The Model Evolution Calculus

Peter Baumgartnémand Cesare Tinefli

1 Institut firr Informatik, Universiat Koblenz-Landaugeter@uni-koblenz .de
2 Department of Computer Science, The University of lowaelliGcs.uiowa.edu

Abstract. The DPLL procedure is the basis of some of the most successful
propositional satisfiability solvers to date. Although originally devised as a proof-
procedure for first-order logic, it has been used almost exclusively for proposi-
tional logic so far because of its highly inefficient treatment of quantifiers, based
on instantiation into ground formulas. The recent FDPLL calculus by Baumgart-
ner was the first successful attempt to lift the procedure to the first-order level
without resorting to ground instantiations. FDPLL lifts to the first-order case the
core of the DPLL procedure, the splitting rule, but ignores other aspects of the
procedure that, although not necessary for completeness, are crucial for its ef-
fectiveness in practice. In this paper, we present a new calculus loosely based on
FDPLL that lifts these aspects as well. In addition to being a more faithful lifting
of the DPLL procedure, the new calculus contains a more systematic treatment
of universal literals one of FDPLL's optimizations, and so has the potential of
leading to much faster implementations.

1 Introduction

In propositional satisfiability the DPLL procedure, named after its authors: Davis, Put-
nam, Logemann, and Loveland [8, 7], is the dominant method for building (complete)
SAT solvers. Its popularity is due to its simplicity, its polynomial space requirements,
and the fact that, as a search procedure, it is amenable to powerful but also relatively
inexpensive heuristics for reducing the search space. Thanks to these heuristics and to
very careful engineering, the best SAT solvers today can successfully attack real-world
problems with hundreds of thousands of variables and of clauses.

Interestingly, the DPLL procedure was actually devised in origin as a proof-procedure
for first-order logic. Its treatment of quantifiers is highly inefficient, however, because
it is based on enumerating all possible ground instances of an input formula’s clause
form, and checking the propositional satisfiability of each of these ground instances
one at a time. Given the great success of DPLL-based SAT solvers today, two natural
research questions arise. One is whether the DPLL procedure can be properly lifted
to the first-order level—in the sense first-order resolution lifts propositional resolution,
say. The other is whether those powerful search heuristics that make DPLL so effective
at the propositional level can be successfully adapted to the first-order case. We answer
the first of these two questions affirmatively in this paper, providing a complete lifting
of the DPLL procedure to first-order clausal logic by means of a new sequent-style cal-
culus, theModel Evolutioncalculus, otME for short. We believe that th®(€ calculus

can be used to answer the second question affirmatively as well, although that will be
the subject of our future work.

The recent FDPLL calculus by Baumgartner [3] was the first successful attempt
to lift the DPLL procedure to the first-order level without resorting to ground instan-
tiations. FDPLL lifts the core of the DPLL procedure, the splitting rule, but ignores
another major aspeatnit propagation[18], that although not necessary for its com-
pleteness is absolutely crucial to its effectiveness in practice. The calculus described in
this paper lifts this aspect as well. While th&é€ calculus borrows many fundamental
ideas from FDPLL and generalizes it, it is not an extension of FDPLL proper but of
DPLL [16], a simple propositional calculus modeling the main features of the DPLL
procedure.

A very useful feature of the DPLL procedure and, by extension, oDtpiel cal-
culus is its ability to provide a (Herbrand) model of the input formula whenever that
formula is satisfiable. The procedure generates this model incrementally as it goes. The
ME calculus can be seen as lifting this model generation process to the first-order level.
Its goal is to construct a Herbrand model of a given®etf clauses, if any such model
exists. To do that, during a derivation the calculus maintaicsraext/, a finite set of
(possibly non-ground) literals. The contexis a finite—and compact—representation
of a Herbrand interpretatiolp, serving as a candidate model fr The induced inter-
pretationl, might not be a model o because it does not satisfy some clause®.in
The purpose of the main rules of the calculus is to detect this situation andrejplagér
Ia, by modifying/\, so that it becomes a model ®f or recognize thdiy is unrepairable
and fail. In addition to these rules, the calculus contains a number of simplification rules
whose purpose is, again like BPLL, to simplify the clause set and, as a consequence,
to speed up the computation.

