Then, we can update AndroidManifest.xml to put in a permission request to
be able to place phone calls.

But, there's a catch.

We could just pop in another <uses-permission> element, this time asking
for the CALL_PHONE permission. However, asking for this permission implies
that we need the device to be a phone. In this case, we do not want to limit
the application to only run on phones – we can use techniques to determine
if a device is a phone at runtime. That way, we can offer integrated calling
on phones, yet still work on tablets, televisions, etc. But to do that, we need
to indicate to Android that we want to be able to call phones, but if the
device is not a phone, that is fine as well.

442

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

With that in mind, add the CALL_PHONE permission and subsequent <uses-
feature> element as shown below

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1"
 android:versionName="1.0"
 package="apt.tutorial"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-sdk android:minSdkVersion="4" android:targetSdkVersion="11" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission android:name="android.permission.CALL_PHONE" />
 <uses-feature android:name="android.hardware.telephony"
 android:required="false" />
 <supports-screens android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false" />
 <application android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps" />
 <activity android:label="@string/app_name"
 android:name=".LunchList">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailForm"></activity>
 <activity android:name=".EditPreferences"></activity>
 <activity android:name=".FeedActivity"></activity>
 <activity android:name=".RestaurantMap"></activity>
 <activity android:name=".AlarmActivity"></activity>
 <activity android:name=".HelpPage"></activity>
 <service android:name=".FeedService"></service>
 <service android:name=".WidgetService"></service>
 <service android:name=".ListWidgetService"
 android:permission="android.permission.BIND_REMOTEVIEWS">
 </service>
 <receiver android:enabled="false"
 android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 <receiver android:name=".OnAlarmReceiver"></receiver>
 <receiver android:icon="@drawable/icon"
 android:label="@string/app_name"
 android:name=".AppWidget">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>

443

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider" />
 </receiver>
 </application>
</manifest>

Here, the <uses-feature> element says that it would be nice if the device
were a phone (android.hardware.telephony) but that it is not required
(android:required="false"). If we were to leave out this element, Android
would assume, based on the CALL_PHONE permission, that
android.hardware.telephony was required, and our application would not
install on non-phones.

Step #6: See If We Have Telephony

However, this means that we need to determine, at runtime, if we are on a
phone or not. The best way to do that is to use PackageManager and the
hasSystemFeature() method. This takes the name of a hardware feature (e.g.,
android.hardware.telephony) and tells us if the device has it or not. For
features we request but do not make mandatory, this is how we can find
out what is possible so we can update our UI to match.

With that in mind, on DetailFragment, add an isTelephonyAvailable()
method as follows:

private boolean isTelephonyAvailable() {
 return(getActivity()
 .getPackageManager()
 .hasSystemFeature("android.hardware.telephony"));
}

Step #7: Dial the Number

Next, let us set up DetailForm with its own option menu that contains a Call
item. When chosen, we dial the phone number, assuming there is one.

First, update LunchList/res/menu/details_option.xml to include a call menu
choice:

444

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/feed"
 android:title="RSS Feed"
 android:icon="@drawable/ic_menu_friendslist"
 />
 <item android:id="@+id/location"
 android:title="Save Location"
 android:icon="@drawable/ic_menu_compass"
 />
 <item android:id="@+id/map"
 android:title="Show on Map"
 android:icon="@drawable/ic_menu_mapmode"
 />
 <item android:id="@+id/call"
 android:title="Call"
 android:icon="@drawable/ic_menu_call"
 android:enabled="false"
 />
 <item android:id="@+id/help"
 android:title="Help"
 android:icon="@drawable/ic_menu_help"
 />
</menu>

You will note that the above code makes the menu item disabled by default.
We need to update onPrepareOptionsMenu() in DetailFragment to enable it if
telephony is available:

@Override
public void onPrepareOptionsMenu(Menu menu) {
 if (restaurantId==null) {
 menu.findItem(R.id.location).setEnabled(false);
 menu.findItem(R.id.map).setEnabled(false);
 }

 if (isTelephonyAvailable()) {
 menu.findItem(R.id.call).setEnabled(true);
 }
}

Then, update onOptionsItemSelected() in DetailFragment to include code for
the R.id.call case:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(getActivity(), FeedActivity.class);

445

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);
 }
 else {
 Toast
 .makeText(getActivity(), "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

 return(true);
 }
 else if (item.getItemId()==R.id.location) {
 locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 0, 0, onLocationChange);

 return(true);
 }
 else if (item.getItemId()==R.id.map) {
 Intent i=new Intent(getActivity(), RestaurantMap.class);

 i.putExtra(RestaurantMap.EXTRA_LATITUDE, latitude);
 i.putExtra(RestaurantMap.EXTRA_LONGITUDE, longitude);
 i.putExtra(RestaurantMap.EXTRA_NAME, name.getText().toString());

 startActivity(i);

 return(true);
 }
 else if (item.getItemId()==R.id.call) {
 String toDial="tel:"+phone.getText().toString();

 if (toDial.length()>4) {
 startActivity(new Intent(Intent.ACTION_CALL,
 Uri.parse(toDial)));
 }
 }
 else if (item.getItemId()==R.id.help) {
 startActivity(new Intent(getActivity(), HelpPage.class));
 }

 return(super.onOptionsItemSelected(item));
}

Note that you will need to add an import to android.net.Uri to get this to
compile cleanly.

In the new code, we check to see if there is a phone number. If so, we wrap
the phone number in a tel: Uri, then put that in an ACTION_DIAL Intent and
start an activity on that Intent. This puts the phone number in the dialer.

446

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

If you rebuild and reinstall the application on a device and try out the new
menu choice on some restaurant with a phone number, you will see the
Dialer appear:

Figure 109. The Dialer

Step #8: Make the Call

Suppose we want to take advantage of the CALL_PHONE permission we
requested earlier in this tutorial. Simply switch your Intent from
ACTION_DIAL to ACTION_CALL. Now, if you rebuild and reinstall the application,
and try choosing the Call option menu item, you will immediately "call" the
phone number...which will actually place a phone call if you are trying this
on a device. The emulator, of course, cannot place phone calls.

