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Abstract

In many theorem proving applications, a proper treatment of equational theories
or equality is mandatory. In this paper we show how to integrate a modern treat-
ment of equality in the Model Evolution calculus (ME), a first-order version of the
propositional DPLL procedure. The new calculus, MEE, is a proper extension of the
ME calculus without equality. Like ME it maintains an explicit candidate model,
which is searched for by DPLL-style splitting. For equational reasoning MEE uses
an adapted version of the ordered paramodulation inference rule, where equations
used for paramodulation are drawn (only) from the candidate model. The calculus
also features a generic, semantically justified simplification rule which covers many
simplification techniques known from superposition-style theorem proving. Our
main result is the correctness of the MEE calculus in the presence of very general
redundancy elimination criteria.

1 Introduction

The Model Evolution (ME) Calculus [BT03a] has recently been introduced by the au-
thors of this paper as a first-order version of the propositional DPLL procedure [DLL62].
Compared to its predecessor, the FDPLL calculus [Bau00], it lifts to the first-order case
not only the core of the DPLL procedure, the splitting rule, but also DPLL’s simplifi-
cation rules, which are crucial for effectiveness in practice.

Our implementation of the ME calculus, the Darwin system [BFT05], performs
well in some domains, but, unsurprisingly, it generally performs poorly in domains with
equality. In this paper we address this issue and propose an extension of the ME calculus
with dedicated inference rules for equality reasoning. These rules are centered around a
version the ordered paramodulation inference rule adapted to the ME calculus. The new
calculus, MEE, is a proper extension of the ME calculus without equality. Like ME, it
searches for a model of the input clause set by maintaining and incrementally modifying
a finite representation, called a context, of a candidate model for the clause set. In
MEE, equations from the context, and only those, are used for ordered paramodulation
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inferences into the current clause set. The used equations are kept together with the
clause paramodulated into and act as passive constraints in the search for a model.

In this paper we present the calculus and prove its soundness and completeness.
The completeness proof is obtained as an extension of the completeness proof of the
ME calculus (without equality) by adapting techniques from the Bachmair/Ganzinger
framework developed for proving the completeness of the superposition calculus [BG98,
NR01, e.g.]. The underlying model construction technique allows us to justify a rather
general simplification rule on semantic grounds. The simplification rule is based on a
general redundancy criterion that covers many simplification techniques known from
superposition-style theorem proving.
Related Work. Like ME, the MEE calculus is related to instance based methods (IMs),
a family of calculi and proof procedures developed over the last ten years. What has
been said in [BT03a] about ME in relation to IMs also applies to MEE when equality
is not an issue, and the points made there will not be repeated here in detail. Instead,
we focus on instance based methods that natively support equality reasoning.

Among them is Ordered Semantic Hyperlinking (OSHL) [PZ00]. OSHL uses rewrit-
ing and narrowing (paramodulation) with unit equations, but requires some other
mechanism such as Brand’s transformation to handle equations that appear in nonunit
clauses.

To our knowledge there are only two instance-based methods that have been ex-
tended with dedicated equality inference rules for full equational clausal logic. One is
called disconnection tableaux, which is a successor of the disconnection method [Bil96].1

The other is the IM described in [GK03]. Both methods are conceptually rather dif-
ferent from ME in that the main derivation rules there are based on resolving pairs of
complementary literals (connections) from two clauses, whereas ME’s splitting rule is
based on evaluating all literals of a single clause against a current candidate model.

The article [LS02] discusses various ways of integrating equality reasoning in dis-
connection tableaux. It includes a variant based on ordered paramodulation, where
paramodulation inferences are determined by inspecting connections between literals of
two clauses. Only comparably weak redundancy criteria are available.

The instance based method in [GK03] has been extended with equality in [GK04].
Beyond what has been said above there is one more conceptual difference, in that the
inference step for equality reasoning is based on refuting, as a subtask, a set of unit
clauses (which is obtained by picking clause literals).
Paper organization. We start with an informal explanation of the main ideas behind
the MEE calculus in Section 2, followed by a more formal treatment of contexts and
their associated interpretations in Section 3. Then, in Section 4, we present what we
call constrained clauses and a way to perform equality reasoning on them. We describe
the MEE calculus over constrained clauses in Section 6, and discuss its correctness in
Section 7. Detailed proofs of all the results can be found in the appendix.

1Even in that early paper a paramodulation-like inference rule was considered, however a rather weak
one.
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2 Main Ideas

The ME calculus of [BT03a], and by extension the MEE calculus, is informally best
described with an eye to the propositional DPLL procedure, of which ME is a first-
order lifting. DPLL can be viewed as a procedure that searches the space of possible
interpretations for a given clause set until it finds one that satisfies the clause set, if
it exists. This can be done by keeping a current candidate model and repairing it
as needed until it satisfies every input clause. The repairs are done incrementally by
changing the truth value of one clause literal at a time, and involve a non-deterministic
guess (a “split”) on whether the value of a selected literal should be changed or kept
as it is. The number of guesses is limited by a constraint propagation process (“unit
propagation”) that is able to deduce deterministically the value of some input literals.

Both ME and MEE lift this idea to first-order logic by maintaining a first-order
candidate model, by identifying instances of input clauses that are falsified by the model,
and by repairing the model incrementally until it satisfies all of these instances. The
difference between the two calculi is that MEE works with equational models, or E-
interpretations, that is, Herbrand interpretations in which the equality symbol is the
only predicate symbols and always denotes a congruence relation.

The current E-interpretation is represented (or more precisely, induced) by a context,
a finite set of non-ground equations and disequations directly processed by the calculus.
Context literals can be built over two kinds of variables: universal and parametric vari-
ables. The difference between the two lies in how they constrain the possible additions
of further literals to a context and, as a consequence, the possible repairs to its induced
E-interpretation. As far as the induced E-interpretation is concerned, however, the
two types of variables are interchangeable. The construction of this E-interpretation
is best explained in two stages, each based on an ordering on terms/atoms: the usual
instantiation preordering & with its strict subset �, and an arbitrary reduction ordering
� total on ground terms. Using the first we associate to a context Λ, similarly to the
ME calculus, a (non-equational) interpretation IΛ. Roughly, and modulo symmetry of
≈, this interpretation satisfies a ground equation s′′ ≈ t′′, over an underlying signature
Σ, iff s′′ ≈ t′′ is an instance of an equation s ≈ t in Λ without being an instance of any
equation s′ ≈ t′ such that s ≈ t � s′ ≈ t′ and s′ 6≈ t′ ∈ Λ. For instance, if

Λ = {f(u) ≈ u, f(a) 6≈ a}

where u is a (parametric) variable and the signature Σ consists of the unary function
symbol f and the constant symbols a and b, then IΛ is the symmetric closure of

{fn+1(b) ≈ fn(b) | n ≥ 0} ∪ {fn+1(a) ≈ fn(a) | n ≥ 1}.

In general IΛ is not an E-interpretation. Its purpose is merely to supply a set
of candidate equations that determine the final E-interpretation induced by Λ. This
E-interpretation, denoted by RE

Λ , is defined as the smallest congruence on ground Σ-
terms that includes a specific set RΛ of ordered equations selected from IΛ. The set
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RΛ is constructed inductively on the reduction ordering � by adding to it an ordered
equation s → t iff s ≈ t or t ≈ s is in IΛ, s � t and both s and t are irreducible wrt. the
equations of RΛ that are smaller than s → t. This construction guarantees that RΛ is
a convergent rewrite system. In the example above, RΛ is {f(b) → b, f(f(a)) → f(a)}
for any reduction ordering �; the E-interpretation RE

Λ induced by Λ is the congruence
closure of {f(b) ≈ b, f(f(a)) ≈ f(a)}. Since RΛ is convergent by construction for any
context Λ, any two ground Σ-terms are equal in RE

Λ iff they have the same RΛ-normal
form.

Now that we have sketched how the E-interpretation is constructed, we can explain
how the calculus detects the need to repair the current E-interpretation and how it
goes about repairing it. To simplify the exposition we consider here only ground input
clauses. A repair involves conceptually two steps: (i) determining whether a given clause
C is false in the E-interpretation RE

Λ , and (ii) if so, modifying Λ so that the new RE
Λ

satisfies it.
For step (i), by congruence it suffices to rewrite the literals of C with the rewrite

rules RΛ to normal form. If C↓RΛ
denotes that normal form, then RE

Λ fasifies C iff all
equations in C↓RΛ

are of the form s ≈ t with s 6= t, and all disequations are of the form
s 6≈ s. In the earlier example, if

C = f(a) ≈ a ∨ f(f(a)) ≈ b ∨ f(b) 6≈ b

then
C↓RΛ

= f(a) ≈ a ∨ f(a) ≈ b ∨ b 6≈ b,

meaning that RE
Λ indeed falsifies C.

For step (ii), we first point out that the actual repair needs to be carried out only on
the literals of C↓RΛ

, not on the literals of C. More precisely, the calculus considers only
the positive equations of C↓RΛ

, as the trivial disequations s 6≈ s in it do not provide any
usable information. To repair the E-interpretation it is enough to modify Λ so that RΛ

contains one of the positive equations s ≈ t of C ↓RΛ
. Then, by congruence, RE

Λ will also
satisfy C, as desired. Concretely, Λ is modified by creating a choice point and adding
to Λ one of the literals L of C↓RΛ

or its complement. Adding L—which is possible only
provided that neither L not its complement are contradictory, in a precise sense defined
later, with Λ—-will make sure that the new RE

Λ satisfies C. Adding the complement
of L instead will not make C satisfiable in the new candidate E-model. However, it is
necessary for soundness and marks some progress in the derivation because it will force
the calculus to consider other literals of C ↓RΛ

for addition to the context.
Referring again to our running example, of the two positive literals of C↓RΛ

= f(a) ≈
a∨f(a) ≈ b∨b 6≈ b, only f(a) ≈ b can be added to the context Λ = {f(u) ≈ u, f(a) 6≈ a}
because neither it nor its complement is contradictory with Λ (by contrast f(a) ≈ a is
contradictory with Λ). With

Λ = {f(u) ≈ u, f(a) 6≈ a, f(a) ≈ b},

now
RΛ = {f(b) → b, f(a) → b}
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and C↓RΛ
becomes b ≈ a ∨ b ≈ b ∨ b 6≈ b, which means that C is satisfied by RE

Λ .
We point out that adding positive equations to the context is not always enough.

Sometimes it is necessary to add negative equations, whose effect is to eliminate from
RΛ rewrite rules that cause the disequations of C to rewrite to trivial disequations. The
calculus takes care of this possibility as well. To achieve that we found it convenient to
have MEE work with a slightly generalized data structure. More precisely, instead of
clauses C we consider constrained clauses C · Γ, where Γ is a set of rewrite rules. The
constraint Γ consists just of those (instances of) equations from a context Λ that were
used to obtain C from some input clause (whose constraint is empty).

Reusing our example, the clause C would be represented as the constraint clause

C · Γ = f(a) ≈ a ∨ f(f(a)) ≈ b ∨ f(b) 6≈ b · ∅,

with its RΛ-normal form being

C ↓RΛ
·Γ = f(a) ≈ a ∨ f(a) ≈ b ∨ b 6≈ b · f(f(a) → f(a), f(b) → b

for Λ = {f(u) ≈ u, f(a) 6≈ a}. Now, the rewrite rule f(b) → b used to obtain the normal
form is available in the constraint part, as written. The calculus may add its negation
f(b) 6≈ b to Λ, with the effect of removing f(b) → b from RΛ. The resulting context and
rewrite system would be, respectively,

Λ′′ = {f(u) ≈ u, f(a) 6≈ a, f(b) 6≈ b},

and
RΛ′′ = {f(f(b)) → f(b), f(f(a)) → f(a)}.

It is easy to see that the new IE
RΛ

satisfies C as well, as desired.
While the above informal description illustrates the main ideas behind MEE, it is not

entirely faithful to the actual calculus as defined later in the paper. Perhaps the most
significant differences to mention here are that (i) the calculus works with non-ground
clauses as well (by treating them, as usual in refutation-based calculi, as schematic for
their ground instances and relying heavily on unification), and (ii) the normal form
of a constrained clause is not derived in one sweep, as presented above. Instead the
calculus, when equipped with a fair strategy, derives all intermediate constrained clauses
as well. It does so by a suitably defined paramodulation rule, where the equations
paramodulating (only) into the clause part of a constrained clause are drawn from the
current context Λ. The rationale is that the rewrite system RΛ is in general not available
to the calculus. Hence rewriting (ground) clause literals with rules from RΛ, which would
theoretically suffice to obtain a complete calculus at the ground level, is approximated
by ordered paramodulation with equations from Λ instead.

3 Contexts and Induced Interpretations

We start with some formal preliminaries. Most of the notions and notation we use in
this paper are the standard ones in the field. We report here only notable differences
and additions.
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We will use two disjoint, infinite sets of variables: a set X of universal variables,
which we will refer to just as variables, and another set V , which we will always refer
to as parameters. We will use u and v to denote elements of V and x and y to denote
elements of X. We fix a signature Σ throughout the paper and denote by Σsko the
expansion of Σ obtained by adding to Σ an infinite number of fresh (Skolem) constants.
Unless otherwise specified, when we say term we will mean Σsko-term. If t is a term
we denote by Var(t) the set of t’s variables and by Par(t) the set of t’s parameters. A
term t is ground iff Var(t) = Par(t) = ∅.

A substitution ρ is a renaming on W ⊆ (V ∪ X) iff its restriction to W is a bijection
of W onto itself; ρ is simply a renaming if it is a renaming on V ∪ X. A substitution
σ is p-preserving (short for parameter preserving) if it is a renaming on V . If s and t
are two terms, we write s & t, iff there is a substitution σ such that sσ = t.2 We say
that s is a variant of t, and write s ∼ t, iff s & t and t & s or, equivalently, iff there is
a renaming ρ such that sρ = t. We write s � t if s & t but s 6∼ t. We write s ≥ t and
say that t is a p-instance of s iff there is a p-preserving substitution σ such that sσ = t.
We say that s is a p-variant of t, and write s ' t, iff s ≥ t and t ≥ s; equivalently, iff
there is a p-preserving renaming ρ such that sρ = t. The notation s[t]p means that the
term t occurs in the term s at position p, as usual.