TheME calculus starts with a default candidate model, one that satisfies no positive
literals, and “evolves it” as needed until it becomes an actual model of the input clause
set®, or until it is clear that® has no models at all. An important by-product of this
evolution process is that all terminating derivations of a satisfiable claugemetuce
a context whose induced interpretation is indeed a mod@#l dhis makes the calculus
well suited for all applications in which it is important to also provide counter-examples
to invalid statements, as opposed to simply proving their invalidity.

The calculus is refutationally sound and complete: an input clause setinsatis-
fiable if and only if the calculus (finitely) fails to find a model f&t While the calculus
is obviously non-terminating for arbitrary input sets, it is terminating for the class of
ground clauses (of course), and for the class of clauses resulting from the translation of
conjunctions of Bernays-Sohfinkel formulas into clause form.

As mentioned, thé&(€ calculus is already a significant improvement over FDPLL
because it is a more faithful lifting of the DPLL procedure, having additional rules
for simplifying the current clause set and the current context. Another advantage over
FPDLL is that it contains a more systematic and general treatmemtiwérsal literals
one of FDPLL's optimizations. As we will see, adding universal literals to a context im-
poses strong restrictions on future modifications of that context, with the consequence
of greatly reducing the non-determinism of the calculus.

This paper is organized as follows. After some formal preliminaries, given below,
we describe in Section 2 tHePLL calculus, a declarative version of the DPLL pro-
cedure. We then define and discuss the Model Evolution calculus in Section 3 as a
first-order extension dDPLL. We sketch a proof of correctness for the calculus in Sec-
tion 43 Then we show in Section 5 how the calculus compares to other calculi in related
work, and we conclude the paper with directions for further research.

Formal Preliminaries. Most of the notions and notation we use in this paper are the
standard ones in the field. We report here only notable differences and additions.
We will use two disjoint, infinite sets of variables: a $€of universalvariables,
which we will refer to just as variables, and anothern\sgtvhich we will always refer
to asparametersWe will useu, v to denote elements & andx,y to denote elements
of X. We fix a signaturez throughout the paper and denote BYf° the expansion
of 2 obtained by adding t& an infinite number of fresh (Skolem) constants. Unless
otherwise specified, when we say term we will m&&ff-term. Ift is a term we denote
by Var(t) the set oft’s variables and byPar(t) the set oft's parameters. A terrhis
groundiff Var(t) = Par(t) = 0. All of the above is extended to literals and clauses in
the obvious way.
A substitutionp is arenaming on WC (V U X) iff its restriction toW is a bijection
of W onto itself;p is simply arenamingif it is a renaming orV U X. A substitutiono
is p-preservingshort for parameter preserving) if it is a renaming\anf s andt are
two terms, we writes > t, iff there is a substitutiolw such thaso =t. We say thasis
a variant of t and writes~ t, iff s>t andt > sor, equivalently, iff there is a renaming
p such thasp =t. We writes 2 t if s> t buts#t We writes >t and say that is a p-
instance of sff there is a p-preserving substitutiansuch thaso =t. We say thasis a
p-variant of t and writes~ t, iff s>t andt > s; equivalently, iff there is a p-preserving
renamingp such thasp = t.We writes >t if s>t buts#t. Again, all of the above is
extended from terms to literals in the obvious way.
We denote literals by the letteks L. We denote by the complement of a literal
L, and byLSk° the result of replacing each variableloby a fresh Skolem constant in
¥sko\ 3 We denote clauses by the lett€@sndD, and the empty clause ty. We will
write L v C to denote a clause obtained as the disjunction of a (possibly empty) clause
C and a literalL. When convenient, we will treat a clause as the set of its literals. A
(Herbrand) interpretation lis a set of groun@&s°literals that contains eithdr or L,
but not both, for every grounE*k°-literal L. Satisfiability/validity of literals and clauses
in a Herbrand interpretation is defined as usual.

2 The DPLL Calculus

The DPLL procedure [7] can be used to decide the satisfiability of finite sets of ground
(or propositional) clauses. Following [16], the essence of the procedure can be captured
by a sequent-style calculus, tb€LL calculus, consisting of the derivation rules given
below. The calculus manipulates sequents of the farimd, whereA, the contextof

the sequent, is a finite set of ground literals &nid a finite (multi)set of ground clauses.