The DetailFragment implementation you should wind up with, in the end,
should look a bit like:

package apt.tutorial;

447

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.net.ConnectivityManager;
import android.net.NetworkInfo;
import android.net.Uri;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.TextView;
import android.widget.Toast;

public class DetailFragment extends Fragment {
 private static final String ARG_REST_ID="apt.tutorial.ARG_REST_ID";
 EditText name=null;
 EditText address=null;
 EditText phone=null;
 EditText notes=null;
 EditText feed=null;
 RadioGroup types=null;
 RestaurantHelper helper=null;
 String restaurantId=null;
 TextView location=null;
 LocationManager locMgr=null;
 double latitude=0.0d;
 double longitude=0.0d;

 public static DetailFragment newInstance(long id) {
 DetailFragment result=new DetailFragment();
 Bundle args=new Bundle();

 args.putString(ARG_REST_ID, String.valueOf(id));
 result.setArguments(args);

 return(result);
 }

 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 setHasOptionsMenu(true);
 }

448

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return(inflater.inflate(R.layout.detail_form, container, false));
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 locMgr=(LocationManager)getActivity().
 getSystemService(Context.LOCATION_SERVICE);

 name=(EditText)getView().findViewById(R.id.name);
 address=(EditText)getView().findViewById(R.id.addr);
 phone=(EditText)getView().findViewById(R.id.phone);
 notes=(EditText)getView().findViewById(R.id.notes);
 types=(RadioGroup)getView().findViewById(R.id.types);
 feed=(EditText)getView().findViewById(R.id.feed);
 location=(TextView)getView().findViewById(R.id.location);

 Bundle args=getArguments();

 if (args!=null) {
 loadRestaurant(args.getString(ARG_REST_ID));
 }
 }

 @Override
 public void onPause() {
 save();
 getHelper().close();
 locMgr.removeUpdates(onLocationChange);

 super.onPause();
 }

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 inflater.inflate(R.menu.details_option, menu);
 }

 @Override
 public void onPrepareOptionsMenu(Menu menu) {
 if (restaurantId==null) {
 menu.findItem(R.id.location).setEnabled(false);
 menu.findItem(R.id.map).setEnabled(false);
 }

 if (isTelephonyAvailable()) {
 menu.findItem(R.id.call).setEnabled(true);
 }
 }

449

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId()==R.id.feed) {
 if (isNetworkAvailable()) {
 Intent i=new Intent(getActivity(), FeedActivity.class);

 i.putExtra(FeedActivity.FEED_URL, feed.getText().toString());
 startActivity(i);
 }
 else {
 Toast
 .makeText(getActivity(), "Sorry, the Internet is not available",
 Toast.LENGTH_LONG)
 .show();
 }

 return(true);
 }
 else if (item.getItemId()==R.id.location) {
 locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 0, 0, onLocationChange);

 return(true);
 }
 else if (item.getItemId()==R.id.map) {
 Intent i=new Intent(getActivity(), RestaurantMap.class);

 i.putExtra(RestaurantMap.EXTRA_LATITUDE, latitude);
 i.putExtra(RestaurantMap.EXTRA_LONGITUDE, longitude);
 i.putExtra(RestaurantMap.EXTRA_NAME, name.getText().toString());

 startActivity(i);

 return(true);
 }
 else if (item.getItemId()==R.id.call) {
 String toDial="tel:"+phone.getText().toString();

 if (toDial.length()>4) {
 startActivity(new Intent(Intent.ACTION_DIAL,
 Uri.parse(toDial)));
 }
 }
 else if (item.getItemId()==R.id.help) {
 startActivity(new Intent(getActivity(), HelpPage.class));
 }

 return(super.onOptionsItemSelected(item));
 }

 public void loadRestaurant(String restaurantId) {
 this.restaurantId=restaurantId;

 if (restaurantId!=null) {

450

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

 load();
 }
 }

 private boolean isNetworkAvailable() {
 ConnectivityManager cm=(ConnectivityManager)getActivity().
 getSystemService(Context.CONNECT
IVITY_SERVICE);
 NetworkInfo info=cm.getActiveNetworkInfo();

 return(info!=null);
 }

 private boolean isTelephonyAvailable() {
 return(getActivity()
 .getPackageManager()
 .hasSystemFeature("android.hardware.telephony"));
 }

 private RestaurantHelper getHelper() {
 if (helper==null) {
 helper=new RestaurantHelper(getActivity());
 }

 return(helper);
 }

 private void load() {
 Cursor c=getHelper().getById(restaurantId);

 c.moveToFirst();
 name.setText(getHelper().getName(c));
 address.setText(getHelper().getAddress(c));
 phone.setText(getHelper().getPhone(c));
 notes.setText(getHelper().getNotes(c));
 feed.setText(getHelper().getFeed(c));

 if (getHelper().getType(c).equals("sit_down")) {
 types.check(R.id.sit_down);
 }
 else if (getHelper().getType(c).equals("take_out")) {
 types.check(R.id.take_out);
 }
 else {
 types.check(R.id.delivery);
 }

 latitude=getHelper().getLatitude(c);
 longitude=getHelper().getLongitude(c);

 location.setText(String.valueOf(latitude)
 +", "
 +String.valueOf(longitude));

451

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

 c.close();
 }

 private void save() {
 if (name.getText().toString().length()>0) {
 String type=null;

 switch (types.getCheckedRadioButtonId()) {
 case R.id.sit_down:
 type="sit_down";
 break;
 case R.id.take_out:
 type="take_out";
 break;
 default:
 type="delivery";
 break;
 }

 if (restaurantId==null) {
 getHelper().insert(name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString(),
 phone.getText().toString());
 }
 else {
 getHelper().update(restaurantId, name.getText().toString(),
 address.getText().toString(), type,
 notes.getText().toString(),
 feed.getText().toString(),
 phone.getText().toString());
 }
 }
 }

 LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location fix) {
 getHelper().updateLocation(restaurantId, fix.getLatitude(),
 fix.getLongitude());
 location.setText(String.valueOf(fix.getLatitude())
 +", "
 +String.valueOf(fix.getLongitude()));
 locMgr.removeUpdates(onLocationChange);

 Toast
 .makeText(getActivity(), "Location saved",
 Toast.LENGTH_LONG)
 .show();
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

452

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Asking Permission to Place a Call

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };
}

Extra Credit

Here are some things you can try beyond those step-by-step instructions:

• Add a preference to display the phone number instead of the
address in the restaurant list. Have the list detect the preference
and fill in the second line of the restaurant rows accordingly.

• Push your APK file to a Web site that is configured to support the
proper MIME type for Android application downloads (e.g.,
Amazon S3). Try installing your APK onto a device from the
published location, to see how your requested permission appears
to end users at install time.

Further Reading

Permissions in general are covered in the "Requesting and Requiring
Permissions" chapter of The Busy Coder's Guide to Android Development.
Working with the telephony features of Android is briefly covered in the
"Handling Telephone Calls" chapter of the same book.

453

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://commonsware.com/Android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

APPENDIX A

How To Get Started

Let us get you set up with the pieces and parts necessary to build an
Android app.