All of the above is extended from terms to literals in the obvious way.
In this paper we restrict to equational clause logic. Any atom A that is originally

not an equation can be represented as the equation A ≈ t, where t is some distinguished
constant not appearing elsewhere. This move is harmless, in particular from an opera-
tional point of view (as will become clear from the design of the calculus) if one works
with two-sorted signatures. Therefore, and essentially without loss of generality, we
assume that the only predicate symbol in Σ is ≈. An atom then is always an equation,
and a literal then is always an equation or the negation of an equation. Literals of
the latter kind, i.e., literals of the form ¬(s ≈ t) are also called negative equations and
generally written s 6≈ t instead. We call a literal trivial if it is of the form t ≈ t or t 6≈ t.
We denote literals by the letters K and L. We denote by L the complement of a literal
L, and by Lsko the result of replacing each variable of L by a fresh Skolem constant in
Σsko \ Σ. We denote clauses by the letters C and D, and the empty clause by �. We
will write L ∨ C to denote a clause obtained as the disjunction of a (possibly empty)
clause C and a literal L.

A (Herbrand) interpretation I is a set of ground Σ-equations—those that are true
in the interpretation. Satisfiability/validity of ground Σ-literals, Σ-clauses, and clause
sets in a Herbrand interpretation is defined as usual. We write I |= F to denote the
fact that I satisfies F , where F is a ground Σ-literal or a Σ-clause (set). Since every
interpretation defines in effect a binary relation on ground Σ-terms, and every binary
relation on such terms defines an interpretation, we will identity the two notions in the
following. An E-interpretation is an interpretation that is also a congruence relation on
the Σ-terms. If I is an interpretation, we denote by IE the smallest congruence relation

2 Note that many authors would write s . t in this case.
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on the Σ-terms that includes I, which is an E-interpretation. We say that I E-satisfies
F iff IE |= F . Instead of IE |= F we generally write I |=E F . We say that F E-entails
F ′, written F |=E F ′, iff every E-interpretation that satisfies F also satisfies F ′. We say
that F and F ′ are E-equivalent iff F |=E F ′ and F ′ |=E F .

The Model Evolution calculus, with and without equality, works with sequents of the
form Λ ` Φ, where Λ is a finite set of literals possibly with variables or with parameters
called a context, and Φ is a finite set of clauses possibly with variables. As in [BT03a],
we impose for simplicity that literals in a context can contain parameters or variables
but not both, but this limitation can be overcome. The defining feature of the
calculus, modeled after FDPLL, is the rôle contexts play in driving the derivation and
the model generation process.

The following definitions are taken from [BT03a], except for one minor change, which
will be explained below.

Definition 3.1 (Context [BT03a])
A context is a set of the form {¬v} ∪ S where v ∈ V and S is a finite set of literals each
of which is parameter-free or variable-free.

Differently from [BT03a], we implicitly treat any context Λ as if it contained the
symmetric version of each of its literals. For instance, if Λ = {¬v, f(u) ≈ a, f(x) 6≈ x}
then a ≈ f(u), f(u) ≈ a, x 6≈ f(x), f(x) 6≈ x are all considered to be literals of Λ, and
we write, for instance, a ≈ f(u) ∈ Λ.

Where L is a literal and Λ a context, we write L ∈∼ Λ if L is a variant of a literal in
Λ, write L ∈' Λ if L is a p-variant of a literal in Λ, and write L ∈≥ Λ if L is a p-instance
of a literal in Λ.

A literal L is contradictory with a context Λ iff Lσ = Kσ for some K ∈' Λ
and some p-preserving substitution σ. A context Λ is contradictory iff it contains
a literal that is contradictory with Λ. Referring to the context Λ above, f(v) 6≈ a,
a 6≈ f(v), a ≈ f(a), f(a) ≈ a all are contradictory with Λ. Notice that an equation s ≈ t
is contradictory with a context Λ if and only if t ≈ s is so. The same applies to negative
equations.

We will work only with non-contradictory contexts. Thanks to the next two notions,
such contexts can be used as finite denotations of (certain) Herbrand interpretations.
Let L be a literal and Λ a context. A literal K is a most specific generalization (msg)
of L in Λ iff K & L and there is no K ′ ∈ Λ such that K � K ′ & L.

Definition 3.2 (Productivity [BT03a])
Let L be a literal, C a clause, and Λ a context. A literal K produces L in Λ iff (i) K is
an msg of L in Λ, and (ii) there is no K ′ ∈≥ Λ such that K � K ′ & L. The context Λ
produces L iff it contains a literal K that produces L in Λ.

Notice that a literal K produces a literal L in a context Λ if and only if K produces
the symmetric version of L in Λ. For instance, the context Λ above produces f(b) ≈ a
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and a ≈ f(b) but Λ produces neither f(a) ≈ a nor a ≈ f(a). Instead it produces both
a 6≈ f(a) and f(a) 6≈ a.

A non-contradictory context Λ uniquely induces a (Herbrand) Σ-interpretation IΛ,
defined as follows:

IΛ := {l ≈ r | l ≈ r is a positive ground Σ-equation and Λ produces l ≈ r}

For instance, if Λ = {x ≈ f(x)} and Σ consists of a constant a and the unary function
symbol f then IΛ = {a ≈ f(a), f(a) ≈ a, f(a) ≈ f(f(a)), f(f(a)) ≈ f(a), . . .}.

A consequence of the presence of the pseudo-literal ¬v in every context Λ is that Λ
produces L or L for every literal L. Moreover, it can be easily shown that whenever
IΛ |= L then Λ produces L, even when L is a negative literal. This fact provides a
“syntactic” handle on literals satisfied by IΛ. The induced interpretation IΛ is not an
E-interpretation in general.3 But we will use it to define a unique E-interpretation
associated to Λ.

4 Equality Reasoning on Constrained Clauses

The MEE calculus operates with constrained clauses, defined below. In this section
we will introduce derivation rules for equality reasoning on constrained clauses. These
derivation rules will be used by the MEE calculus in a modular way. The section
concludes with a first soundness and completeness result, which will serve as a lemma
for the completeness proof of the MEE calculus.

As an important preliminary remark, whenever the choice of the signature makes
a difference in this section, e.g. in the definition of grounding substitution, we always
implicitly meant the signature Σ, not the signature Σsko.

4.1 Constrained Clauses

A (rewrite) rule is an expression of the form l → r where l and r are Σ-terms. Given
a parameter-free Σ-clause C = L1 ∨ · · · ∨Ln and a set of parameter-free Σ-rewrite rules
Γ = {A1, . . . , Am}, the expression C · Γ is called a constrained clause (with constraint
Γ). Instead of C · {A1, . . . , Am} we generally write C ·A1, . . . , Am. The notation C ·Γ, A
means C · Γ ∪ {A}.

A constrained clause C ·Γ is a constrained clause without expansion constraints iff Γ
contains no expansion rules, i.e., rules of the form x → t, where x is a variable and t is a
term. A constrained clause set without expansion constraints is a constrained clause set
that consists of constrained clauses without expansion constraints. The MEE calculus
works only with such constrained clause sets.4 As a notational convention, we general
use the letter Φ to denote sets of constrained clauses, and the letter Ψ to denote sets of
ordinary clauses.

3 In fact, in the earlier example a ≈ f(f(a)) /∈ IΛ.
4 As will become clear later, disallowing expansion constraints comes from the fact that paramodu-

lation into variables is unnecessary in MEE as well.



4.2 Orderings and Derivation Rules 9

Applying a substitution σ to C ·Γ, written as (C ·Γ)σ, means to apply σ to C and all
rewrite rules in Γ. A constrained clause C · Γ is ground iff both C and Γ are ground. If
γ is a substitution such that (C ·Γ)γ is ground, then (C ·Γ)γ is called a ground instance
of C · Γ, and γ is called a grounding substitution for C · Γ. We say that C · Γ properly
subsumes C ′ ·Γ′ iff there is a substitution σ such that Cσ ⊂ C ′ and Γσ ⊆ Γ′ or Cσ ⊆ C ′

and Γσ ⊂ Γ′. We say that C · Γ non-properly subsumes C ′ · Γ′ iff there is a substitution
σ such that Cσ = C ′ and Γσ = Γ′. The constrained clauses C · Γ and C ′ · Γ′ are
variants iff C ·Γ non-properly subsumes C ′ ·Γ′ and vice versa.5 For a set of constrained
clauses Φ, Φgr denotes the set of all ground Σ-instances of all constrained clauses in Φ.

In principle, a constraint clause C ·Γ = L1∨· · ·∨Lm ·lm+1 → rm+1, . . . , ln → rn could
be understood as standing for the ordinary clause L1∨· · ·∨Lm∨lm+1 6≈ rm+1∨· · ·∨ln 6≈
rn, which we call the clausal form of C · Γ and denote by (C · Γ)c. In effect, however,
constrained clauses and their clausal forms are rather different from an operational point
of view. The derivation rules for equality reasoning below, in particular paramodulation,
are never applied to constraints—as a consequence, the calculus cannot be said to be a
resolution calculus.

4.2 Orderings and Derivation Rules

We suppose as given a reduction ordering � that is total on ground Σ-terms. 6 The
non-strict ordering induced by � is denoted by �, and ≺ and � denote the converse of
� and �.

The reduction ordering � has to be extended to rewrite rules, equations and con-
strained clauses. Following usual techniques [BG98, NR01, e.g.], rewrite rules and equa-
tions are compared by comparing the multisets of their top-level terms with the multiset
extension of the base ordering �. There is no need in our framework to distinguish be-
tween positive and negative equations. It is important, though, that when comparing
constrained clauses the clause part is given precedence over the constraint part. This
can be achieved by defining C ·Γ � C ′ ·Γ′ iff (C,Γ) is strictly greater than (C ′,Γ′) in the
lexicographical ordering over the multiset extension of the above ordering on equations
and rewrite rules. The following makes this precise.

Equations are compared by comparing the multisets of their top-level terms. More
formally, let M l(s ≈ t) = M l(s 6≈ t) := {s, t} and define an ordering on literals �l as
L1 �l L2 iff M l(L1) �m M l(L1), where �m is the extension of � to multisets. Rewrite
rules are also compared with this ordering.

The calculus has to compare constrained clauses. To define the ordering �c on
5 The reason to distinguish between proper and non-proper subsumption is that proper subsumption

is covered by a more general notion of redundancy, while non-proper subsumption is not. Notice that
the general redundancy criterion in the superposition calculus have the same limitation. Fortunately,
non-proper subsumption tests can be used as well to eliminate clauses.

6 A reduction ordering is a strict partial ordering that is well-founded and is closed unter context
i.e., s � s′ implies t[s] � t[s′] for all terms t, and liftable, i.e., s � t implies sδ � tδ for every term s and
t and substitution δ.
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constrained clauses, associate to a constrained clause C · Γ the multiset

M c(C · Γ) =
⋃

L∈C

(M l(L) ∪ M l(L)) ∪
⋃
A∈Γ

M l(A) .

In words, M c collects from C · Γ all the top-level terms from all equations in C and in
Γ, but takes the terms from C twice and ignores whether the equations are positive or
negative. This way, higher weight is given to the equations in C than those in Γ. Now
define C1 · Γ1 �c C2 · Γ2 iff M(C1 · Γ1) �m M(C2 · Γ2). In the sequel we will use the
symbol � instead of �c.

For instance, if a � b then

a 6≈ b · ∅ � b 6≈ b · a → b � � · a → b,

as {a, b, a, b} �m {b, b, b, b, a, b} �m {a, b}. This example helps to explain the motivation
of the ordering: the derivation rules below must work in an order-decreasing way. For
instance, the Para rule below allows to derive from the constrained clause a 6≈ b · ∅ and
the equation a ≈ b the new constrained clause b 6≈ b · a → b, and the Ref rule allows to
derive � · a → b then. Notice these steps indeed derive smaller constrained clauses.

Notice also that in superposition-type calculi usually a different ordering is used,
which gives negative equations higher weight than positive equations (on the same
terms). Such an ordering would work for us as well.
Derivation Rules. We first define two auxiliary derivation rules for equality reasoning
on constrained clauses. The rules will be used later in the MEE calculus.

Ref(σ)
s 6≈ t ∨ C · Γ

(C · Γ)σ
if σ is a mgu of s and t.

We write s 6≈ t ∨ C · Γ ⇒Ref(σ) (C · Γ)σ to denote a Ref inference.7

Para(l ≈ r, σ)
L[t]p ∨ C · Γ

(L[r]p ∨ C · Γ, l → r)σ
if


t is not a variable,
σ is a mgu of t and l, and
lσ 6� rσ.

We write L[t]p ∨ C · Γ ⇒Para(l≈r,σ) (L[r]p ∨ C · Γ, l → r)σ to denote a Para inference.
Ground Inferences. Suppose C ·Γ ⇒D C ′ ·Γ′, for some constrained clause C ′ ·Γ′, where
D stands for Ref(σ) or Para(l ≈ r, σ). If C · Γ is ground, and also l ≈ r in the case of
Para is ground, then C ′ · Γ′ is ground as well and σ is the empty substitution ε. The
inference is called a ground inference then.

Let γ be a grounding substitution for C · Γ and for l ≈ r. If γ = σδ for some
substitution δ, then (C · Γ)γ ⇒D’ (C ′ · Γ′)δ might hold or not, where D’ stands for
Ref(ε) or Para((l ≈ r)γ, ε). If it holds, the inference is called a ground instance via γ of
C · Γ ⇒D C ′ · Γ′ then.

7 An inference is an instance of a derivation rule that satisfies the rule’s side condition.



4.3 Model Construction 11

Observe that a ground inference via γ of any Ref inference exists, whenever γ =
σδ, for some some substitution δ. However, in the case of Para, not every ground-
ing substitution γ = σδ, for some some substitution δ, yields a ground inference
(C · Γ)γ ⇒Para((l≈r)γ,ε) (C ′ · Γ′)δ. It is not a ground inference precisely when lγ 6� rγ is
not satisfied.

Also, if (C · Γ)γ ⇒Para((l≈r)γ,ε) (C ′ · Γ′)δ is a ground inference, its “lifted” version
C · Γ ⇒Para(l≈r,σ) C ′ · Γ′ need not exist, for any substitution σ. The reason is the
occurence p paramodulated into on the ground need not exist on the first-order level or
could be a variable.

As in the superposition calculus, model construction, redundancy and saturation are
core concepts for the understanding of the MEE calculus.