3 A complete and detailed proof can be found in the long version of this paper [4].

st AF®,LVC . [c#D,

P NLEFO LVC ALF®, LVC LEA LgA
N FO L . L&A, AN LE®P LVC

Assert ——— if < _ Subsume ———
ALF® L |CéA ALF®
A-®, O ALF® LVC

Empty ——— if ®#0 Resolve —————
AFO ALF®.C

The intended goal of the calculus is to derive a sequent of the fokn® from an
initial sequen® - dy, wheredy is a clause set to be checked for satisfiability. If that is
possible, therdg is satisfiable; otherwisab is unsatisfiable. Informally, the purpose
of the context\ is to store incrementally a set afserted literalsi.e., a set of literals
in ®g that must or can be true f@bg to be satisfiable. WheA - 0 is derivable from
O+ dp, the contexi\ determines a (Herbrand) model ®§: one that satisfies an atom
pin ®q iff p occurs positively im\.

The context is grown by thassert and theSplit rules. TheSplit rule corresponds to
the decomposition in smaller subproblems of the DPLL procedure. The unit propaga-
tion process of the DPLL procedure (see, e.g., [18]) is modeled bydtmet, Resolve
andSubsume rules. TheResolve rule can be used to remove from a clause all literals
whose complement has been asserted, where&sibisame rule can be used to remove
from a clause set all clauses containing an asserted literal.

The DPLL calculus is easily proven sound, complete and terminating. It can be
shown [16] that the calculus maintains its completeness even lierule is con-
strained to split on positive literals only. Another change that does not alter the calculus
in any fundamental way is the replacement of Engpty rule by the more powerful rule

ANED LyV---VL [OF)] 0
Close 1 Dt 77'& (1n> ’
0,....LneA

which reduces to th&mpty rule given earlier whem = 0 and, in turn, can be simu-
lated byn applications ofResolve followed by one application oEmpty. The Model
Evolution calculus, described next, is a lifting of the versiorDeLL that applies the
positive-literal restriction oisplit and use<lose in place ofEmpty.

3 The Model Evolution Calculus

The Model Evolution calculus works with sequents of the fokm ®, similarly to
DPLL. This time, however/ is a finite set of literals possibly with variables or with
parameters, called again a context, @&ds a set of clauses possibly with variables.
The defining feature of the calculus, modeled after FDPLL, is the DRI contexts
are extended to the first-order case, and &e they play in driving the derivation and
the model generation process.

Definition 3.1 (Context).A contextis a set of the forr{—v} US where \e V and S is
a finite set of literals each of which is parameter-free or variable-free.

WherelL is a literal and\ a context, we writd. €. A if L is a p-variant of a literal
in A, and writeL > Aif L is a p-instance of a literal in.

Definition 3.2 (Contradictory). A literal L is contradictory witha context\ iff Lo =
Ko for some Ke. A and some p-preserving substitutionA context\ is contradictory
iff it contains a literal that is contradictory with.

Example 3.3.Let A := {—v, p(x1,Y1), —d(v1)}. Then—p(h(x),u), =p(v,u), andq(y)
are all contradictory with\. However,q(f(v)) andr(x), say, are not. (Recall that
X,X1,Yy1 are variables while,v;,u are parameters.)

We will work only with non-contradictory contexts. Thanks to the next two notions,
such contexts can be used as finite denotations of (certain) Herbrand interpretations.

Definition 3.4 (Most Specific Generalization)Let L be a literal andA a context. A
literal K is a most specific generalization (msg) lofin A iff K = L and there is no
K’ e A'such that Kz K’ > L.

Definition 3.5 (Productivity). Let L be a literal, C a clause, antl a context. A literal
K produced. in A iff (i) K is an msg of L inA, and (i) there is no Ke A such that
K 2 K’ Z L. The context\ produced. iff it contains a literal K that produces L in.

Example 3.6.Let A :={=v, p(v1,9(u1)), =p(v1,9(v1)), q(h(u),v), =q(u,g(v))}. The
literals —p(v,u), p(v,g(u)), p(x,g(a)), -p(a,g(a)) are all produced by, specifically
by =v, p(v1,9(u1)), p(vi,9(u1)), —=p(va1,9(v1)), respectively. On the other hand, the
literals p(v,u), ~p(v,g(u)), =p(x,9(a)), p(a,g(a)) are not produced b. Note that,
however, bottg(h(u),g(v)) and—q(h(u),g (v)) are produced bx\.