NOTE: the instructions presented here are accurate as of the time of this
writing. However, the tools change rapidly, and so these instructions may
be out of date by the time you read this. Please refer to the Android
Developers Web site for current instructions, using this as a base guideline
of what to expect.

Java

When you write Android applications, you typically write them in Java
source code. That Java source code is then turned into the stuff that
Android actually runs (Dalvik bytecode in an APK file).

Hence, the first thing you need to do is get set up with a Java development
environment and be ready to start writing Java classes.

Step #1: Install the JDK

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK).
You can obtain this from the Oracle Java Web site for Windows and Linux,
and presumably from Apple for OS X. The plain JDK (sans any "bundles")

455

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.oracle.com/technetwork/java/index.html
http://developer.android.com/
http://developer.android.com/

How To Get Started

should suffice. Follow the instructions supplied by Oracle or Apple for
installing it on your machine. At the time of this writing, Android supports
Java 5 and Java 6. Note that Android does not support Java 7.

Alternative Java Compilers

In principle, you are supposed to use the official Sun/Oracle Java SE SDK.
In practice, it appears that OpenJDK also works, at least on Ubuntu.
However, the further removed you get from the official Sun/Oracle
implementation, the less likely it is that it will work. For example, the GNU
Compiler for Java (GCJ) may not work with Android.

Step #2: Learn Java

This book, like most books and documentation on Android, assumes that
you have basic Java programming experience. If you lack this, you really
should consider spending a bit of time on Java fundamentals, before you
dive into Android. Otherwise, you may find the experience to be
frustrating.

If you are in need of a crash course in Java to get involved in Android
development, here are the concepts you need to succeed, presented in no
particular order:

• Language fundamentals (flow control, etc.)

• Classes and objects

• Methods and data members

• Public, private, and protected

• Static and instance scope

• Exceptions

• Threads and concurrency control

• Collections

• Generics

456

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

• File I/O

• Reflection

• Interfaces

Install the Android SDK

The Android SDK gives you all the tools you need to create and test
Android applications. It comes in two parts: the base tools, plus version-
specific SDKs and related add-ons.

Step #1: Install the Base Tools

The Android developer tools can be found on the Android Developers Web
site. Download the ZIP file appropriate for your platform and unZIP it in
some likely spot – there is no specific path that is required. Windows users
also have the option of running a self-installing EXE file.

Step #2: Install the SDKs and Add-Ons

Inside the tools/ directory of your Android SDK installation from the
previous step, you will see an android batch file or shell script. If you run
that, you will be presented with the Android SDK and AVD Manager:

457

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

How To Get Started

Figure 110. Android SDK and AVD Manager

At this point, while you have some of the build tools, you lack the Java files
necessary to compile an Android application. You also lack a few additional
build tools, plus the files necessary to run an Android emulator.

To address this, click on the Available Packages option on the left. This
brings up a tree:

Figure 111. Android SDK and AVD Manager Available Packages

458

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Open the Android Repository branch of the tree. After a short pause, you
will see a screen similar to this:

Figure 112. Android SDK and AVD Manager Available Android Packages

You will want to check the following items:

• "SDK Platform" for all Android SDK releases you want to test
against – for this book API 8 (Android 2.2) is recommended

• "Documentation for Android SDK" for the latest Android SDK
release

• "Samples for SDK" for the latest Android SDK release, and perhaps
for older releases if you wish

Then, open the Third-Party Add-Ons branch of the tree. After a short
pause, you will see a screen similar to this:

459

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 113. Android SDK and AVD Manager Available Third-Party Add-Ons

Fold open the "Google Inc. add-ons" branch, which will display something
like this:

Figure 114. Android SDK and AVD Manager Available Google Add-Ons

Most likely, you will want to check the "Google APIs by Google Inc." items
that match up with the SDK versions you selected in the Android
Repository branch. The "Google APIs" include support for Google Maps,
both from your code and in the Android emulator.

460

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

When you have checked all of the items you want to download, click the
Install Selected button, which brings up a license confirmation dialog:

Figure 115. Android SDK and AVD Manger Installing Packages

Review and accept the licenses, then click the Install button. At this point,
this is a fine time to go get lunch. Or, perhaps dinner. Unless you have a
substantial Internet connection, downloading all of this data and
unpacking it will take a fair bit of time.

When the download is complete, you can close up the SDK and AVD
Manager if you wish, though we will use it to set up the emulator in a later
step of this chapter.

Install the ADT for Eclipse

If you will not be using Eclipse for your Android development, you can skip
to the next section.

If you have not yet installed Eclipse, you will need to do that first. Eclipse
can be downloaded from the Eclipse Web site. The "Eclipse IDE for Java
Developers" package will work fine.

461

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://www.eclipse.org/downloads/

How To Get Started

Next, you need to install the Android Developer Tools (ADT) plug-in. To do
this, go to Help | Install New Software... in the Eclipse main menu. Then,
click the Add button to add a new source of plug-ins. Give it some name
(e.g., Android) and supply the following URL: https://dl-
ssl.google.com/android/eclipse/. That should trigger Eclipse to download
the roster of plug-ins available from that site:

Figure 116. Eclipse ADT plug-in installation

Check the checkbox to the left of "Developer Tools" and click the Next
button. Follow the rest of the wizard to review the tools to be downloaded
and their respective license agreements. When the Finish button is
enabled, click it, and Eclipse will download and install the plug-ins. When
done, Eclipse will ask to restart – please let it.

Then, you need to teach ADT where your Android SDK installation is from
the preceding section. To do this, choose Window | Preferences from the

462

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Eclipse main menu (or the equivalent Preferences option for OS X). Click
on the Android entry in the list on the left:

Figure 117. Eclipse ADT configuration

Then, click the Browse... button to find the directory where you installed
the SDK. After choosing it, click Apply on the Preferences window, and you
should see the Android SDK versions you installed previously. Then, click
OK, and the ADT will be ready for use.

You may also wish to read the appendix with tips on working with the
tutorials in Eclipse.

Install Apache Ant

If you will be doing all of your development from Eclipse, you can skip to
the next section.

463

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

If you wish to develop using command-line build tools, you will need to
install Apache Ant. You may have this already from previous Java
development work, as it is fairly common in Java projects. However, you
will need Ant version 1.8.1, so double-check your current copy (e.g., ant
-version) to ensure you are on the proper edition.