4.3 Model Construction

A rewrite system is a set of Σ-rewrite rules. A ground rewrite system R is ordered
by � iff l � r, for every rule l → r ∈ R. As a non-standard notion, we define a rewrite
system without overlaps to be a ground rewrite system R that is ordered by �, and
whenever l → r ∈ R then there is no other rule in R of the form s[l] → t or s → t[l]. In
other words, no rule can be reduced by another rule, neither the left hand side nor the
right hand side. Any rewrite system without overlaps is a convergent ground rewrite
system. In the sequel, the letter R will always denote a (ground) rewrite system without
overlaps.

We show how every non-contradictory context Λ induces a ground rewrite system
RΛ without overlaps. The general technique is taken from the completeness proof of the
superposition calculus [BG98, NR01] but adapted to our needs.

First, for a given non-contradictory context Λ and positive ground Σ-equation s ≈ t
we define by induction on the literal ordering � sets of rewrite rules εΛs≈t and RΛ

s≈t as
follows. Assume that εΛs′≈t′ has already been defined for all ground Σ-equations s′ ≈ t′

with s ≈ t � s′ ≈ t′. Where RΛ
s≈t =

⋃
s≈t�s′≈t′ ε

Λ
s′≈t′ , define

εΛs≈t =

{
{s → t} if IΛ |= s ≈ t, s � t, and s and t are irreducible wrt. RΛ

s≈t

∅ otherwise

Then, RΛ =
⋃

s≈t εΛs≈t where s and t range over all ground Σ-terms.
By construction, RΛ has no critical pairs, neither with left hand sides nor with right

hand sides, and thus is a rewrite system without overlaps. Since � is a well-founded
ordering, RΛ is a convergent rewrite system by construction. The given context Λ comes
into play as stated in the first condition of the definition of εΛs≈t, which says, in other
words, that Λ must produce s ≈ t as a necessary condition for s → t to be contained in
RΛ. An important detail is that whenever Λ is non-contradictory and produces s ≈ t,
then it will also produce t ≈ s. Thus, if s ≺ t then s ≈ t may still be turned into the
rewrite rule t → s in RΛ by means of its symmetric version t ≈ s.
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It is well known that for any convergent ground rewrite system R, and any two terms
s and t, R |=E s ≈ t if and only if there is a term u such that s →?

R u and t →?
R u. This

result thus applies in particular to ground rewrite systems without overlaps.
Where the ME calculus would associate to a sequent Λ ` Φ the interpretation IΛ as a

candidate model of Φ, the MEE calculus will instead associate to it the E-interpretation
RE

Λ, the congruence closure of RΛ (or, more correctly, of the interpretation containing
the same equations as RΛ). There is an interesting connection between the two
interpretations: if L is a ground literal and L↓RΛ

is the normal form of L wrt. RΛ then
RE

Λ |= L (or, equivalently, RΛ |=E L) iff IΛ |= L↓RΛ
or L↓RΛ

is a trivial equation. This
connection is fundamental to MEE, as it makes it possible to reduce satisfiability in the
intended E-interpretation RE

Λ to satisfiability in IΛ.
Observe that if Λ is say, a set of parameter-free literals, then RΛ, even if convergent,

maybe incomplete wrt the equational theory presented by the positive equations of Λ.
For instance, with Λ = {¬v, a ≈ b, b ≈ c} and the ordering a � b � c the induced rewrite
system RΛ = {b → c} is clearly incomplete wrt. the equational theory {a ≈ b, b ≈ c}.
In general then it might be necessary to add enough equations to a context Λ to make
RΛ complete. As we will see, the MEE calculus does need that, and it achieves it not
by saturating a context directly, but by saturating its corresponding clause set.

For another example for the model construction let Λ = {a ≈ u, b ≈ c, a 6≈ c} a
non-contradictory context. With the ordering a � b � c the induced rewrite system RΛ

is again {b → c}. To see why, observe that the candidate rule a → c is assigned false
by IΛ, as Λ does not produce a ≈ c, and that the other candidate a → b is reducible by
the smaller rule b → c. Had we chosen to omit in the definition of ε the condition “t is
irreducible wrt RΛ

s≈t”
8 the construction would have given RΛ = {a → b, b → c}. This

leads to the undesirable situation that a constrained clause, say, a 6≈ c · ∅ is falsified by
RE

Λ. But the MEE calculus cannot modify Λ to revert this situation, and to detect the
inconsistency (ordered) paramodulation into variables would be needed.

4.4 Semantics of Constrained Clauses, Redundancy and Saturation

Let C · Γ be a ground constrained clause and R a ground rewrite system. We say that
R is an E-model of C · Γ and write R |=E C · Γ iff Γ 6⊆ R or R |=E C (in the sense
of Section 3, by treating R as an interpretation). We write R |=E Φ for a set Φ of
constrained clauses iff R |=E C · Γ for all C · Γ ∈ Φ. If F is a non-ground constrained
clause (set) we write R |=E F iff I |=E F gr.

The overloading of the terminology and the notation here should cause no confusion
in the rest of the paper, because it will alway be clear from context whether we are talking
about ordinary clauses or constrained ones. The general intuition for this notion of
satisfiability for constrained clauses is that ground constrained clauses whose constraint
is not a subset of a rewrite system R are considered to be trivially satisfied by R, while
the other constrained clauses are considered to be satisfied by R exactly when their

8 This condition is absent in the model construction for the superposition calculus. Its presence in
the end explains why paramodulation into smaller sides of equations is necessary.
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non-constraint part is E-satisfied by R. Note that for constrained clauses C · ∅ with an
empty constraint, R |=E C · ∅ iff R |=E C.

If Φ and Φ′ are sets of constrained clauses, we say that Φ entails Φ′ wrt. R, written
as Φ |=R Φ′, iff R |=E Φ implies R |=E Φ′.

Let Φ be a set of constrained clauses and C · Γ a ground constrained clause. Define
ΦC·Γ = {C ′ · Γ′ ∈ Φgr | C ′ · Γ′ ≺ C · Γ} as the set of ground instances of clauses from Φ
that are smaller than C · Γ.

Let R be a rewrite system without overlaps. We say that the ground constrained
clause C · Γ is redundant wrt. Φ and R iff ΦC·Γ |=R C · Γ, that is, iff C · Γ is entailed
wrt. R by smaller ground instances of clauses from Φ. Notice that if Γ 6⊆ R then C · Γ
is trivially redundant wrt. every constrained clause set and R (as R is ordered by �).
For a (possibly non-ground) constrained clause C ·Γ we say that C ·Γ is redundant wrt.
Φ and R iff all ground instances of C · Γ are redundant wrt. Φ and R.

Suppose C · Γ ⇒D C ′ · Γ′ is a ground inference, for some constrained clause C ′ · Γ′,
where D stands for Ref(ε) or Para(l ≈ r, ε) (with l ≈ r ground). The ground inference is
called redundant wrt. Φ and R iff ΦC·Γ |=R C ′ · Γ′. We say that a Ref or Para inference
is redundant wrt. Φ and R iff every ground instance of it is redundant wrt. Φ and R.

Let Λ be a context. Let RΛ
s≈t =

⋃
s≈t�s′≈t′ ε

Λ
s′≈t′ be the rewrite system defined earlier

and consisting of those ground rules true in IΛ that are smaller than s ≈ t.

Definition 4.1 (Productive constrained clause)
Let C · Γ = A1 ∨ · · · ∨ Am · Γ be a ground constrained clause, for some m ≥ 0, where
Ai is a positive non-trivial equation for all i = 1, . . . ,m. We say that C ·Γ is productive
wrt. Λ iff Γ ⊆ RΛ and Ai is irreducible wrt. RΛ

Ai
for all i = 1, . . . ,m. A (possibly

non-ground) constrained clause C · Γ is productive wrt. Λ iff some ground instance of
C · Γ is productive wrt. Λ.

Notice that RΛ
s≈t = RΛ

t≈s for any ground terms s and t. This follows from the fact that
equations are compared by taking the multisets of their top-level equations. Whether
some Ai is written s ≈ t or t ≈ s thus is irrelevant.
Intuitively, if C · Γ is a productive ground constrained clauses wrt. Λ then C provides
positive equations, all irreducible in the sense as stated, at least one of which must be
satisfied by IΛ, so that in consequence RE

Λ satisfies C ·Γ. The following definition turns
this intuition into a demand on Λ (in its second item).

Definition 4.2 (Saturation up to redundancy)
A sequent Λ ` Φ is saturated up to redundancy iff for all C · Γ ∈ Φ such that C · Γ is
not redundant wrt. Φ and RΛ, the following hold:

1. For every inference C · Γ ⇒D C ′ · Γ′, where D stands for Ref(σ) or Para(l ≈ r, σ)
with a parameter-free l ≈ r ∈∼ Λ, the clause (C ·Γ)σ is redundant wrt. Φ and RΛ

or the inference C · Γ ⇒D C ′ · Γ′ is redundant wrt. Φ and RΛ.

2. For every grounding substitution γ for C · Γ, if C 6= � and (C · Γ)γ is productive
wrt. Λ and non-redundant wrt. Φ and RΛ, then IΛ |= Cγ.
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Referring back to our informal explanation of the calculus, and ignoring the redun-
dancy concepts in Definition 4.2, ground instances of constrained clauses that are not
productive wrt. Λ are subject to the first condition. It requires a sufficient number of
applications of the Ref and Para rules to reduce (lifted versions of) such constrained
clauses to constrained clauses productive wrt. Λ. The equality reasoning rules in MEE,
which are based on Ref and Para, together with the Split rule, all defined in the next
section, make sure that both conditions will be met in the limit of a derivation.

The next proposition clarifies under what conditions RE
Λ is a model for all constrained

clauses Φ in a sequent Λ ` Φ saturated up to redundancy.9

Proposition 4.3
Let Λ ` Φ be a sequent saturated up to redundancy and suppose Φ is a constrained
clause set without expansion constraints. Then, RΛ |=E Φ if and only if Φ contains no
constrained clause of the form � · Γ that is productive wrt. Λ and non-redundant wrt.
Φ and RΛ.

Notice that Proposition 4.3 applies to a statically given sequent Λ ` Φ. The connec-
tion to the dynamic derivation process of the MEE calculus will be given later, and
Proposition 4.3 will be essential then in proving the correctness of the MEE calculus.

5 MEE Calculus

Like its predecessor, the MEE calculus consists of a few basic derivation rules and a
number of optional ones meant to improve the performance of implementations of the
calculus. The basic derivation rules include rules for equality reasoning and two rules,
namely Split and Close, which are not specific to the theory of equality. We start with
a description of the basic rules.

5.1 Derivation Rules for Equality Reasoning

The following two rules RefME and ParaME are the only mandatory rules specific to the
theory of equality. They extend the Ref and Para derivation rules of Section 4 in a
straightforward way to sequents.

RefME(σ)
Λ ` Φ, C · Γ

Λ ` Φ, C · Γ, C ′ · Γ′
if

{
C · Γ ⇒Ref(σ) C ′ · Γ′, and
Φ ∪ {C · Γ} contains no variant of C ′ · Γ′.

ParaME(l ≈ r, σ)
Λ ` Φ, C · Γ

Λ ` Φ, C · Γ, C ′ · Γ′
if


l ≈ r is a parameter-free fresh variant
of a Σ-equation in Λ,
C · Γ ⇒Para(l≈r,σ) C ′ · Γ′, and
no variant of C ′ · Γ′ is in Φ ∪ {C · Γ}.

9Proofs can be found in the appendix.
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Observe that all initial constrained clauses are built over Σ and that Simp below
can add only constrained Σ-clauses. Since l ≈ r in ParaME(l ≈ r, σ) is a Σ-equation, it
follows that all constrained clauses derivable in the calculus are built over Σ.

The purpose of both the RefME and ParaME rules is to reduce the question of sat-
isfiability of a constrained clause in the intended E-interpretation RE

ΛB
, where ΛB is a

certain limit context (cf. Section 6), to deriving a smaller one and answering the ques-
tion wrt. that one. Notice that constraints have a rather passive rôle in both derivation
rules. In particular, Para is not applicable to constraints. The requirement in ParaME

that l ≈ r be a parameter-free variant of an equation in the context guarantees that all
constrained clause sets derivable by the calculus are parameter-free.

In both rules, the test for C ′ ·Γ′ being not contained in Φ ∪ {C ·Γ} is needed in in-
terplay with deletion of constrained clauses based on non-proper subsumption (see Simp
below). Without this test, it is conceivable the calculus derives a sequence of constrained
clause sets10 {P (x) ≈ t, . . .}, {P (x) ≈ t, P (y) ≈ t, . . .}, {P (y) ≈ t, . . .}, {P (x) ≈
t, P (y) ≈ t, . . .}, {P (x) ≈ t, . . .}, . . . . Notice that neither the clause P (x) ≈ t nor
P (y) ≈ t is persistent. The problem with such situations is there is no “well-founded”
way to argue in the completeness proof that P (x) ≈ t will be satisfied by the candidate
model.

5.2 Basic Derivation Rules

The mandatory rules Split and Close below are taken from the ME calculus without
equality. In fact, these rules as presented in [BT03a] could be taken without any change
for integration in MEE. It just requires to translate the constrained clauses handled by
MEE to clausal form before applying the rules. However, we found the presentation of
MEE more clear by instead defining adapted versions of these rules. The translation to
clausal form thus will be implicitly used then. Both the Split and Close rule are based
on the concept of a context unifier .

Definition 5.1 (Context Unifier)
Let Λ be a context and C = L1 ∨ · · · ∨ Lm an ordinary clause. A substitution σ is a
context unifier of C against Λ iff there are fresh p-variants K1, . . . ,Km ∈' Λ such that
σ is a most general simultaneous unifier of the sets {K1, L1}, . . . , {Km, Lm}.

For each i = 1, . . . ,m, we say that a literal K ′
i ∈ Λ is a context literal of σ if K ′

i ' Ki,
and that Liσ is a remainder literal of σ if (Par(Ki))σ 6⊆ V . We say that σ is productive
iff Ki produces Liσ in Λ for all i = 1, . . . ,m.

A context unifier σ of C against Λ is admissible (for Split) iff every remainder literal
L of σ is parameter- or variable-free and for all distinct remainder literals L and K of
σ Var(L) ∩ Var(K) = ∅.

Split(L, σ)
Λ ` Φ, C · Γ

Λ, L ` Φ, C · Γ Λ, L
sko ` Φ, C · Γ

if ?