A consequence of the presence of the pseudo-litevah every context\ is that
A produced. or L for every literalL. We can use this fact to associate/t@ unique
Herbrand interpretation.

Definition 3.7 (Induced interpretation). Let A be a non-contradictory context. The
interpretation induced b&x, denoted by, is the Herbrand interpretation that satisfies
a positive ground literal L iff L is produced b.

Note that since it is possible for a contéxto produce both a ground literaland
its complement, the above definition is asymmetric, becaligealways chooses to
satisfyL overL if L is positive. Contrapositively, this means thaltjfsatisfies a ground
literal L andL is positive, therl. and possibly als& are produced b\. If on the other
handL is negative, theih but notL is produced by\.

It should be clear now that the purpose of the pseudo-litevah a context\ is to
provide adefaulttruth-value to those ground literals whose value is not determined by
the rest of the context. In fact, consider a ground litéralich that neithek norL is
produced by\ \ {—v}. If L is positive, then it is false ity because it is not produced
by A at all. If L is negative, then it is true il because it is produced byv.

For a given sequemtt - @ the interpretation induced by the contéxmay falsify a
clause of®. This situation is detectable through the computatiooaftext unifiers

Definition 3.8 (Context Unifier). Let A be a contextand & L1V --VLyV--- VL
a parameter-free clause, whefe< m < n. A substitutiorno is a context unifier ofC
against\ with remaindet .10V --- Vv Lyo if there are fresh K, ..., K, €~ A such that

1. ois a most general simultaneous unifier{&f;,L;},...,{Kn,Ln},
2. (Par(Kj))oCV fori=1,....m and(Par(Kj))o ZV fori=m+1,...,n.

We say, in addition, that is productiveif Ki produced join Aforalli =1,....,n. We
say thato is admissible (foiSplit) if for all distincti, j =m+1,....n, Ljo is parameter-
or variable-free andVar(L;o) N Var(Ljo) = 0.

Note that each context unifier has a unique remainderidfa context unifier with
remaindeD we call each literal oD a remainder literalof c.

Example 3.9.Let A := {—=V, p(v1,u1), =p(X1,9(X1)), A(v2,0(v2))} and letCy :=r(x) V
—p(x,Y). The substitutionsy := {Vi— r(X), v1 = X, Ug — Y} andoz ;= {vi—-r(v1), X+—
vi, U — Yy} are both context unifiers &; againstA with respective remaindergx) v
—p(x,y) andr(v1) vV —p(vy,y). While they are both productive, neither of them is ad-
missible; the former because its remainder literals are not variable-disjoint, the latter
because its remainder contains both variables and parameters.
By contrast, the substitutiass := {v— r(vy), X+— v1, y+— U1 } is a context unifier of
Ci against\, with remainder (v1) vV —p(v1, Uz), that is both productive and admissible.
Consider now the clausg; = —p(x,y) V —q(x,y). The substitutioro, := {v; —
Va2, Up — g(Uz), X+— Vo, ¥ — g(U2) } is a context unifier o€, against\ with remainder
—p(v2,g(v2)). Itis admissible, but it is not productive because the lite(ai, u;) of A
chosen to unify with-p(x, y) does not producep(x,y)os = p(v2,9(V2)).

Admissible context unifiers are fundamental in the Model Evolution calculus. With
a context\ and a claus€, the existence of an admissible context unifie€a@fgainsi\
is a sign that the induced interpretatipnmight not be a model oE. The discovery of
an admissible context unifier of C against the current conte&tprompts the calculus
to add a literal ofCo to A, with the goal of making valid in the newl,. This literal
is chosen only among the remainder literal&phon-remainder literals can be ignored
with no loss of completeness. Note that while the existence of an admissible context
unifier o of C againstA is necessary for the unsatisfiability®©fin |5, it is not sufficient
unlesso is also productive. For completeness then, the calculus needs to consider only
remainder literals of admissible unifiers that are also productive.