If you do not have Ant, you can obtain it from the Apache Ant Web site.
They have full installation instructions in the Ant manual, but the basic
steps are:

1. Unpack the ZIP archive wherever it may make sense on your
machine

2. Add a JAVA_HOME environment variable, pointing to where your JDK
is installed, if you do not have one already

3. Add an ANT_HOME environment variable, pointing to the directory
where you unpacked Ant in the first step above

4. Add $JAVA_HOME/bin and $ANT_HOME/bin to your PATH

5. Run ant -version to confirm that Ant is installed properly

Set Up the Emulator

The Android tools include an emulator, a piece of software that pretends to
be an Android device. This is very useful for development – not only does it
mean you can get started on Android without a device, but the emulator
can help test device configurations that you do not own.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an "Android Virtual Device", or AVD.
The SDK and AVD Manager, which you used to download the SDK
components earlier in this chapter, is where you create these AVDs.

If you do not have the SDK and AVD Manager running, you can run it via
the android command from your SDK's tools/ directory, or via Window |
SDK and AVD Manager from Eclipse. It starts up on a screen listing the
AVDs you have available – initially, the list will be empty:

464

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://ant.apache.org/manual/installlist.html
http://ant.apache.org/bindownload.cgi

How To Get Started

Figure 118. Android SDK and AVD Manager

Click the New... button to create a new AVD file. This brings up a dialog
where you can configure what this AVD should look and work like:

Figure 119. Adding a New AVD

465

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

You need to provide the following:

• A name for the AVD. Since the name goes into files on your
development machine, you will be limited by filename conventions
for your operating system (e.g., no backslashes on Windows).

• The Android version you want the emulator to run (a.k.a., the
"target"). Choose one of the SDKs you installed via the drop-down
list. Note that in addition to "pure" Android environments, you will
have options based on the third-party add-ons you selected. For
example, you probably have some options for setting up AVDs
containing the Google APIs, and you will need such an AVD for
testing an application that uses Google Maps.

• Details about the SD card the emulator should emulate. Since
Android devices invariably have some form of "external storage",
you probably want to set up an SD card, by supplying a size in the
associated field. However, since a file will be created on your
development machine of whatever size you specify for the card, you
probably do not want to create a 2GB emulated SD card. 32MB is a
nice starting point, though you can go larger if needed.

• The "skin" or resolution the emulator should run in. The skin
options you have will depend upon what target you chose. The skins
let you choose a typical Android screen resolution (e.g., WVGA800
for 800x480). You can also manually specify a resolution when you
want to test a non-standard configuration.

You can skip the "Hardware" section for now, as changing those settings is
usually only required for advanced configurations.

The resulting dialog might look something like this:

466

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 120. Adding a New AVD (continued)

Click the Create AVD button, and your AVD stub will be created.

To start the emulator, highlight it in the list and click Start... You can skip
the launch options for now and just click Launch. The first time you launch
a new AVD, it will take a long time to start up. The second and subsequent
times you start the AVD, it will come up a bit faster, and usually you only
need to start it up once per day (e.g., when you start development). You do
not need to stop and restart the emulator every time you want to test your
application, in most cases.

The emulator will go through a few startup phases, first with a plain-text
"ANDROID" label:

467

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 121. Android emulator, initial startup segment

...then a graphical Android logo:

468

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 122. Android emulator, secondary startup segment

before eventually landing at the home screen (the first time you run the
AVD, shown below) or the keyguard:

469

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 123. Android home screen

If you get the keyguard (shown below), press the MENU button, or slide the
green lock on the screen to the right, to get to the emulator's home screen:

470

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 124. Android keyguard

Set Up the Device

You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an
application (e.g., upload it to the Android Market). And, perhaps you
already have a device – maybe that is what is spurring your interest in
developing for Android.

The first step to make your device ready for use with development is to go
into the Settings application on the device. From there, choose
Applications, then Development. That should give you a set of checkboxes
of development-related options to consider:

471

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

Figure 125. Android device development settings

Generally, you will want to enable USB debugging, so you can use your
device with the Android build tools. You can leave the other settings alone
for now if you wish, though you may find the "Stay awake" option to be
handy, as it saves you from having to unlock your phone all of the time
while it is plugged into USB.

Next, you need to get your development machine set up to talk to your
device. That process varies by the operating system of your development
machine, as is covered in the following sections.

Step #1: Windows

When you first plug in your Android device, Windows will attempt to find a
driver for it. It is possible that, by virtue of other software you have
installed, that the driver is ready for use. If it finds a driver, you are
probably ready to go.

472

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

How To Get Started

If the driver is not found, here are some options for getting one.

Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows
Update for drivers. This is certainly worth a shot, though not every device
will have supplied its driver to Microsoft.

Standard Android Driver

In your Android SDK installation, you will find a google-usb_driver
directory, containing a generic Windows driver for Android devices. You
can try pointing the driver wizard at this directory to see if it thinks this
driver is suitable for your device.

Manufacturer-Supplied Driver

If you still do not have a driver, search the CD that came with the device (if
any) or search the Web site of the device manufacturer. Motorola, for
example, has drivers available for all of their devices in one spot for
download.

Step #2: OS X and Linux

Odds are decent that simply plugging in your device will "just work". You
can see if Android recognizes your device via running adb devices in a shell
(e.g., OS X Terminal), where adb is in your platform-tools/ directory of your
SDK. If you get output similar to the following, Android detected your
device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this
command did not work, you may need to add some udev rules. For example,

473

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.motorola.com/docstools/USB_Drivers/

How To Get Started

here is a 51-android.rules file that will handle the devices from a handful of
manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01",
MODE="0666", OWNER="[me]"
SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, then either
reboot the computer or otherwise reload the udev rules (e.g., sudo service
udev reload). Then, unplug and re-plug in the device and see if it is
detected.

474

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

APPENDIX B

Coping with Eclipse

The author of this book is not an Eclipse user, which is why this book aims
to be agnostic in terms of development tools, unlike many other Android
resources that depict Eclipse as being mandatory.

That being said, Eclipse is a fine tool for Android development, but not
everything may be necessarily obvious. If you elect to use Eclipse, here are
some tips for getting around some of the Android aspects. Note that these
tips are workarounds cobbled together from assisting developers in live
Android training sessions, and so there may be better solutions available
from true Eclipse experts.

How to Import a Non-Eclipse Project

Not all Android projects ship with Eclipse project files, such as the sample
projects associated with this book. However, these can still be easily added
to your Eclipse workspace, if you wish. Here is how to do it!

First, choose File > New > Project... from the Eclipse main menu:

475

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Coping with Eclipse

Figure 126. File menu in Eclipse

Then, choose Android > Android Project from the tree of available project
types:

476

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Coping with Eclipse

Figure 127. New project wizard in Eclipse

Note: if you do not see this option, you have not installed the Android
Developer Tools.