10The constraint parts all are, say, ∅, and are not written.
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where ? is

1. C = A1 ∨ · · · ∨Am with m ≥ 0 and for all i = 1, . . . ,m, Ai is a positive non-trivial
equation,

2. σ is an admissible context unifier of (C · Γ)c against Λ with remainder literal L,
and

3. neither L nor L
sko is contradictory with Λ.

A Split inference is productive iff σ is a productive context unifier of (C ·Γ)c against Λ.
To obtain a complete calculus Split needs to be applied only when C · Γ has an

RΛ-irreducible ground instance that is falsified by the E-interpretation RE
Λ. Technically,

these ground instances are approximated by the productive ones, in terms of Defi-
nition 4.1, and a productive context unifier is guaranteed to exist then. Applying a
Split inference then will modify the context so that it E-satisfies such a ground instance
afterwards, which marks some progress in the derivation.

Close(σ)
Λ ` Φ, C · Γ
Λ ` � · ∅

if


Φ 6= ∅ or C · Γ 6= � · ∅, and
σ is a context unifier of (C · Γ)c against Λ
with no remainder literals.

The purpose of the Close rule is to detect a trivial inconsistency between the context
and a constrained clause.

5.3 Optional Derivation Rules

The first optional derivation rule, Compact simplifies a context by removing a superfluous
literal.

Compact
Λ,K, L ` Φ

Λ, L ` Φ
if K ≥ L

Like DPLL, the ME calculus includes an optional derivation rule, called Assert, to
insert a literal into a context without causing branching. In ME this rule bears close
resemblance to the unit-resulting resolution rule. In the terminology of the present
paper, where constrained clauses instead of clauses are used, the ME Assert rule can be
rephrased as follows:

AssertME(σ)
Λ ` Φ, C ∨ L · Γ

Λ, Lσ ` Φ, C ∨ L · Γ
if


σ is a context unifier of C · Γ against Λ
without remainder,
Lσ is non-contradictory with Λ, and
there is no K ∈' Λ such that K ≥ Lσ.

This rule could be used without change for MEE. However, as it is an optional rule,
there is no good reason not to strengthen it, even if the applicability conditions are no
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longer decidable and can only be approximated. Therefore we propose the following
rather general Assert below.

To define the Assert rule, some more preliminaries are needed.
Let us fix a constant a from the signature Σsko \ Σ and consider the substitution

α := {v 7→ a | v ∈ V }. 11 Given a literal L, we denote by La the literal Lα. Note
that La is ground if, and only if, L is variable-free. Similarly, given a context Λ, we
denote by Λa the set of unit clauses obtained from Λ by removing the pseudo-literal ¬v,
replacing each literal L of Λ with La, and considering it as a unit clause.12

Assert(L)
Λ ` Φ

Λ, L ` Φ
if


Λa ∪ Φc |=E La,
L is non-contradictory with Λ, and
there is no K ∈' Λ such that K ≥ L.

As an example, Assert is applicable to the sequent ¬v, P (u, b) ≈ t, b ≈ c ` P (x, y) 6≈
t ∨ f(x) ≈ y · ∅ to yield the new context equation f(u) ≈ c.

The third condition of Assert avoids the introduction of superfluous literals in the
context. The first condition is needed for soundness. This condition is not decidable
in its full generality and so can only be approximated with an incomplete test. This,
however, is not a problem given that Assert is an optional rule in MEE.

The following result implies that AssertME is a special case of Assert. Hence, AssertME

can be used within MEE as a computationally cheap, yet practically effective, derivation
rule.

Proposition 5.2
Let Λ be a context, Φ a set of constrained clauses and C∨L ·Γ ∈ Φ a constrained clause.
If σ is a context unifier of C · Γ against Λ without remainder, then Λa ∪ Φc |=E (Lσ)a.

Proof. Let σ be a context unifier of C · Γ against Λ without remainder. We directly
show Λa ∪ Φc |=E (Lσ)a. Let (C ∨L ·Γ)c = L1∨· · ·∨Lm∨Lm+1∨· · ·∨Ln∨L, for some
n ≥ m ≥ 0, where, for uniformity of notation Lj := sj 6≈ tj , for all j = m + 1, . . . , n,
where Γ = {sm+1 → tm+1, . . . , sn → tn}.

By definition of context unifier, there are fresh K1, . . . ,Kn ∈' Λ such that σ is
a simultaneous unifier of {{K1, L1}, . . . , {Kn, Ln}} and (Par(Ki))σ ⊆ V for all i =
1, . . . , n. With (Par(Ki))σ ⊆ V and Li is parameter-free for each i, it is easy to see
that σa is a simultaneous unifier of {{Ka

1 , L1}, . . . , {Ka
n, Ln}}. Since Ka

i ∈' Λa for each
i, it follows from the soundness of (hyper-)resolution Λa ∪ {(C ∨L ·Γ)c} |=E Lσa. From
C∨L ·Γ ∈ Φ, as given, it follows Λa ∪ Φc |=E Lσa. With Lσa = (Lσ)a the result follows
immediately. ut

11 Strictly speaking, α is not a substitution in the standard sense because Dom(α) is not finite. But
this will cause no problems here.

12Here and below Φc denotes the set of clausal forms of all constrained clauses in Φ.
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5.4 Simplification

The Simp derivation rule defined below is an optional derivation rule. Its purpose is
to replace a constrained clause by a simpler one. The Simp rule is general enough
to accomodate the simplification rules of ME (Except for the Subsume rule) and also
various new simplification rules connected with equality. There are too many
specific characterizations of when constrained clauses are redundant or can be simplified.
Instead of attempting to define individual derivation rules covering specific situations
we provide a generic simplification rule and discuss some of its instantiations. To
formulate it, we need one more prerequisite.

Definition 5.3 (Compatible rewrite system)
Let Λ be a context and R a (ground) rewrite system without overlaps. We say that R is
compatible with Λ iff there is no rule l → r ∈ R and no negative parameter-free equation
s 6≈ t ∈ Λ such that s ≈ t & l ≈ r.

The rationale behind this definition is the following. Given the current context Λ of
a derivation, one could imagine of using its associated rewrite system RΛ to simplify the
current clause set. Unfortunately, such simplification are in general unsound because RΛ

does not grow monotonically as the context evolves. For example, suppose RΛ contains
the rule f(a) → a at some point in the derivation. If later in the derivation the equation
a ≈ b is added to the context, with a � b, RΛ will then contain the rule a → b but
not f(a) → a anymore, as the latter rule is reducible by the former. In such a case,
any simplification step based on applying f(a) → a during the derivation would be
unjustified.

Consequently, in general, at any time in the derivation it is not foreseeable what the
limit rewrite system will look like. Fortunately, there is a characterization in terms of Λ
of what rules will necessarily not be included in the limit rewrite system and that can
be exploited for simplification purposes: if there is a negative parameter-free equation
s 6≈ t ∈ Λ, then, as the derivation proceeds, no modification Λ′ of Λ can produce any
(ground) instance (s ≈ t)γ (because the context Λ′ would be contradictory then, which
is impossible by definition of the derivaton rules). In particular, if ΛB denotes the
context obtained in the limit of the derivation, then (s ≈ t)γ cannot be produced by ΛB

and hence will not be included in RΛB
as a rule. In other words, RΛB

is compatible with
any “current” context Λ of a derivation. These considerations motivate the following
simplification rule.

Simp
Λ ` Φ, C · Γ
Λ ` Φ, C ′ · Γ′

if ?

where ? is

1. C ′ · Γ′ ∈ Φ and C ′ · Γ′ non-properly subsumes C · Γ, or

2. for every rewrite system R compatible with Λ:

(a) C · Γ is redundant wrt. Φ ∪ {C ′ · Γ′} and R,
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(b) C ′ · Γ′ is a constrained clause over Σ without expansion constraints, and

(c) Λa ∪ (Φ ∪ {C · Γ})c |=E (C ′ · Γ′)c.

The last condition in the definition of the Simp rule guarantees soundness.
It is not difficult to see that the explicit test for non-proper subsumption and the

general redundancy test together comprise a full subsumption test.
We now discuss some specific instances of the Simp rule.

Trivial Equations. As a simple instance of the Simp rule, any constrained clause C · Γ
of the form s ≈ s∨D · Γ can be simplified to t ≈ t · ∅. This simplification step actually
yields the same effect as if C · Γ were deleted. Dually, any constrained clause C · Γ of
the form s 6≈ s ∨D · Γ can be simplified to D · Γ.
Dis-ordered Constraints. A perhaps less obvious case is when the constraint Γ of a
constrained clause C ·Γ contains a rule l → r such that l ≺ r. As we assumed a liftable
ordering �, l ≺ r implies lγ ≺ rγ for any ground substitution γ. By definition, no
rewrite system without overlaps can contain the rule lγ → rγ, i.e., (l → r)γ /∈ R, and
hence (C · Γ)γ and also C · Γ is redundant wrt. every constrained clause set and R.
Unsatisfiable Constraints. As a simple example that takes the context into account,
consider the sequent f(x) 6≈ x ` a ≈ b · f(a) → a. Now, no rewrite system compatible
with {f(x) 6≈ x} can contain f(a) → a. The constrained clause can therefore again be
simplified to t ≈ t·∅. Dually, in the sequent f(x) ≈ x ` a ≈ b·f(a) → a the constrained
clause can be simplified to a ≈ b·∅. (Notice in particular that this simplification is indeed
sound.)
Unit Resolution by Resolve. Another practically relevant application of Simp corre-
sponds to applications of the unit resolution rule. Suppose a context Λ, K ` Φ, C∨L ·Γ
where K is a positive or negative equation, and suppose there is a mgu of K and L
such that (Par(K))σ ⊆ V and (C · Γ)σ = C · Γ. Because of (Par(K))σ ⊆ V it follows
(Λ ∪ {K})a ∪ {(C ∨L ·Γ)c} |=E ((C ·Γ)σ)c. Together with (C ·Γ)σ = C ·Γ, the clause
C ∨L · Γ can thus be simplified to C · Γ. Similarly, in a sequent Λ, K ` Φ, C · Γ, A the
constrained clause C · Γ, A can be simplified to (C · Γ)σ when σ is an mgu of K and A
and such that (Par(K))σ ⊆ V and (C · Γ)σ = C · Γ. These applications of Simp have
an explicit counterpart in ME and in DPLL, the Resolve rule. In other words, Simp
covers—and generalizes—that rule.
Simplification by Constrained Clauses. As indicated above, even when orientable,
context equations cannot be used in general to simplify, say, the current set of con-
strained clauses. However, a constrained clause comprised of an orientable positive
unit clause and an empty constraint can be used to simplify (in the sense of de-
modulation) the clause part of a constrained clause. For instance, if f(x) ≈ x · ∅
and f(y) ≈ g(y) ∨ f(a) 6≈ a · f(y) → a are among the current constrained clauses,
then the latter can be simplified by two-fold demodulation with the former to obtain
y ≈ g(y)∨ a 6≈ a · f(y) → a (which can be simplified further). Notice that such simplifi-
cation steps are not restricted to input constrained clauses, as suitable unit constrained
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clauses might be also obtained during a derivation by Simp inferences (for instance, by
means of its instance Resolve).

Demodulation and also extended simplification techniques like contextual rewriting
have been known for a long time, for instance in conjunction with the superposition
calculus. Given that our model construction and the “induced” redundancy criteria
are adapted from the superposition calculus, it is not too surprising that comparable
simplification techniques can be obtained with our Simp rule.

5.5 Derivation Examples

The following excerpt from an MEE derivation demonstrates Para, Simp and Split
in combination. It follows the example in Section 2 by taking the same context Λ =
{f(u) ≈ u, f(a) 6≈ a}. However, to be more instructive, it uses a lifted version f(x) ≈
x ∨ f(f(x)) ≈ b ∨ f(b) 6≈ b of the ground clause there.

¬v, f(u) ≈ u, f(a) 6≈ a ` . . . , f(x) ≈ x ∨ f(f(x)) ≈ b ∨ f(b) 6≈ b · ∅

¬v, f(u) ≈ u, f(a) 6≈ a ` . . . ,
f(x) ≈ x ∨ f(f(x)) ≈ b ∨ f(b) 6≈ b · ∅,
f(x) ≈ x ∨ f(x) ≈ b ∨ f(b) 6≈ b · f(f(x)) → f(x) (By Para)

¬v, f(u) ≈ u, f(a) 6≈ a ` . . . ,
f(x) ≈ x∨f(f(x)) ≈ b∨f(b) 6≈ b · ∅,
f(x) ≈ x∨ f(x) ≈ b ∨f(b) 6≈ b · f(f(x)) → f(x)
f(x) ≈ x∨ f(x) ≈ b ∨ b 6≈ b · f(f(x)) → f(x), f(b) → b

(By Para)

¬v, f(u) ≈ u, f(a) 6≈ a ` . . . ,
f(x) ≈ x∨f(f(x)) ≈ b∨f(b) 6≈ b · ∅,
f(x) ≈ x∨ f(x) ≈ b ∨f(b) 6≈ b · f(f(x)) → f(x)
f(x) ≈ x∨ f(x) ≈ b · f(f(x)) → f(x), f(b) → b

(By Simp)

Among the alternatives to proceed now we focus on possible Split inferences. Con-
sider the last sequent with the constrained clause f(x) ≈ x ∨ f(x) ≈ b · f(f(x)) →
f(x), f(b) → b and its clausal form f(x) ≈ x ∨ f(x) ≈ b ∨ f(f(x)) 6≈ f(x) ∨ f(b) 6≈ b.
Simultaneous unification of that clause literals with fresh variants of the context lit-
erals f(a) 6≈ a,¬v, f(u) ≈ u, f(u) ≈ u, respectively, gives the (productive and admis-
sible) context unifier σ = {x 7→ a, . . .}. The remainder literals of σ are f(a) ≈ b,
f(f(a)) 6≈ f(a) and f(b) 6≈ b (notice that the clause instance literal f(a) ≈ a is con-
tradictory with the context and hence is a non-remainder literal). Each of them can be
selected for Split. The effect of selecting f(a) ≈ b or f(b) 6≈ b was already described in
Section 2.
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We turn to another sample derivation now:

...
¬v, P (u, u) ≈ t ` · · · , P (x, y) 6≈ t ∨Q(x) ≈ t ∨R(y) ≈ t · ∅

¬v, P (u, u) ≈ t ` · · · ,
P (x, y) 6≈ t∨Q(x) ≈ t∨R(y) ≈ t · ∅,

t 6≈ t ∨Q(x) ≈ t∨R(x) ≈ t · P (x, x) → t (By Para)

¬v, P (u, u) ≈ t ` · · · ,
P (x, y) 6≈ t∨Q(x) ≈ t∨R(x) ≈ t · ∅,

Q(x) ≈ t∨R(x) ≈ t · P (x, x) → t (By Simp)

¬v, P (u, u) ≈ t,
Q(u) ≈ t ` · · · ,

P (x, y) 6≈ t∨Q(x) ≈ t∨R(x) ≈ t · ∅,
Q(x) ≈ t∨R(x) ≈ t · P (x, x) → t (By Split (left))

This sequence of derivation steps demonstrates one way in which the Split rule of the ME

calculus can be simulated in MEE: first, all negative clause literals are paramodulated
to obtain negative trivial equations t 6≈ t, which are then eliminated with Simp (notice
that Ref would eliminate these equations t 6≈ t as well, but at the cost of introducing
a new constrained clause). Then a context unifier is built with the clausal form of the
resulting constrained clause. In comparison to ME, the positive literals are still in
place, while the negative literals have been instantiated and moved to the constraint
part, but the context unifier will be the same. The ME Split rule thus can be seen as a
macro derivation rule in MEE.