Then, in the next page of the project creation wizard, choose the "Create
project from existing source" radio button, click the [Browse...] button, and
open the directory containing your project's AndroidManifest.xml file. This
will populate most of the rest of this screen, though you may need to also
specify a build target from the table:

477

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Coping with Eclipse

Figure 128. Android project wizard in Eclipse

Then, click [Finish]. This will return you to Eclipse, with the imported
project in your workspace:

478

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Coping with Eclipse

Figure 129. Android project tree in Eclipse

Next, right-click over the project name, and choose Build Path > Configure
Build Path from the context menu:

Figure 130. Project context menu in Eclipse

479

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Coping with Eclipse

This brings up the build path portion of the project properties window:

Figure 131. Project properties window in Eclipse

If the Android JAR is not checked (see the Android 2.2 entry in the above
image), check it, then close the properties window.

Next, click on the Libraries tab, then click Add JAR. This will bring up a file
selection dialog, showing the files in your open projects. In this project's
files, go into the libs/ directory and see if there is anything there. If there
is, choose it and accept the dialog. Repeat this for every JAR in libs/.

At this point, your project should be ready for use.

How to Get To DDMS

Many times, you will be told to take a look at something in DDMS, such as
the LogCat tab to examine Java stack traces. In Eclipse, DDMS is a

480

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Coping with Eclipse

perspective. To open this perspective in your workspace, choose Window >
Open Perspective > Other... from the main menu:

Figure 132. Perspective menu in Eclipse

Then, in the list of perspectives, choose DDMS:

481

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Coping with Eclipse

Figure 133. Perspective roster in Eclipse

This will add the DDMS perspective to your workspace and open it in your
Eclipse IDE.

How to Create an Emulator

By default, your Eclipse environment has no Android emulators set up. You
will need one before you can run your project successfully.

To do this, first choose Window > Android SDK and AVD Manager from the
main menu:

482

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Coping with Eclipse

Figure 134. Android AVD Manager menu option in Eclipse

That brings up the same window as you can get by running android from
the command line.

How to Run a Project

Given that you have an AVD defined, or that you have a device set up for
debugging and connected to your development machine, you can run your
project in the emulator.

First, click the Run toolbar button, or choose Project > Run from the main
menu. This will bring up the "Run As" dialog the first time you run the
project:

483

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Coping with Eclipse

Figure 135. Android AVD Manager menu option in Eclipse

Choose Android Application and click OK. If you have more than one AVD
or device available, you will be presented with a window where you choose
the desired target environment. Then, the emulator will start up to run
your application. Note that you will need to unlock the lock screen on the
emulator (or device) if it is locked.

How Not to Run Your Project

When you go to run your project, be sure to not have an XML file be the
active tab in the editor. Attempting to "run" this will result in a .out file
being created in whatever directory the XML file lives in (e.g.,
res/layout/main.xml.out). To recover, simply delete the offending .out file
and try running again, this time with a Java file as the active tab.

How to Get Past Eclipse

Some people will tell you that the only sensible way to do Android
development is to use Eclipse. These people are sorely mistaken.

484

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Coping with Eclipse

Eclipse – whether with the basic Android add-on or the full-blown
MOTODEV Studio for Android – is a fine Java IDE. It is not the only Java
IDE. And, many developers are able to get by quite nicely without an IDE.

If you are used to using Eclipse, stick with it.

If you are used to working outside of Eclipse, you are welcome to give that a
try and perhaps continue to work outside of Eclipse. There is nothing in
Android development that can only be done with Eclipse. IntelliJ's IDEA,
for example, has Android support as an integrated add-on that ships with
their product, so if you are using IDEA, there is no particular reason to
change. Or, you are welcome to avoid an IDE altogether, as many
developers do, including the author of this book.

Do not be afraid to try Eclipse, but at the same time, do not feel compelled
to use Eclipse.

485

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

http://developer.motorola.com/docstools/motodevstudio/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

Class...

Activity 37, 38, 70, 87, 113, 130, 227, 240, 249, 316,
365, 377, 379, 385, 386

Adapter.......................................83, 357, 364, 365

AdapterView.....................................358, 359, 361

AdapterView.OnItemClickListener.................89

AlarmActivity.......316-319, 321, 326-328, 332, 334,
429-431

AlarmManager.....301, 306, 307, 309-311, 316, 319,
323

AlarmReceiver...427

AlertDialog.................................112, 180, 222, 275

android.preference.PreferenceActivity..........189

AppWidget.................337, 338, 340, 343, 357-359

AppWidgetManager..345

AppWidgetProvider.................................337, 342

ArrayAdapter.......................64, 137, 143, 225, 227

ArrayList.................................64, 91, 140, 144, 145

AsyncTask..................120, 222, 227, 237, 243, 245

AtomicBoolean...122

AutoCompleteTextView...................................67

BaseAdapter..226

BasicResponseHandler....................................222

BroadcastReceiver 307, 308, 311, 316, 317, 319, 337

Build...357

Bundle...............................201, 202, 227, 228, 398

Button.....................14, 25-28, 38, 60, 94, 210, 257

Calendar...310

CheckBoxPreference...............305, 306, 309, 326

ConnectivityManager......................................215

ContentValues..141

Context...377

Criteria...274

Cursor....140, 142-146, 171, 197, 207, 254, 285, 365

CursorAdapter...................................137, 143, 146

DatabaseHelper...365

DatePicker...94

DatePickerDialog..94

DefaultHttpClient....................................222, 223

487

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

DetailForm......153-159, 163-165, 167, 168, 170, 172,
176, 178, 201, 202, 212, 214-216, 257, 263, 266-269,
275, 280, 283, 285, 287, 345, 348, 359, 368, 370,
371, 380, 384-386, 393, 397, 398, 400, 405, 444

DetailFragment.......385-388, 393-400, 406, 407,
409, 410, 414, 440, 441, 444, 445, 447

DetailsForm...249, 266

Dialer...447

DialogFragment...415

DialogPreference.....................................302, 305

Drawable..292, 293

EditPreferences....189-193, 302, 306, 312, 314, 326

EditText....14, 20, 21, 24, 25, 37, 38, 45-47, 67, 83,
97, 99, 110, 134, 210, 212, 441

EditTextPreference..322

ErrorDialog...112

Exception..222, 225, 241

FakeJob... 120

FeedActivity.......216, 220-222, 224-230, 233, 234,
240, 243-245, 248, 249

FeedAdapter..226, 229

FeedHandler..243, 244

FeedService...............238-240, 242-244, 248, 249

FeedTask.....221, 222, 224, 225, 227-229, 239, 243,
244

Fragment..................................379, 384, 386, 393

FragmentActivity..385

FragmentManager..407

FragmentTransaction..............................407, 410

FrameLayout.85, 87, 159, 160, 162, 396, 397, 406,
407

Geocoder..275

GeoPoint...291, 292

Handler.....................................120, 222, 240, 243

HelpPage..413-415

HttpClient..223

HttpGet..222

ImageButton.............................336, 337, 346, 348

ImageView...73, 75, 79

InstanceState...........................228, 229, 243, 244

Intent...156, 163-165, 229, 240, 241, 248, 277, 285,
286, 317, 340, 360, 400, 446, 447