6 Correctness of the MEE Calculus

Similarly to the ME calculus, derivations in MEE are formally defined in terms of deriva-
tion trees. The purpose of the calculus is to build for a given clause set a derivation
tree all of whose branches are failed iff the clause set is unsatisfiable. The soundness
argument for the calculus is relatively straightforward and analogous to the one for the
ME calculus. Therefore, in this section we concentrate just on completeness. A detailed
soundness proof can be found in Section A.2 in the appendix.

A derivation tree of a set {C1, . . . , Cn} of Σ-clauses is a finite tree over sequents in
which the root node is the sequent ¬v ` C1 · ∅, . . . , Cn · ∅, and each non-root node is
the result of applying one of the derivation rules to the node’s parent.

Let T be a derivation tree presented as a pair (N,E), where N is the set of the
nodes of T and E is the set of the edges of T. A derivation D = (Ti)i<κ in MEE is a
possibly infinite sequence of derivation trees defined in the obvious way. Each derivation
D = ((Ni,Ei))i<κ determines a limit tree T := (

⋃
i<κ Ni,

⋃
i<κ Ei). It is easy to show

that a limit tree of a derivation D is indeed a tree. But note that it will not be a
derivation tree unless D is finite.

Now let T be the limit tree of some derivation, let B = (Ni)i<κ be a branch in T
with κ nodes, and let Λi ` Φi be the sequent labeling node Ni, for all i < κ. Define
ΛB =

⋃
i<κ

⋂
i≤j<κ Λj and ΦB =

⋃
i<κ

⋂
i≤j<κ Φj , the sets of persistent context literals
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and persistent clauses, respectively. These two sets can be combined to obtain the limit
sequent ΛB ` ΦB (of T). 13

As usual, the completeness of MEE relies on a suitable notion of fairness.

Definition 6.1 (Exhausted Branch)
Let T be a limit tree, and let B = (Ni)i<κ be a branch in T with κ nodes. For all i < κ,
let Λi ` Φi be the sequent labeling node Ni. The branch B is exhausted iff for each
constrained clause C · Γ ∈ ΦB that is not redundant wrt. Φj and RΛB

, for some j < κ,
all of the following hold, for all i < κ such that C · Γ ∈ Φi:

(i) if RefME is applicable to Λi ` Φi with selected constrained clause C · Γ and
underlying Ref inference C · Γ ⇒Ref(σ) C ′ · Γ′, and (C · Γ)σ is not redundant wrt.
Φi and RΛB

, then there is a j < κ such that the inference C · Γ ⇒Ref(σ) C ′ · Γ′ is
redundant wrt. Φj and RΛB

.

(ii) if ParaME is applicable to Λi ` Φi with selected constrained clause C · Γ and
underlying Para inference C · Γ ⇒Para(l≈r,σ) C ′ · Γ′, where l ≈ r ∈∼ ΛB and ΛB

produces (l ≈ r)σ, and (C · Γ)σ is not redundant wrt. Φi and RΛB
, then there is

a j < κ such that the inference C · Γ ⇒Para(l≈r,σ) C ′ · Γ′ is redundant wrt. Φj and
RΛB

.

(iii) if Split is applicable to Λi ` Φi with selected constrained clause C ·Γ and produc-
tive context unifier σ such that every context literal K of σ is a Σ-literal14 and
K ∈' ΛB, and (C · Γ)σ is productive wrt. ΛB, then there is a j < κ such that
(C · Γ)σ is redundant wrt. Φj and RΛB

or there is a remainder literal L of σ and
a j ≥ i with j < κ such that Λj produces L but not L.

(iv) Close is not applicable to Λi ` Φi with selected constrained clause C · Γ and any
context unifier σ such that K ∈' ΛB for every context literal K of σ.

(v) Φi 6= {� · ∅}.

A limit tree of a derivation is fair iff it is a refutation tree that is, a finite tree all of
whose leafs are conclusions of the Close rule, or it has an exhausted branch. A derivation
is fair iff its limit tree is fair.

It is not too difficult to see that actually carrying out an RefME or ParaME inference
renders the underlying Ref or Para inference redundant wrt. any rewrite system ordered
by �. Concerning Split, like in the ME calculus carrying out a Split inference also
achieves what fairness demands for. These considerations indicate that a fair proof
procedure indeed exists. It should not be too difficult to modify the proof procedure (and
implementation) for the Model Evolution calculus described in [BFT05] accordingly.

13A limit sequent that does not contain the empty constrained clause � · ∅ acts as the result of a
derivation that is not a refutation.

14 Note the restriction to Σ-literals; it is not possible to restrict condition (iv) in the same way.
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Definition 6.1 provides a framework for fair derivations based on redundant clauses
and redundant inferences. The redundancy criteria are formulated wrt. RΛB

– an object
that is not available during a derivation. The redundancy tests are therefor impossible
to effectively realize in their full strength. Nethertheless there are some effective and
cheap sufficient redundancy tests.

• If a Split inference with a constrained clause C · Γ and context unifier σ results in
a rule l → r in Γσ that in not compatible with the order �, i.e., l ≺ r holds, then
this inference is redundant wrt. any constrained clause set and (in particular) RΛB

(as RΛB
is ordered by �).

• If in case of an RefME or ParaME inference the resulting constrained clause C ′ ·Γ′ is
properly subsumed by a constrained clause from the constrained clause set of the
sequent it is applied to, then this inference is redundant. The case of non-proper
subsumption is handled explicitly.

Likewise, if in case of a Split inference the constrained clause instance (C · Γ)σ is
properly subsumed by a constrained clause from the constrained clause set of the
sequent it is applied to, then this inference is redundant, too.

• Any Split, RefME or ParaME inference is redundant when Cσ contains a trivial
positive equation s ≈ s or Γσ contains a a rule l → r such that (l 6≈ r)σ is an
instance of a parameter-free context literal s 6≈ t.

Proposition 6.2 (Exhausted branches are saturated up to redundancy)
If B is an exhausted branch of a limit tree of some fair derivation then (i) ΛB ` ΦB is
saturated up to redundancy, (ii) ΦB is a constrained clause set without expansion con-
straints, and (iii) ΦB contains no constrained clause of the form � ·Γ that is productive
wrt. ΛB and that is not redundant wrt. ΦB and RΛB

.

Propositions 6.2 and 4.3 together entail our main result:

Theorem 6.3 (Completeness of MEE)
Let Ψ be a parameter-free Σ-clause set, and T be the limit tree of a fair derivation of Ψ.
If T is not a refutation tree, then Ψ is satisfiable; more specifically, for every exhausted
branch B of T, RΛB

|=E Ψ.

As an easy corollary to the soundness and completeness of the calculus we also obtain
the following.

Corollary 6.4 (Bernays-Schönfinkel Class with Equality)
The MEE Calculus can be used as a decision procedure for the Bernays-Schönfinkel
class, i.e., for sentences with the quantifier prefix ∃∗∀∗.
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7 Conclusions

We have presented the MEE calculus, an extension of the Model Evolution calculus by
paramodulation-based inference rules for equality. Our main result is its correctness,
in particular the completeness in combination with redundancy criteria. As for future
work, we will extend the implementation of the model evolution calculus, the Darwin
system [BFT05] to the MEE calculus.

There are also some theoretical issues to be addressed. The perhaps most pressing
theoretical question is if or when paramodulation into smaller sides of equations can
be avoided. It is clear that the current completeness proof breaks down when such
inferences are no longer subject to fairness. Other questions concern further, useful
instantiations of our simplification rule.

Acknowledgements. We would like to thank the reviewers for their valuable comments.
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A Proofs

This appendix contains auxiliary lemmas, their proofs, and proofs of the results stated
in the main part of this paper. A reference like “Lemma [BT03b]-4.12” refers to
Lemma 4.12 in [BT03b], where the technical report [BT03b] is the long version of the
CADE paper [BT03a]. That papers introduce the Model Evolution Calculus (without
equality). We re-use results on basic properties of contexts and properties of the Split
derivation rule.

Strictly speaking, the results there do not directly apply here to MEE because, first,
in the present paper we adopt the convention that any context now contains with each
equation also its symetric version, and, second the presentation of the Close and Split
derivation rules is slightly different. However, by inspection of the proofs in [BT03b] one
may convince oneself that the results there easily carry over as needed. In particular,
some results are obtained by exploiting properties of the Assert and Compact derivation
rules. However, the Compact rule is the same in both calculi, and the Assert rule here
is defined in such a way that the properties relevant to the completeness proof are the
same as in [BT03b].

A.1 Equality Reasoning on Constrained Clauses

Proposition 4.3
Let Λ ` Φ be a sequent saturated up to redundancy and suppose Φ is a constrained
clause set without expansion constraints. Then, RΛ |=E Φ if and only if Φ contains no
constrained clause of the form � · Γ that is productive wrt. Λ and non-redundant wrt.
Φ and RΛ.

Proof. For the only-if direction suppose RΛ |=E Φ. By way of contradiction suppose
that Φ contains a clause of the form � · Γ that is productive wrt. Λ and non-redundant
wrt. Φ and RΛ. By definition of productivity, there is a ground substitution γ for � · Γ
such that Γγ ⊆ RΛ. With RΛ |=E Φ, and hence RΛ |=E � ·Γ, it follows RΛ |=E �, which
is impossible.

Now we turn to the if-direction. By well-founded induction we will prove RΛ |=E

(C · Γ)γ, for all C · Γ ∈ Φ and all ground substitutions γ for C · Γ. This result will
directly entail RΛ |=E Φ. Hence let C ·Γ be an arbitrary constrained clause from Φ and
γ an arbitrary ground substitution for C · Γ.

1. (C · Γ)γ is redundant wrt. Φ and RΛ.
If (C · Γ)γ is redundant wrt. Φ and RΛ then, by definition, Φ(C·Γ)γ |=RΛ

(C · Γ)γ. By
induction, RΛ |=E Φ(C·Γ)γ , and with Φ(C·Γ)γ |=RΛ

(C · Γ)γ it follows RΛ |=E (C · Γ)γ.
Hence assume from now on that (C ·Γ)γ is not redundant wrt. Φ and RΛ. Therefore,

the more general constrained clause C · Γ cannot be redundant wrt. Φ and RΛ either.
Notice this is a sufficient condition to apply items (1) and (2) of Definition 4.2 below.

2. C · Γ = C · Γ′, A[x], and xγ is reducible wrt. RΛ.
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Suppose Γ is of the form Γ′, A, that A contains a variable x, i.e., A = A[x], and that xγ
is reducible wrt. RΛ. That is, xγ = xγ[l] and there is a rule l → r ∈ RΛ (for which it
holds l � r).

The constraint A is a rule, say, s → t, for some terms s and t. If sγ ≺ tγ then
(s → t)γ /∈ RΛ, because all rules in RΛ are ordered from left to right. Hence Γγ 6⊆ RΛ

and so (C · Γ)γ is redundant wrt. Φ and RΛ and case (1) applies. Hence suppose from
now on sγ � tγ.

Because Φ is given as a constrained clause set without expansion constraints, the
variable x can occur only as a proper subterm of s or as a (possibly non-proper) subterm
of t, or both. Therefore, l is a proper subterm of sγ or a (possibly non-proper) subterm
of tγ, or both. In any case, as a property of orderings, it follows (s → t)γ � l → r. As
(s → t)γ contains the subterm l, it is reducible by l → r. Therefore ε(s≈t)γ = ∅, and so
(s → t)γ /∈ RΛ. As above, it follows (C · Γ)γ is redundant wrt. Φ and RΛ and case (1)
applies again.

3. C · Γ = L[x] ∨D · Γ, x does not occur in Γ and xγ is reducible wrt. RΛ.
Suppose C is of the form L ∨ D and that L contains a variable x, i.e., L = L[x], and
xγ is reducible wrt. RΛ. That is, xγ = xγ[l] and there is a rule l → r ∈ RΛ. By the
previous case (2) we may assume that x does not occur in any atom in Γ.

Let γ′ be the substitution that is the same as γ, except for x, where we set xγ′ =
xγ[r]. That is, γ′ is like γ but with the rewrite rule l → r applied to xγ. From l � r
it follows Cγ′ ≺ Cγ and hence (C · Γ)γ′ ≺ (C · Γ)γ. By the induction hypothesis
RΛ |=E (C · Γ)γ′.

We distinguish two complementary cases. If Γγ′ ⊆ RΛ then from RΛ |=E (C · Γ)γ′

it follows RΛ |=E Cγ′. Because of l → r ∈ RΛ and by definition of γ′ conclude with
congruence RΛ |=E Cγ, which implies RΛ |=E (C · Γ)γ. If Γγ′ 6⊆ RΛ then recall we
assumed that x does not occur in any rule in Γ. Hence Γγ′ = Γγ and it follows Γγ 6⊆ RΛ.
Again, the constrained clause (C ·Γ)γ is redundant wrt. Φ and RΛ and case (1) applies.

4. C · Γ = s 6≈ t ∨D · Γ and sγ = tγ.
If C is of the form s 6≈ t ∨ D and it holds sγ = tγ, then there is an inference s 6≈
t ∨ D · Γ ⇒Ref(σ) (D · Γ)σ, where σ is a mgu of s and t (and there is a substitution δ
such that γ = σδ).

Because (C ·Γ)γ is not redundant wrt. Φ and RΛ, as assumed above, the more general
clause (C ·Γ)σ cannot be redundant wrt. Φ and RΛ either. Hence, by Definition 4.2-(1),
the inference s 6≈ t ∨D · Γ ⇒Ref(σ) (D · Γ)σ is redundant wrt. Φ and RΛ. In particular,
thus, its ground instance (s 6≈ t ∨ D · Γ)γ ⇒Ref(ε) (D · Γ)γ via γ is redundant wrt.
Φ and RΛ. By definition of redundancy, Φ(s 6≈t∨D·Γ)γ |=RΛ

(D · Γ)γ. By induction,
RΛ |=E Φ(s 6≈t∨D·Γ)γ , and it follows RΛ |=E (D · Γ)γ. Finally, from RΛ |=E (D · Γ)γ it
follows trivially RΛ |=E (s 6≈ t ∨D · Γ)γ.

5. C · Γ = L ∨D and Lγ is reducible wrt. RΛ at a non-variable position.
Suppose C is of the form L ∨D and Lγ is reducible wrt. RΛ. That is Lγ = Lγ[l]p and
there is a rule l → r ∈ RΛ. If p is a position at or below a variable in L then case (2)
or case (3) applies. Hence assume that p is a non-variable position in L.
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We consider the ground Para inference

Lγ[l]p ∨Dγ · Γγ ⇒Para(l≈r,ε) Lγ[r]p ∨Dγ · Γγ, l → r . (1)

By construction of RΛ, the rewrite rule l → r written as an equation l ≈ r is an
instance of some equation in the context Λ. Let l′ ≈ r′ ∈∼ Λ be a fresh variant of such
an equation. Because it is fresh, we may assume γ has been extended so as to give
(l′ ≈ r′)γ = l ≈ r.

Because p is a non-variable position in L, the Para inference

L[t]p ∨D · Γ ⇒Para(l′≈r′,σ) (L[r] ∨D · Γ, l′ → r′)σ (2)

exists, where σ is a mgu of l′ and t, and γ = σδ for some substitution δ. The ground
Para inference (1) then is a ground instance of the Para inference (2) via γ.

Because (C ·Γ)γ is not redundant wrt. Φ and RΛ, as assumed above, the more general
clause (C ·Γ)σ cannot be redundant wrt. Φ and RΛ either. Hence, by Definition 4.2-(1),
the inference (2) is redundant wrt. Φ and RΛ. In particular, thus, its ground instance
(1) via γ is redundant wrt. Φ and RΛ. By definition of redundancy, ΦLγ[l]p∨Dγ·Γγ |=RΛ

Lγ[r]p ∨ Dγ · Γγ, l → r. By induction, RΛ |=E ΦLγ[l]p∨Dγ·Γγ , and it follows RΛ |=E

Lγ[r]p∨Dγ ·Γγ, l → r. Finally, from RΛ |=E Lγ[r]p∨Dγ ·Γγ, l → r and l → r ∈ RΛ, as
concluded above, it follows by congruence RΛ |=E Lγ[l]p ∨Dγ ·Γγ, i.e., RΛ |=E (C ·Γ)γ.

6. Cγ is irreducible.
By the previous cases (2), (3) and (5) together we may now assume that no literal in
Cγ is reducible wrt. RΛ. We distinguish two cases.

6.1. C · Γ = s 6≈ t ∨D · Γ.
If C is of the form s 6≈ t ∨D then by case (4) we may assume sγ 6= tγ. Because Cγ is
irreducible wrt. RΛ in particular the equation sγ 6= tγ is irreducible wrt. RΛ. Because
sγ 6= tγ the terms sγ and tγ are not joinable wrt. RΛ. Thus, RΛ 6|=E sγ ≈ tγ, or, in
other words RΛ |=E sγ 6≈ tγ, which trivially entails RΛ |=E (C · Γ)γ.

6.2. C · Γ = s1 ≈ t1 ∨ · · · ∨ sm ≈ tm · Γ.
By case (6.1) we may assume that C does not contain a negative equation. Thus, C is of
the form s1 ≈ t1∨· · ·∨sm ≈ tm, for some positive equations si ≈ ti, for all i = 1, . . . ,m,
where m ≥ 0. By the assumption of case (6), each equation (si ≈ ti)γ is irreducible wrt.
RΛ.

We may assume siγ 6= tiγ, because if siγ = tiγ then (C · Γ)γ is trivially redundant
wrt. Φ and RΛ and so case (1) applies. Without loss of generality assume siγ � tiγ.
Because (si ≈ ti)γ is irreducible wrt. RΛ it holds neither (si → ti)γ ∈ RΛ, nor is
(si ≈ ti)γ reducible wrt. RΛ

(si≈ti)γ
(all other rewrite rules in RΛ are greater wrt. � than

(si ≈ ti)γ and cannot reduce (si ≈ ti)γ).
We distinguish two complementary cases, where the first one will lead to a contra-

diction.
In the first case Γγ ⊆ RΛ holds. Together with what we just concluded it follows

(C ·Γ)γ is productive wrt. Λ. Under the assumption of the if-direction of the proposition,
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that Φ contains no constrained clause of the form � · Γ that is productive wrt. Λ and
that is not redundant wrt. Φ and RΛ it follows C 6= �. Consequently we have m > 0.
By Definition 4.2-(2) it follows IΛ |= Cγ. Because m > 0 there is a j with 1 ≤ j ≤ m
such that IΛ |= (sj ≈ tj)γ. From above we know that (sj ≈ tj)γ is irreducible wrt.
RΛ

(sj≈tj)γ
. But then εΛ(sj≈tj)γ

= {(sj ≈ tj)γ} and it follows (sj ≈ tj)γ ∈ RΛ – a plain
contradiction. Hence the case Γγ ⊆ RΛ is impossible.

In the second case Γγ 6⊆ RΛ holds. But then (C · Γ)γ is redundant wrt. Φ and RΛ

and case (1) applies. ut

A.2 Soundness of the MEE Calculus

An important ingredient in the soundness proof is to show that each of the MEE deriva-
tion rules preserves a particular notion of satisfiability that we call E-a-satisfiability. It
lifts the notion of a-satisfiability in [BT03b] to the theory of equality.

Recall from Section 5.3 that if σ is a substitution, we denote by σa the composed
substitution σα. We point out for later that for all literals L and substitutions σ such
that (Par(L))σ ⊆ V (which includes all parameter-preserving substitutions), Lσa =
Laσa.

Recall from Section 4.1 the notion of the clausal form of a constrained clause C · Γ,
denoted by (C · Γ)c. Recall further that Φc denotes the set of clausal forms of all
constrained clauses in Φ.

We say that a sequent Λ ` Φ is E-a-(un)satisfiable iff the clause set Λa ∪ Φc is
E-(un)satisfiable in the standard sense—that is, has (no) Herbrand E-models.

An essential part of the soundness proof is to show that E-a-satisfiability of sequents
is preserved as one follows the sequents derived in a derivation tree. The following
lemma is a precise statement.

Lemma A.2
For each rule of the MEE calculus, if the premise of the rule is E-a-satisfiable, then one
of its conclusions is E-a-satisfiable as well.

Proof. We prove the claim for all MEE derivation rules, which are RefME, ParaME, Split,
Close, Assert and Simp.

RefME or ParaME) We treat both cases in one. The premise of RefME or ParaME has
the form Λ ` Φ, C · Γ while its conclusion has the form Λ ` Φ, C · Γ, C ′ · Γ′ where
C ·Γ ⇒D C ′ ·Γ′ and D stands for Ref(σ) or Para(l ≈ r, σ), where l ≈ r is a parameter-free
(fresh) variant of a Σ-equation in Λ.15 With the axioms of a congruence relation it is
not difficult to see that (C · Γ)c and (C ′ · Γ′)c are E-equivalent.

Suppose that Λ ` Φ, C · Γ is E-a-satisfiable. By definition, Λa ∪ (Φ ∪ {C · Γ})c is
E-satisfiable. It follows that Λa ∪ (Φ ∪ {C · Γ, C ′ · Γ′})c also is E-satisfiable. In other

15That l ≈ r is a parameter-free (fresh) variant of a Σ-equation is not an essential prerequisite as
such. It is important though that C′ · Γ′ is parameter-free, because E-satisfiability is defined only for
parameter-free constrained clause sets. That l ≈ r is parameter-free guarantees that this property is
preserved under ParaME inferences.
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words, the sequent Λ ` Φ, C ·Γ, C ′ ·Γ′ is E-a-satisfiable, which is the conclusion of the
RefME or ParaME inference.

Split) The premise of Split has the form Λ ` Φ, while its conclusions have respectively
the form Λ, L ` Φ and Λ, L

sko ` Φ. Suppose that Λ ` Φ is E-a-satisfiable. Now let
x := (x1, . . . , xn) be an enumeration of all the variables of L and note that L and La

have exactly the same variables. Then consider the unit clause La (or, more explicitly,
∀x La) and its negation ¬∀x La. Clearly, one of the two sets

S1 := Λa ∪ {La} ∪ Φc and S2 := Λa ∪ {¬∀x La} ∪ Φc

must be E-satisfiable. If S1 is E-satisfiable, we have immediately that Λ, L ` Φ is
E-a-satisfiable. If S2 is E-satisfiable, then its Skolemized form Λa ∪ {(La)sko} ∪ Φc

is also E-satisfiable. Since (La)sko = (Lsko)a, as one can easily see, we then have that
Λ, L

sko ` Φ is E-a-satisfiable.

Close) The premise of Close has the form Λ ` Φ, C ·Γ, while its conclusion has the form
Λ ` � · ∅, and there is a context unifier σ of (C · Γ)c against Λ without remainder. As
Λ ` � · ∅ is E-a-unsatisfiable, we must show that Λ ` Φ, C · Γ is E-a-unsatisfiable as
well. We show that by proving that Λa ∪ {(C · Γ)c} is E-unsatisfiable.

Let C · Γ = L1 ∨ · · · ∨ Lm · Am+1, . . . , An for some n ≥ m ≥ 0. For uniformity of
notation let Lj := sj 6≈ tj , for all j = m + 1, . . . , n, where Aj = sj → rj . Since σ is a
context unifier of (C · Γ)c against Λ without remainder, we know that there are fresh
variants K1, . . . ,Km,Km+1, . . . ,Kn ∈' Λ such that σ is a most general simultaneous
unifier of {K1, L1}, . . . , {Kn, Ln} and (Par(Ki))σ ⊆ V for all i = 1, . . . , n. Let us fix
the literals K1, . . . ,Kn.

Clearly, σa is a simultaneous unifier of {K1, L1}, . . . , {Kn, Ln}. By an earlier ob-
servation we know that Kiσ

a = Ka
i σa for all i = 1, . . . , n. It follows that σa is a

simultaneous unifier of

{Ka
1 , L1}, {Ka

2 , L2}, . . . , {Ka
n, Ln}.

This entails that {Ka
1 , . . . , Ka

n, L1∨· · ·∨Ln} is unsatisfiable, and hence E-unsatisfiable.
From the fact that Ka

1 , . . . ,Ka
n ∈' Λa it then immediately follows that Λa ∪ {(C · Γ)c}

is E-a-unsatisfiable.

Assert) The premise of Assert has the form Λ ` Φ while its conclusion has the form
Λ, L ` Φ where Λa ∪ Φc |=E La.

Suppose that Λ ` Φ is E-a-satisfiable. By definition, Λa ∪ Φc is E-satisfiable. With
Λa ∪ Φc |=E La it follows that Λa ∪ {La} ∪ Φc also is E-satisfiable. In other words, the
sequent Λ, L ` Φ is E-a-satisfiable, which is the conclusion of the Assert inference.

Simp) The premise of Simp has the form Λ ` Φ, C ·Γ while its conclusion has the form
Λ ` Φ, C ′ · Γ′. In case (i), when C · Γ is removed from Φ, C · Γ, the claim follows
trivially. Hence suppose case (ii), where Λa ∪ (Φ ∪ {C · Γ})c |=E (C ′ · Γ′)c.
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Suppose that Λ ` Φ, C · Γ is E-a-satisfiable. By definition, Λa ∪ (Φ ∪ {C · Γ})c is
E-satisfiable. With Λa ∪ (Φ ∪ {C ·Γ})c |=E (C ′ ·Γ′)c it follows that Λa ∪ (Φ ∪ {C ′ ·Γ′})c

also is E-satisfiable. In other words, the sequent Λ ` Φ, C ′ · Γ′ is E-a-satisfiable, which
is the conclusion of the Simp inference. ut

Proposition A.3 (Soundness)
For all sets Ψ of parameter-free Σ-clauses, if Ψ has a refutation tree, then Ψ is E-
unsatisfiable.

Proof. Let TΨ be a refutation tree of Ψ, where Ψ = {C1, . . . , Cn} for some Σ-clauses
C1, . . . , Cn, where n ≥ 0. We prove below by structural induction that the root of
any subtree of a refutation tree is E-a-unsatisfiable. This will entail in particular that
¬v ` Φ, the root of TΨ, is E-a-unsatisfiable, where Φ = {C1 · ∅, . . . , Cn · ∅}.. The claim
will then follows from the immediate facts that the sequent ¬v ` Φ is E-a-unsatisfiable
iff Φ is E-unsatisfiable iff Ψ is E-unsatisfiable. (Notice that the latter equivalence is
trivial because the constraints of all constrained clauses in Φ are empty.)

Let T be a subtree of a refutation tree and let N be its root. If T is a one-node
tree, N can only have the form Λ ` � · ∅, which is trivially E-a-unsatisfiable. If T has
more than one node, we can assume by induction that all the children nodes of N are
E-a-unsatisfiable. But then we can conclude that N is E-a-unsatisfiable as well by the
contrapositive of Lemma A.2. ut

A.3 Completeness of the MEE Calculus

Lemma A.4
Let C1 · Γ1 and C2 · Γ2 be ground constrained clauses. If (Φj)C1·Γ1 |=RΛB

C2 · Γ2 for
some j < κ then (ΦB)C1·Γ1 |=RΛB

C2 · Γ2.