IntentService.....................237-239, 248, 342, 343

ItemizedOverlay......................................284, 292

KillJob... 120

LinearLayout..14, 17, 20-22, 25, 39, 41, 42, 45, 46,
71, 73, 75, 76, 134, 260, 262

LinkedBlockingQueue.....................................120

List... 143, 225

ListActivity..........159, 162-164, 205, 220, 377, 385

ListAdapter..69

ListFragment....................................377, 386, 410

ListPreference..184

ListView.....59, 61, 63, 64, 67, 69, 85, 89, 159-163,
225, 229, 234, 336, 351, 353-355, 357-359, 370,
371, 386, 410

ListViewsFactory..............................361, 363, 364

ListWidgetService...........................359, 360, 362

LocationListener.....................................267, 268

LocationManager.....................................251, 266

LunchFragment........377, 380, 384-386, 394-397,
408, 410, 414

LunchList...xxv, 37, 59, 64, 70, 79, 80, 87, 89, 91,
98, 99, 103, 105, 106, 113, 115, 116, 122, 125, 131, 132,
137, 139-141, 143-146, 154-156, 158, 159, 163-165,
167, 168, 171, 174, 176, 192, 196, 275, 335, 336, 347,
351, 357, 371, 377, 380, 384, 385, 395, 397-399,
406, 407, 410, 411, 417, 418, 426

MapActivity..............................277, 281, 282, 298

488

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

MapController...291

MapView...277, 284, 291

MediaPlayer...430

MenuInflater..214, 379

Message..241, 243

Messenger.................................240, 241, 243, 248

Notification.325-328, 330-332, 334, 421, 427, 428,
430

NotificationManager...............................325, 328

OnAlarmReceiver. .311, 315-317, 319, 327, 328, 332

OnBootReceiver.................................307-312, 314

OnItemClickListener......................................257

OnRestaurantListener.............................380, 385

OnSharedPreferenceChangeListener......312, 314

Overlay..292

OverlayItem...292-294

PackageManager......................................314, 444

Parcelable..240

PendingIntent.....248, 311, 316, 319, 328, 345, 346,
359, 365

Preference..304

PreferenceActivity....................................183, 189

PreferenceScreen......................................183, 188

ProgressBar...113

RadioButton......................................48, 51-54, 56

RadioGroup...............................50, 51, 53, 56, 259

RelativeLayout................................61, 63, 85, 337

RemoteViews...................................345, 359, 365

RemoteViewsFactory.......................361, 362, 364

RemoteViewsService................................359, 361

Restaurant..................................36, 104, 380, 384

RestaurantAdapter...70, 78, 80, 141, 143, 144, 163,
379

RestaurantHelper.138, 140-142, 145, 149, 165, 168,
178, 195, 197, 205-207, 212, 252-254, 263, 268,
299, 435, 436, 438

RestaurantHolder................................69, 80, 144

RestaurantMap..................282-285, 291-294, 299

RestaurantOverlay..................................292, 293

ResultReceiver...249

RingtonePreference..425

RSSFeed.............................225, 228, 229, 240, 241

RSSItem..227

RSSReader..225, 240, 245

Runnable.......................................115, 118, 122, 139

ScrollView......................................56, 110, 112, 157

Service..238, 365

SharedPreferences....188, 189, 196, 302, 304, 305,
310, 312-314, 326, 328

Spinner..67

SQLiteDatabase...141, 142

SQLiteOpenHelper..137

StackView..370

String..................................97, 164, 240, 285, 305

TabActivity...87, 163

TabHost...85, 87

TableLayout.41, 42, 45, 46, 49, 53, 57, 63, 99, 112,
210, 212, 259, 440

TableRow........................45, 46, 99, 210, 258, 259

TabView...85

TabWidget...85

TextView...14, 17, 18, 20, 22-24, 38, 49, 75, 76, 79,
160-162, 258-260, 262, 263, 285, 337, 345, 348

Thread...120, 122

489

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

TimePicker.......................................304, 305, 320

TimePreference.................302, 304-306, 320, 322

Toast......97, 104, 105, 112, 216, 234, 268, 274, 294,
297, 336, 349

ToneGenerator...431

tools/...464

TypedArray..305

Uri..428, 446

Vibrator..322

View...143, 159, 304, 365

View.OnClickListener.......................................38

ViewFlipper...94

WebView..411, 416

WebViewClient..415

WidgetService...................................343, 345-347

Command......................................

adb devices..473

adb logcat...48, 418

adb pull...151

adb shell..151

android.....................................352, 376, 457, 483

android list targets..4

android update project -pxix

ant -version...464

ant clean..48

ant install...38, 48

ant reinstall...56

cron..306

jarsigner...278

keytool...278

pdftk *.pdf cat output combined.pdf..............xvi

sqlite3.. 151

sudo service udev reload................................474

Method...

add()..64

addView()..56

attach()...227, 243

bindView()...143

boundCenterBottom()....................................292

cancelAlarm()..311, 314

detach()..227, 243

doInBackground()............222, 223, 225, 239, 243

doSomeLongWork()...........................115, 118, 139

findFragmentById()..407

findViewById()...38, 212

finish()..168, 257

getActiveNetworkInfo()..................................215

getActivity()......................319, 328, 377, 379, 386

getAll().........144, 195-197, 206, 207, 253, 254, 437

getArguments()...398

getById()...........................206, 207, 253, 254, 437

getCheckedRadioButtonId()............................56

getCount()...227, 364

getFeed()..207

getFragmentManager()..................................407

getHelper()..399

getHour()...304

getItem()..227, 293

getItemId()...227, 365

490

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

getItems()..225

getItemViewType()...83

getLastNonConfigurationInstance().....227, 229,
244

getLayoutInflater()..379

getMinute()...304

getPendingIntent()...311

getPhone()...438

getSupportFragmentManager().....................407

getSystemService()....................215, 266, 310, 328

getTag()...80

getView()....................................80, 143, 227, 365

getViewAt()...365

getViewTypeCount()...83

getWritableDatabase().....................................141

goBlooey()..222, 243

handleMessage().....................................240, 243

hasSystemFeature()..444

initList()..197, 198, 378

insert()..................141, 142, 146, 206, 212, 253, 436

isNetworkAvailable()...............................215, 386

isRouteDisplayed()...282

isTelephonyAvailable()...................................444

load()..165, 212, 263, 285

loadRestaurant().............................398, 400, 407

newInstance()...399, 407

newView()..143

notify()...328

onActivityCreated()................................387, 398

onBindDialogView()...............................304, 305

onClick()..61, 90, 212, 257

onCreate()....70, 87, 89, 90, 99, 113, 120, 130, 136,
138-140, 144, 154, 157, 158, 163-165, 196, 197, 202,
206, 212, 227, 229, 244, 252, 263, 266, 282, 291,
293, 299, 365, 378, 385-387, 435, 436