Proof. The proof is by well-founded induction. Suppose the result to hold for all ground
constrained clauses C ′

1 · Γ′1 and C ′
2 · Γ′2 such that C ′

1 · Γ′1 ≺ C1 · Γ1.16

Suppose (Φj)C1·Γ1 |=RΛB
C2 ·Γ2 holds for some j < κ. If (Φj)C1·Γ1 ⊆ (ΦB)C1·Γ1 then

the result follows from the monotonicity of first-order logic with equality. Otherwise
let (Φj)C1·Γ1 itself denote a finite subset of (Φj)C1·Γ1 such that the entailment in the
premise holds. Such a finite set exists by compactness of first-order logic with equality.

Let Φ′ := (Φj)C1·Γ1 \ (ΦB)C1·Γ1 be those ground constrained clauses from (Φj)C1·Γ1

that are not an instance of any persisting clause in ΦB. Chose any constrained clause
C ′ ·Γ′ ∈ Φ′ arbitrary. By construction, it is a ground instance of some clause C ·Γ ∈ Φj

such that C · Γ /∈ ΦB. This means that C · Γ has been removed from the clause set Φk

of a sequent Λk ` Φk labeling the node Nk of the branch B, for some k < κ. In other
words, the Simp derivation rule has been applied to Λk ` Φk with selected constrained
clause C · Γ. We distinguish two subcases.

16Thus, formally, this is induction on the lexicographic extension of the ordering ≺ on pairs, which
compares (C′

1 · Γ′
1, C

′
2 · Γ′

2) ≺ (C1 · Γ1, C2 · Γ2).
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In the first subcase C ·Γ has been removed by non-proper subsumption from Φk. Let
D ·∆ ∈ Φk be the constrained clause non-properly subsuming C ·Γ. As an easy inductive
consequence of the definition of the RefME and ParaME derivation rules, no constrained
clause set derived can contain a constrained clause and a variant of it. Hence, D · ∆
cannot be a variant of C · Γ and C · Γ must be a proper instance of D · ∆. Because
the ordering based on the converse relation, proper generalization, is well-founded, by
induction there is a clause D′ ·∆′ in ΦB that non-properly subsumes C · Γ (it could be
D ·∆). Now, with C ′ · Γ′ being an instance of C · Γ, C ′ · Γ′ is an instance of D′ ·∆′ as
well. With D′ ·∆′ ∈ ΦB, C ′ · Γ′ thus is an instance of a persisting clause in ΦB. With
this contradiction to the construction of Φ′ conclude this subcase is impossible.

Hence, as the second subcase, by definition of Simp the constrained clause C ·Γ, and
hence its instance C ′ · Γ′ is redundant wrt. Φk+1 and RΛB

. This conclusion makes use
of the fact that RΛB

is compatible with Λk. That RΛB
is indeed compatible with Λk

has been argued for after Definition 5.3 (an explicit proof on more technical grounds is
based on easy results from the technical report).

That C ′ · Γ′ is redundant wrt. Φk+1 and RΛB
means by definition of redundancy

(Φk+1)C′·Γ′ |=RΛB
C ′ · Γ′. With C ′ · Γ′ ∈ Φ′ ⊆ (Φj)C1·Γ1 it follows C ′ · Γ′ ≺ C1 · Γ1. By

the induction hypothesis then

(ΦB)C′·Γ′ |=RΛB
C ′ · Γ′ . (3)

With C ′ · Γ′ ≺ C1 · Γ1 it follows easily (ΦB)C′·Γ′ ⊆ (ΦB)C1·Γ1 . Together with (3) and by
monotonicity of first-order logic with equality it follows

(ΦB)C1·Γ1 |=RΛB
C ′ · Γ′ . (4)

Because of this entailment, the constrained clause C ′·Γ′ can be removed from the premise
(Φj)C1·Γ1 in the given entailment at the cost of adding the stronger set (ΦB)C1·Γ1 . More
formally, from (Φj)C1·Γ1 |=RΛB

C2 · Γ2 and (4) it follows

(ΦB)C1·Γ1 ∪ ((Φj)C1·Γ1 \ {C ′ · Γ′}) |=RΛB
C2 · Γ2 . (5)

Repeating this procedure for each of the (finitely many) members of Φ′ allows to conclude

(ΦB)C1·Γ1 ∪ ((Φj)C1·Γ1 \ Φ′) |=RΛB
C2 · Γ2 . (6)

Recall that Φ′ = (Φj)C1·Γ1\(ΦB)C1·Γ1 , which implies by elementary set theory (Φj)C1·Γ1\
Φ′ ⊆ (ΦB)C1·Γ1 . But then, (ΦB)C1·Γ1 |=RΛB

C2 · Γ2 follows from (6) immediately. ut

Lemma A.5
Let C ·Γ be a constrained clause. If C ·Γ is redundant wrt. Φj and RΛB

, for some j < κ
then C · Γ is redundant wrt. ΦB and RΛB

.

Proof. Suppose C · Γ is redundant wrt. Φj and RΛB
, for some j < κ. Let C ′ · Γ′ be

any ground instance C · Γ. By definition, C ′ · Γ′ is redundant wrt. Φj and RΛB
, which

means (Φj)C′·Γ′ |=RΛB
C ′ · Γ′. With Lemma A.4 it follows (ΦB)C′·Γ′ |=RΛB

C ′ · Γ′. In
other words C ′ · Γ′ is redundant wrt. ΦB and RΛB

. Because C ′ · Γ′ was chosen as an
arbitrary ground instance of C · Γ, C · Γ is redundant wrt. ΦB and RΛB

. ut
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Lemma A.6
Let C · Γ be a constrained clause and C · Γ ⇒D C ′ · Γ′ an inference, where D stands for
Ref(σ) or Para(l ≈ r, σ), for some substitution σ and l ≈ r ∈∼ ΛB in the case of Para. If
the inference C · Γ ⇒D C ′ · Γ′ is redundant wrt. Φj and RΛB

, for some j < κ then the
inference C · Γ ⇒D C ′ · Γ′ is redundant wrt. ΦB and RΛB

.

Proof. Suppose the inference C · Γ ⇒D C ′ · Γ′ is redundant wrt. Φj and RΛB
, for some

j < κ. Let γ be an arbitrary ground substitution for C ·Γ, and also for l ≈ r in the case
of Para, such that γ = σδ for some substitution δ and such that (C ·Γ)γ ⇒D’ (C ′ ·Γ′)δ is
a ground instance of C ·Γ ⇒D C ′ ·Γ′ via γ, where D’ stands for Ref(ε) or Para((l ≈ r)γ, ε).
Because chosen arbitrarily, it suffices to show that this ground instance (C · Γ)γ ⇒D’

(C ′ · Γ′)δ is redundant wrt. ΦB and RΛB
.

Because the inference C · Γ ⇒D C ′ · Γ′ is redundant wrt. Φj and RΛB
, its instance

(C ·Γ)γ ⇒D’ (C ′ ·Γ′)δ is redundant wrt. Φj and RΛB
as well. By definition of redundancy

this means
(Φj)(C·Γ)γ |=RΛB

(C ′ · Γ′)δ . (7)

By Lemma A.4 then
(ΦB)(C·Γ)γ |=RΛB

(C ′ · Γ′)δ , (8)

which, by definition, means that the ground instance (C ·Γ)γ ⇒D’ (C ′ ·Γ′)δ is redundant
wrt. ΦB and RΛB

. ut

[ The following Lemma is not in the technical report - we made it only for a later
version ]

Lemma A.7 (Close Applicability)
Let C · Γ ∈ ΦB and i < κ. If Close is applicable to Λi ` Φi with selected constrained
clause C ·Γ, then for some j ≥ i with j ≤ κ, Close is applicable to Λj ` Φj with selected
constrained clause C · Γ and such that K ∈ ΛB for each context literal K of its context
unifier.

Proof. Assume that Close is applicable to Λi ` Φi with selected clause C · Γ. We will
directly prove the conclusion.

Let (C · Γ)c = L1 ∨ · · · ∨Ln be the clausal form of C · Γ, for some n ≥ 0 and literals
L1, . . . , Ln. Let σ′ be the context unifier of the considered Close rule application and let
K ′

1, . . . ,K
′
n ∈ Λi be the context literals of σ′. With Lemma [BT03b]-4.17 it follows there

are literals K1, . . . ,Kn ∈ ΛB such that Kk ≥ K ′
k, for k = 1, . . . , n. With C ·Γ ∈ ΦB and

K1, . . . ,Kn ∈ ΛB it follows easily that there is an j ≥ i with j < κ such that C ·Γ ∈ Φj

and Kk ∈ Λj , for k = 1, . . . , n.
With this, it is enough to show that there is a context unifier σ of (C ·Γ)c against Λj

without remainder and context literals K1, . . . ,Kn. In the sequel the index k allways
ranges from 1, . . . , n.

From the existence of the context unifier σ′ and the fact Kk ≥ K ′
k it follows there is

a most general simultaneous unifier σ′′ of {K1, L1}, . . . , {Kn, Ln}. The same arguments
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as in the proof of the Lifting Lemma, Lemma [BT03b]-4.12, can be applied to show this.
However, there is no guarantee that (Par(Kk))σ′′ ⊆ V . Using the same construction
as in the proof of Lemma [BT03b]-4.23, it can be shown that there is a renaming
substitution ρ such that (Par(Kk))σ′′ρ ⊆ V . Setting σ := σ′′ρ thus gives the desired
substitution. ut

Proposition 6.2 (Exhausted branches are saturated up to redundancy)
If B is an exhausted branch of a limit tree of some fair derivation then (i) ΛB ` ΦB is
saturated up to redundancy, (ii) ΦB is a constrained clause set without expansion con-
straints, and (iii) ΦB contains no constrained clause of the form � ·Γ that is productive
wrt. ΛB and that is not redundant wrt. ΦB and RΛB

.

Proof. Suppose B is an exhausted branch of a limit tree of some fair derivation. Ac-
cording to Definition 4.2 it suffices to chose a constrained clause C · Γ ∈ ΦB arbitrarily
and prove the properties claimed there for C · Γ.

Notice the inital constrained clause set is built over the signature Σ, and so is every
derivable constrained clause set by restrictions on the derivation rules that preserve this
property.

If there is a j < κ such that C ·Γ is redundant wrt. Φj and RΛB
, then by Lemma A.5

the constrained clause C · Γ is redundant wrt. ΦB and RΛB
, and nothing remains to be

shown. Hence suppose from now on that C · Γ is not redundant wrt. Φj and RΛB
, for

all j < κ.

1. C · Γ ⇒D C ′ · Γ′.
This case is concerned with RefME or ParaME inferences. For economy of presentation,
we treat both possibilities simultaneously. Thus suppose there is an inference C · Γ ⇒D

C ′ · Γ′, for some constrained clause C ′ · Γ′, where D stands for Ref(σ) or Para(l ≈ r, σ),
for some substitution σ and l ≈ r ∈∼ ΛB in the case of Para. It suffices to show that
this inference is redundant wrt. ΦB and RΛB

or that (C ·Γ)σ is redundant wrt. ΦB and
RΛB

.
If there is a j < κ such that (C · Γ)σ is redundant wrt. Φj and RΛB

, then by
Lemma A.5 (C ·Γ)σ is redundant wrt. ΦB and RΛB

, and nothing remains to be shown.
Hence suppose from now on that (C · Γ)σ is not redundant wrt. Φj and RΛB

, for all
j < κ. It suffices to show that an arbitrarily chosen ground instance of the inference
C · Γ ⇒D C ′ · Γ′ is redundant wrt. ΦB and RΛB

. Hence let γ be an arbitrary ground
substitution for C · Γ, and also for l ≈ r in the case of Para, such that the range of γ
consists of Σ-terms only, γ = σδ for some substitution δ and such that (C · Γ)γ ⇒D’

(C ′ · Γ′)δ is a ground instance of C · Γ ⇒D C ′ · Γ′ via γ, where D’ stands for Ref(ε) or
Para((l ≈ r)γ, ε). Hence we will show that this ground inference (C · Γ)γ ⇒D’ (C ′ · Γ′)δ
is redundant wrt. ΦB and RΛB

.
First we consider the case of Para in more detail and rule out a specific situation.

More precisely, suppose (l → r)γ /∈ RΛB
. Observe that by definition of Para, the

equation (l ≈ r)γ used in the paramodulation inference is included in the constraint
part of the derived clause, i.e., (l → r)γ ∈ Γ′δ holds. But then, RΛB

|=E (C ′ · Γ′)δ
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follows trivially from (l ≈ r)γ /∈ RΛB
, and so the ground inference (C ·Γ)γ ⇒D’ (C ′ ·Γ′)δ

is trivially redundant wrt. ΦB and RΛB
. Hence suppose from now on (l → r)γ ∈ RΛB

.
It follows by construction of RΛB

that ΛB produces (l ≈ r)γ. Without loss of generality
assume that l ≈ r itself produces (l ≈ r)γ in ΛB (it could also be a different equation,
but we could use it as l ≈ r from the start of the the proof.) For later use note that
l ≈ r also produces (l ≈ r)σ in ΛB.17

From C ·Γ ∈ ΦB it follows there is an i < κ such that for all j ≥ i with j < κ it holds
C · Γ ∈ Φj . Likewise, from s ≈ t ∈ ΛB it follows there is an i′ such that for all j′ ≥ i′ it
holds l ≈ r ∈∼ Λj′ . Without loss of generality assume i ≥ i′. It follows l ≈ r ∈∼ Λj , for
all j ≥ i.

Because of C ·Γ ⇒D C ′ ·Γ′, RefME or ParaME is applicable (in particular) to Λi ` Φi

with selected clause C · Γ, substitution σ and derived clause C ′ · Γ′ unless C ′ · Γ′ is
contained as a variant in Φi. In that case, the inference C · Γ ⇒D C ′ · Γ′ is redundant
wrt. Λi ` Φi and RΛB

and nothing remains to show.
Recall we are currently considering the case that (C · Γ)σ is not redundant wrt. Φj

and RΛB
, for every j < κ. Furthermore, as concluded above, in the case of Para we have

that ΛB produces (l ≈ r)σ.
But then, by Definition 6.1-(i) or Definition 6.1-(ii) there is a k < κ such that the

inference C · Γ ⇒D C ′ · Γ′ is redundant wrt. Φk and RΛB
. By Lemma A.6 then, this

inference is also redundant wrt. ΦB and RΛB
. Therefore, in particular its instance

(C · Γ)γ ⇒D’ (C ′ · Γ′)δ is redundant wrt. ΦB and RΛB
, which remained to be shown.

2. (C · Γ)γ is productive wrt. ΛB.
Let γ be an arbitrary grounding substitution for C · Γ such that (C · Γ)γ is productive
wrt. ΛB. We will show that RΛB

|= Cγ holds or that (C · Γ)γ is redundant wrt. ΦB

and RΛB
. Together with the sub-proof above, the proof of item (i) of the proposition

statement will be complete then.
Notice we do not distinguish whether C = � or not. Hence, if C = �, then, because

no interpretation satisfies �, we will have shown that (� · Γ)γ is redundant wrt. ΦB

and RΛB
. Because γ was chosen arbitrarily, this entails that Φ contains no constrained

clause of the form � · Γ that is productive wrt. ΛB and that is not redundant wrt. ΦB

and RΛB
, which proves item (iii) of the proposition statement.

To show that RΛB
|= Cγ holds or that (C · Γ)γ is redundant wrt. ΦB and RΛB

,
suppose, by way of contradiction, RΛB

6|= Cγ and that (C · Γ)γ is not redundant wrt.
ΦB and RΛB

.18

Recall that (C ·Γ)γ is a productive constrained clause. By the syntactical constraints
imposed on productive constrained clauses, C · Γ can be written as A1 ∨ · · · ∨ Am ·
Am+1, . . . , An where n ≥ m ≥ 0 and Aiγ is a non-trivial positive equation, for all
i = 1, . . . ,m.

17The technical report contains the following lemma, from which this claim follows easily: if K
produces L in Λ and K & K′ & L then K produces K′ in Λ.

18The proof idea is the same as in the proof of Proposition 4.29 in the technical report. This connection
is made explicit by taking a constrained clause A1 ∨ · · · ∨ Am · Am+1, . . . , An as its clausal form A1 ∨
· · · ∨Am ∨ ¬Am+1 ∨ · · · ∨ ¬An.
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Since RΛB
6|= Cγ, the literals ¬A1γ, . . . ,¬Amγ are all E-satisfied by RΛB

. That (C ·
Γ)γ is productive wrt. ΛB implies {Am+1γ, . . . , Anγ} ⊆ RΛB

. By definition of the model
construction, any rewrite rule in RΛB

must also be produced by ΛB (as an equation).
Thus, RΛB

produces Am+1γ, . . . , Anγ (again, as equations). By Lemma [BT03b]-4.12,19

ΛB is non-contradictory, and so by Proposition [BT03b]-4.10 it follows that ΛB produces
¬A1γ, . . . ,¬Amγ, Am+1γ, . . . , Anγ. (Here and below, we read the rules Am+1γ, . . . , Anγ
again as equations.)

By the Lifting Lemma (Lemma [BT03b]-4.21), there are fresh p-variants ¬K1, . . . ,¬Km ∈'
ΛB and Km+1, . . . ,Kn ∈' ΛB and a substitution σ such that

1. σ is a most general simultaneous unifier of
{K1, A1}, . . . , {Km, Am}, {Km+1, Am+1}, . . . , {Km, Am},

2. for all k = 1, . . . , n, Ak & Akσ & Akγ,

3. for all k = 1, . . . ,m, ¬Kk produces ¬Akσ in ΛB, and
for all l = m + 1, . . . , n, Kl produces Alσ in ΛB.

Clearly, K1, . . . ,Km must be a Σ-literal, and hence does not contain any Skolem con-
stant, because otherwise property (2) would be impossible (we know from above that
(C · Γ)γ is a Σ-constrained clause).

By Definition 5.1, σ is a productive context unifier of (C · Γ)c against ΛB. By
Lemma [BT03b]-4.22, an admissible context unifier of (C ·Γ)c against ΛB can be obtained
as σ′ = σρ, for some renaming ρ. It is easy to see that the properties (1)-(3) stated
for σ hold for σ′ as well. In particular, regarding (3) observe that a literal K produces
a literal L in a context Λ iff K produces a variant of L in Λ.

Also, observe that by item (2) (C · Γ)γ is an instance of (C · Γ)σ. Hence, with the
instance (C · Γ)γ being productive wrt. ΛB, (C · Γ)σ is productive wrt. ΛB as well, and
so is (C · Γ)σ′. We will use this fact later.

Let ¬K ′
1, . . . ,¬K ′

m,K ′
m+1, . . . ,K

′
n ∈ ΛB be the context literals of σ′. Since K ′

k ' Kk,
for all k = 1, . . . ,m, this implies that ¬K ′

k produces ¬Akσ
′ in ΛB, for all k = 1, . . . ,m,

and that K ′
l produces Alσ

′ in ΛB, for all l = m+1, . . . , n. By applying Lemma [BT03b]-
4.20 to ¬K ′

k and ¬Akσ
′, for all k = 1, . . . ,m and to K ′

l and Alσ
′, for all l = m+1, . . . , n,

and taking the maximum of the indices i mentioned in the lemma’s statement, we
conclude that there is an i such that for all j ≥ i with j < κ,

for all k = 1, . . . ,m, ¬K ′
k ∈ Λj and ¬K ′

k produces ¬Akσ
′ in Λj , and

for all l = m + 1, . . . , n, K ′
l ∈ Λj and K ′

l produces Alσ
′ in Λj .

(9)

By assumption, C · Γ is a constrained clause of ΦB. Hence, there is a i′ such that
C · Γ ∈ Φj′ for all j′ ≥ i′. Without loss of generality suppose that i ≥ i′ (otherwise i′

can be used instead of i in the sequel). It follows C · Γ ∈ Φj for all j ≥ i.

19A reference like this refer to the lemma with that key in the technical report. The one or the other
straightforward adaptation will be necessary, though.
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The next goal of the proof is to show that Split is applicable to Λi ` Φi with selected
constrained clause C ·Γ and productive context unifer σ′. To this end, we need to know
first that Close is not applicable to Λi ` Φi with selected constrained clause C · Γ (for
any context unifier). Suppose, by way of contradiction, Close is applicable to Λi ` Φi

with selected constrained clause C · Γ. By Lemma A.7 then, Close is also applicable
to Λj , for some j ≥ i with j ≤ κ and such that K ∈ ΛB for each context literal K
of the context unifier of that inference. This however is an immediate contradiction to
Definition 6.1-(iv). Hence, Close is not applicable to Λi ` Φi with selected constrained
clause C · Γ. Definition 6.1-(v) rules out the trivial case case C · Γ is of the form � · ∅.
Together this implies that all context unifiers of (C · Γ)c against Λi have a non-empty
remainder.

By definition, each remainder literal L of σ′ is either a literal Akσ
′, for some k with

1 ≤ k ≤ m or a literal ¬Alσ
′, for some l with m + 1 ≤ l ≤ n. By (9), Λj produces L,

for each remainder literal L of σ′ and all j ≥ i. By Lemma [BT03b]-4.23 then, Split
is applicable to Λi ` Φi with selected clause (C · Γ)c – or, in the notation here, with
selected constrained clause C · Γ – and productive context unifier σ′.

The next subgoal of the proof is to show that Definition 6.1-(iii) applies.
Recall we assumed that (C ·Γ)γ is not redundant wrt. ΦB and RΛB

. With Lemma A.5
it follows that (C ·Γ)γ is not redundant wrt. (in particular) Φi and RΛB

. By definition of
redundancy, the more general constrained clause (C ·Γ)σ′ is not redundant wrt. Φi and
RΛB

, either. Recall also from above that (C ·Γ)σ′ is productive wrt. ΛB. Recall further
that all context literals of σ, which are ¬K ′

1, . . . ,¬K ′
m,K ′

m+1, . . . ,K
′
n, are contained in

ΛB, and by (9) also are contained in Λi.
Alltogether then, because of Definition 6.1-(iii), there is a remainder literal L of

σ′ and a j ≥ i such that Λj produces L but Λj does not produce L. However, this
contradicts the conclusion above, that Λj produces L, for each remainder literal L of σ′.

Thus, the assumption that RΛB
6|= Cγ holds and that (C ·Γ)γ is not redundant wrt.

ΦB and RΛB
has been refuted, and the claim follows.

ΦB is a constrained clause set without expansion constraints.
For the easy proof of the conclusion (ii) of the proposition statement one just needs
the following observations. Initially, Φ1 trivially is a constrained clause set without
expansion constraints, because the constraint of each of its constrained clauses is empty.
A new rule can be added to a constraint Γ of a constrained clause C ·Γ only by an ParaME

inference. Say that l ≈ r is the chosen equation and that σ is the mgu used in such an
inference. Since the underlying Para derivation rule is restricted not to paramodulate
into variables, lσ cannot be a variable (but l can be a variable). Hence, if Γ contains
no expansion rules then (Γ, l → r)σ contains no expansion rules either. (Notice here
that applying a substitution to a set of constraints Γ cannot turn a non-expansion rule
to a expansion rule.) Thus, any ParaME inference preserve the property of being a
constrained clause without expansion constraints. The same holds for Simp inferences
by definition, and trivially for RefME inferences. ut



A.3 Completeness of the MEE Calculus 38

Lemma A.9
If R |=E Φ and C · Γ is redundant wrt. Φ and R then R |=E C · Γ.

Proof. Suppose R |=E Φ and C ·Γ is redundant wrt. Φ and R. Let C ′ ·Γ′ be any ground
instance of C · Γ. It suffices to show R |=E C ′ · Γ′. Since C · Γ is redundant wrt. Φ and
R, by definition, its ground instance C ′ · Γ′ is redundant wrt. Φ and R. Equivalently,
ΦC′·Γ′ |=R C ′ · Γ′, which entails R |=E C ′ · Γ′ provided R |=E ΦC′·Γ′ holds. The latter
however follows immediately from R |=E Φ, which means R |=E Φgr and the trivial fact
ΦC′·Γ′ ⊆ Φgr. ut

Theorem 6.3 (Completeness of MEE)
Let Ψ be a parameter-free Σ-clause set, and T be the limit tree of a fair derivation of Ψ.
If T is not a refutation tree, then Ψ is satisfiable; more specifically, for every exhausted
branch B of T it holds RΛB

|=E Ψ.

Proof. Suppose that T is not a refutation tree and let B be an exhausted branch of T.
By proposition 6.2 the limit sequent ΛB ` ΦB is saturated up to redundancy, and

ΦB contains no constrained clause of the form � ·Γ that is productive wrt. ΛB and that
is not redundant wrt. ΦB and RΛB

. With Proposition 4.3 it follows RΛB
|=E ΦB.

To show RΛB
|=E Ψ, let C be any clause from Ψ, and it suffices to show RΛB

|=E C.
By definition of derivation, C · ∅ ∈ Φ1. We distinguish two cases.

In the first case C · ∅ ∈ ΦB. With RΛB
|=E ΦB conclude RΛB

|=E C · ∅, which
trivially implies RΛB

|=E C.
In the second case C · ∅ /∈ ΦB. Hence C · ∅ has been removed at some time k < κ

from the clause set Φk of the sequent Λk ` Φk by an application of the Simp derivation
rule. We distinguish two subcases.

In the first subcase C ·∅ has been removed by non-proper subsumption from Φk. Let
D · ∅ ∈ Φk be the constrained clause non-properly subsuming C · ∅. As an easy inductive
consequence of the definition of the RefME and ParaME derivation rules, no constrained
clause set Φi derived can contain both a constrained clause and a variant of it. Hence,
D · ∅ cannot be a variant of C ·Φ and C ·Φ must be a proper instance of D · ∅. Because
the ordering based on the converse relation, proper generalization, is well-founded, by
induction on this ordering there is a clause D′ · ∅ in ΦB that non-properly subsumes
C ·Φ (it could be D · ∅). Now, to D′ · ∅ the first case applies and, clearly, RΛB

|=E D′ · ∅
entails RΛB

|=E C · ∅.
In the second subcase C · ∅ is redundant wrt. Φk+1 and RΛB

. This conclusion makes
use of the fact that RΛB

is compatible with Λk. That RΛB
is indeed compatible with

Λk has been argued for after Definition 5.3.
By Lemma A.5, C · ∅ is redundant wrt. ΦB and RΛB

. With RΛB
|=E ΦB and

Lemma A.9 it follows RΛB
|=E C · ∅, which trivially implies RΛB

|=E C. ut

Corollary 6.4 (Bernays-Schönfinkel Class with Equality)
The MEE Calculus can be used as a decision procedure for the Bernays-Schönfinkel
class, i.e., for sentences with the quantifier prefix ∃∗∀∗.
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Proof. (Sketch) It suffices to consider clause sets where the only function symbols are
constants or those corresponding to the predicate symbols in the original formula. To
see why any exhausted branch will be finite then, a few things have to be observed:

1. The clause part C of a constrained clause C · Γ does not grow in length by appli-
cation of a derivation rule.

2. The clause part C of a constrained clause C · Γ does not grow in depth by ap-
plication of a derivation rule. This is, in particular, because paramodulation into
variables is forbidden.

3. The equations used for paramodulation are bound in their term depth. When
(l ≈ r)σ is an instance of an equation l ≈ r taken from a context and used for
a Para inference then lσ and rσ are either a variable, a constant or a functional
term all arguments of which are either constants or variables. This implies that
the constraint part Γ may not grow in depth.

4. However, the constraint part Γ may grow in length by application of Para. To
see that this is not a problem consider two cases. In the first case the unifier
σ of a Para inference identifies two variables in the clause C where an equation
l ≈ r paramodulates into or σ binds a variable to a constant. The resulting
constrained clause (C[r] · Γ, l → r)σ will be smaller then in the sense that Cσ is
“more instantiated” than C. Thus, there is a finite bound on the number of Para
inferences of this type. In the second case σ does neither identify two variables
nor replace a variable by a constant. Recall that the clause part C neither grows
in length nor depth. Hence any infinite chain of Para inferences would include a
repetition on the clause part. That is, at some point there is a constrained clause
C · Γ and later a constrained clause C · Γ′ is derived (modulo renaming). Because
σ does neither identify variables nor replace a variable by a constant it follows
Γ ⊆ Γ′ (modulo renaming). But then, it is not difficult to see that the inference
leading to C · Γ′ is redundant and hence, by fairness, need not be carried out.
(The argumentation applies as well if C · Γ has been deleted by an application of
a Simp rule.) Thus, with a suitable redundancy test any infinite sequence of the
kind considered can be pruned to a finite one without sacrificing completeness.

5. As there is a depth bound on the literals in any constraint clause C · Γ derived,
there is no infinite sequence of Split inferences along a branch. This is, essentially,
because a context may not contain two p-variants of the same (or complementary)
literal.

ut
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