onCreateDialogView()....................................304

onCreateOptionMenu()..................................167

onCreateOptionsMenu(). .139, 214, 275, 379, 387

onCreateView().......................................386, 387

onDestroy().......................140, 165, 365, 378, 388

onDialogClosed()..304

onGetDefaultValue().......................................305

onGetViewFactory()..361

onHandleIntent()............................238-240, 248

onHCUpdate()...357, 358

onItemClick()...91

onListItemClick()....................................164, 380

onLocationChanged().....................................267

onOptionsItemSelected(). . .105, 116, 117, 139, 167,
192, 214-216, 266, 283, 285, 286, 377, 414, 445

onPause()....122, 123, 139, 257, 268, 314, 378, 388,
430

onPostExecute().......................225, 227, 229, 243

onPrepared()...430

onPrepareOptionsMenu().....234, 269, 275, 280,
387, 445

onReceive().........................307, 310, 312, 327, 427

onRestaurantSelected()..................385, 397, 406

onRestoreInstanceState()...............202, 204, 227

onResume(). 122, 123, 139, 198, 314, 378, 387, 399,
400

onRetainNonConfigurationInstance()..204, 227,
229, 244

onSaveInstanceState()......130, 136, 201, 202, 204,
227

onSetInitialValue()..305

491

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

Keyword Index

onSharedPreferenceChanged().......................314

onStart()... 130

onStop()..130

onTap()..293

onUpdate()................................337, 342, 343, 357

onUpgrade()......................138, 139, 206, 252, 436

populate()..292

prepareAsync()..430

rawQuery()...142

registerOnSharedPreferenceChangeListener()
..314

requestLocationUpdates()......................266, 267

requestWindowFeature()................................139

runOnUiThread()...118

save()..168, 257

send()..241, 248

setAlarm()...310, 314

setComponentEnabledSetting().....................314

setContentView(). .90, 114, 140, 154, 157, 385, 430

setDataSource()..430

setFeed()...225, 229, 243

setHasOptionsMenu()....................................378

setLatestEventInfo().......................................328

setListAdapter()...163

setOnClickFillInIntent().................................365

setOnItemClickListener()................................89

setOnRestaurantListener()............................380

setRepeating()..310

setTag()..80

shouldOverrideUrlLoading()..........................415

size()..292

sleep()..248

start()...430

startActivity().....156, 180, 283, 317, 319, 327, 328,
397

startManagingCursor()............................144, 378

startService()...244, 343

startWork()..123, 139

stopManagingCursor()............................197, 378

toString()..61

update().............................168, 206, 212, 253, 437

updateLocation().....................................253, 268

492

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 3.0 License Edition

	Android Programming Tutorials

	Welcome to the Book!
	Prerequisites
	Getting Help
	Using the Tutorials
	This Book and Eclipse
	Warescription
	What's New
	About the "Further Reading" Sections
	Errata and Book Bug Bounty
	Source Code License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Lifecycle of a CommonsWare Book
	Roster of Tutorials
	Your First Android Project
	Step #1: Create the New Project
	Step #1: Eclipse
	Step #2: Command Line

	Step #2: Build, Install, and Run the Application in Your Emulator or Device
	Step #1: Eclipse
	Step #2: Outside of Eclipse

	A Simple Form
	Step-By-Step Instructions
	Step #1: Generate the Application Skeleton
	Step #2: Modify the Layout
	Step #3: Support All Screen Sizes
	Step #4: Run the Application
	Step #5: Create a Model Class
	Step #6: Save the Form to the Model

	Extra Credit
	Further Reading

	A Fancier Form
	Step-By-Step Instructions
	Step #1: Switch to a TableLayout
	Step #2: Add a RadioGroup
	Step #3: Update the Model
	Step #4: Save the Type to the Model

	Extra Credit
	Further Reading

	Adding a List
	Step-By-Step Instructions
	Step #1: Hold a List of Restaurants
	Step #2: Save Adds to List
	Step #3: Implement toString()
	Step #4: Add a ListView Widget
	Step #5: Build and Attach the Adapter

	Extra Credit
	Further Reading

	Making A More Elaborate List
	Step-By-Step Instructions
	Step #1: Create a Stub Custom Adapter
	Step #2: Design Our Row
	Step #3: Override getView(): The Simple Way
	Step #4: Create a RestaurantHolder
	Step #5: Recycle Rows via RestaurantHolder

	Extra Credit
	Further Reading

	Splitting the Tab
	Step-By-Step Instructions
	Step #1: Rework the Layout
	Step #2: Wire In the Tabs
	Step #3: Get Control On List Events
	Step #4: Update Our Restaurant Form On Clicks
	Step #5: Switch Tabs On Clicks

	Extra Credit
	Further Reading

	Menus and Messages
	Step-By-Step Instructions
	Step #1: Add Notes to the Restaurant
	Step #2: Add Notes to the Detail Form
	Step #3: Define the Options Menu
	Step #4: Support the Options Menu
	Step #5: Show the Notes as a Toast
	Step #6: Add a ScrollView

	Extra Credit
	Further Reading

	Sitting in the Background
	Step-By-Step Instructions
	Step #1: Initialize the Progress Bar
	Step #2: Create the Work Method
	Step #3: Fork the Thread from the Menu
	Step #4: Manage the Progress Bar

	Extra Credit
	Further Reading

	Life and Times
	Step-By-Step Instructions
	Step #1: Lengthen the Background Work
	Step #2: Pause in onPause()
	Step #3: Resume in onResume()

	Extra Credit
	Further Reading

	A Few Good Resources
	Step-By-Step Instructions
	Step #1: Review our Current Resources
	Step #2: Create a Landscape Layout

	Extra Credit
	Further Reading

	The Restaurant Store
	Step-By-Step Instructions
	Step #1: Create a Stub SQLiteOpenHelper
	Step #2: Manage our Schema
	Step #3: Remove Extraneous Code from LunchList
	Step #4: Get Access to the Helper
	Step #5: Save a Restaurant to the Database
	Step #6: Get the List of Restaurants from the Database
	Step #7: Change our Adapter and Wrapper
	Step #8: Clean Up Lingering ArrayList References
	Step #9: Refresh Our List

	Extra Credit
	Further Reading

	Getting More Active
	Step-By-Step Instructions
	Step #1: Create a Stub Activity
	Step #2: Launch the Stub Activity on List Click
	Step #3: Move the Detail Form Layout
	Step #4: Move the Detail Form Code
	Step #5: Clean Up the Original Layout
	Step #6: Clean Up the Original Code
	Step #7: Pass the Restaurant _ID
	Step #8: Load the Restaurant Into the Form
	Step #9: Add an "Add" Menu Option
	Step #10: Detail Form Supports Add and Edit

	Extra Credit
	Further Reading

	What's Your Preference?
	Step-By-Step Instructions
	Step #1: Define the Preference XML
	Step #2: Create the Preference Activity
	Step #3: Connect the Preference Activity to the Option Menu
	Step #4: Apply the Sort Order on Startup
	Step #5: Listen for Preference Changes
	Step #6: Re-Apply the Sort Order on Changes

	Extra Credit
	Further Reading

	Turn, Turn, Turn
	Step-By-Step Instructions
	Step #1: Add a Stub onSaveInstanceState()
	Step #2: Pour the Form Into the Bundle
	Step #3: Repopulate the Form
	Step #4: Fix Up the Landscape Detail Form

	Extra Credit
	Further Reading

	Feeding at Lunch
	Step-By-Step Instructions
	Step #1: Add a Feed URL to the Data Model
	Step #2: Update the Detail Form
	Step #3: Add a Feed Options Menu Item
	Step #4: Add Permissions and Check Connectivity
	Step #5: Fetch the Feed
	Step #6: Install the RSS Library
	Step #7: Fetch and Parse the Feed (For Real This Time)
	Step #8: Display the Feed Items

	Extra Credit
	Further Reading

	Serving Up Lunch
	Step-By-Step Instructions
	Step #1: Create and Register a Stub IntentService
	Step #2: Move Feed Fetching and Parsing to the Service
	Step #3: Send the Feed to the Activity
	Step #4: Display the Feed Items, Redux

	Extra Credit
	Further Reading

	Locating Lunch
	Step-By-Step Instructions
	Step #1: Add Latitude and Longitude to the Data Model
	Step #2: Save the Restaurant in onPause()
	Step #3: Add a TextView and Options Menu Item for Location
	Step #4: Update the Permissions
	Step #5: Find Our Location Using GPS
	Step #6: Only Enable Options Menu Item If Saved

	Extra Credit
	Further Reading

	Putting Lunch on the Map
	Step-By-Step Instructions
	Step #1: Make Sure You Are Ready
	Step #2: Add an Options Menu Item for Map
	Step #3: Create and Use a MapActivity
	Step #4: Create an ItemizedOverlay
	Step #5: Handle Marker Taps

	Extra Credit
	Further Reading

	Is It Lunchtime Yet?
	Step-By-Step Instructions
	Step #1: Create a TimePreference
	Step #2: Collect Alarm Preferences
	Step #3: Set Up a Boot-Time Receiver
	Step #4: Manage Preference Changes
	Step #5: Display the Alarm

	Extra Credit
	Further Reading

	More Subtle Lunch Alarms
	Step-By-Step Instructions
	Step #1: Collect Alarm Style Preference
	Step #2: Display the Alarm, Redux

	Extra Credit
	Further Reading

	A Restaurant In Your Own Home
	Step-By-Step Instructions
	Step #1: Find An App Widget Background and Some Icons
	Step #2: Design the App Widget Layout
	Step #3: Add an (Empty) AppWidgetProvider
	Step #4: Add the Widget Metadata
	Step #5: Update the Manifest
	Step #6: Delegate to an IntentService
	Step #7: Show a Random Restaurant

	Extra Credit
	Further Reading

	A Lunch *List* At Home
	Step-By-Step Instructions
	Step #1: Update Your Build Environment
	Step #2: Update Your Provider and Widget Layout XML
	Step #3: Detect Which App Widget To Display
	Step #4: Implement and Connect to the RemoteViewsService
	Step #5: Implement the RemoteViewsFactory
	Step #6: Set Up the Preview Image

	Extra Credit
	Further Reading

	A Fragment of Lunch at the Action Bar
	Step-By-Step Instructions
	Step #1: Set the Proper Target
	Step #2: Promote "Add" to the Action Bar
	Step #3: Add the ACL
	Step #4: Split LunchList Into a Fragment
	Step #5: Split DetailForm Into a Fragment

	Extra Credit
	Further Reading

	Lunches, Large and Small
	Step-By-Step Instructions
	Step #1: Add a Large Landscape Layout
	Step #2: Detect Large Landscape Mode
	Step #3: Pass the Restaurant ID to DetailFragment
	Step #4: Dynamically Add DetailFragment

	Extra Credit
	Further Reading

	Getting Some Help With Lunch
	Step-By-Step Instructions
	Step #1: Draft and Package the Help HTML
	Step #2: Create a Help Activity
	Step #3: Splice In the Help Activity

	Extra Credit
	Further Reading

	Take a Monkey to Lunch
	Step-By-Step Instructions
	Step #1: Prep LunchList
	Step #2: Run the Monkey

	Extra Credit
	Further Reading

	Ringing the Lunch Bell
	Step-By-Step Instructions
	Step #1: Add a Ringtone to the Emulator
	Step #2: Set the Alarm Volume
	Step #3: Add a RingtonePreference
	Step #4: Play the Ringtone... with the Notification
	Step #5: Play the Ringtone... with the Activity

	Extra Credit
	Further Reading

	Asking Permission to Place a Call
	Step-By-Step Instructions
	Step #1: Add a Phone Number to the Database Schema
	Step #2: Intelligently Handle Database Updates
	Step #3: Add Phone Number Support to the Rest of the Helper
	Step #4: Collect the Phone Number on the Detail Form
	Step #5: Ask for Permission to Make Calls
	Step #6: See If We Have Telephony
	Step #7: Dial the Number
	Step #8: Make the Call

	Extra Credit
	Further Reading

	How To Get Started
	Java
	Step #1: Install the JDK
	Step #2: Learn Java

	Install the Android SDK
	Step #1: Install the Base Tools
	Step #2: Install the SDKs and Add-Ons

	Install the ADT for Eclipse
	Install Apache Ant
	Set Up the Emulator
	Set Up the Device
	Step #1: Windows
	Step #2: OS X and Linux

	Coping with Eclipse
	How to Import a Non-Eclipse Project
	How to Get To DDMS
	How to Create an Emulator
	How to Run a Project
	How Not to Run Your Project
	How to Get Past Eclipse