Productivity issues aside, note that although context unifiers for a given €larsg
contextA are easily computable (they are just simultaneous most general unifiers), they
are not unigue and may not be admissible. Nevertheless, the calculus does not need
to search for admissible context unifiers: any context unifier can be composed with
a renaming substitution, determined deterministically, such that the resulting context
unifier is admissible. The completeness of the calculus is not affected by computing
admissible contexts unifiers this way.

4 But see [4] for a discussion on the usefulness of considering non-productive context unifiers
as well.
5 Again, see [4] for more details.

Parameters vs. VariablesBefore moving to describe the rules of the Model Evolution
calculus, it is important to clarify the respectividas that parameters and variables play

in the calculus. Each derivation in the calculus starts with a sequent of the-fornd,

where®q contain only standard clauses, i.e. clauses with no parameters—but possibly
with variables. Similarly, all sequents generated during a derivation contain standard
clauses only. Variables then can appear both in clauses sets and in contexts. Parameters
instead can appear only in contexts. Théerof variables within a clause is the usual

one. In contrast, thedte of variables and parameters within a context is to constrain, in
different ways, how a candidate model can be repaired.

Now, given a sequemtt - @, the interpretatioms needs repairing only if it falsifies
a clauseC in @. In that case there is an admissible context undief C againstA. If
every instance of falsified byl is also an instance @o, to makeC valid in I, it is
enough to modify\ so thatl, satisfiesCo. One way to do that is to pick frofBo a
literal Lo that is not contradictory with\, andassertit by adding it toA. The idea is to
make the unit clauskes valid in 15, which then make€o valid as well. Now recall that,
sinceo is admissible, the added literal will not contain both parameters and variables.

If Lo is a parameter-free literal, aniversal literalin FDPLL's terminology, the
assertion ofLo cannot be retracted. No repairs that involve making instancésyof
false in the induced interpretation will be allowed from that point on.

If Lo is variable-free instead, the assertionLaf expresses simply the conjecture
that there is a model &o satisfying all ground instances bé. This conjecture can be
partially revised later if evidence against it is found. This might happen if the calculus
later adds to the current conteit a literal Lo’, for some context unifieo’, andCo’
is an instance o€o. After the addition, the induced interpretation satisfies only the
instances olLo that are not an instance &ab’. At that point,Co may not be valid
anymore because its instar¢e’ may now be falsified. If so, the calculus will detect it
and will try to makeCao’ valid (thereby restoring the validity @o) by looking inCao’
for a literal other tharL.g’ that can be added to the context, as explained earlidrdor

Derivation Rules. The Model Evolution calculus lifts thBPLL calculus to the first-
order level by providing a first-order version DPLL’s rules—Split with the positive
literal restriction,Assert, Subsume, Resolve andClose—and adding one new simplifi-
cation rule Compact, specific to the first-order case.

In [4] we show that, except for the presence of the pseudo-literah its contexts,
the Model Evolution calculus reduces preciselyDLL when the input clause set is
ground. We refer the interested reader to [4] for more details on why this is the case. In
brief, the reason is that in the ground ca&senpact never applies, and the other rules
reduce exactly to their namesakeDRLL.

A definition and a brief explanation 6f(E’s rules follows next.

N FO L
Assert —————— if K> L fornoK € A, andL is not contradictory with\
ALFO, L

As in DPLL, theAssert rule is extremely useful in reducing the non-determinism of the
calculus. Every candidate model of a clause®et{L} mustmakeL valid in order
to become a model ap U {L}. The Assert rule achieves just that by addirigto the
context. Note that sindeis parameter-free, its addition to the context is not retractable.

Also note that the rule does not apply if the (permanent) validity béas been already
established. This is the case whmrontains a—necessarily parameter-free—lité&ral
such thaK > L. The rule does not apply alsolifis contradictory withA. In that case,

however, the candidate model is unrepairable. Tlose rule will detect that.

C#£0,
o is an admissible context

ANF® CVL . unifier ofC v L againstA

Split — if . .)
P A Lo-®,CVL A, (Lo)™°F o, CvL with remainder literal.o,
neitherLa nor (Lo)™®is

contradictory with/A

As in DPLL, Split is the only flon’t-know non-deterministic rule of the calculuSplit

is the rule that discovers when the current candidate model falsifies one of the clauses
in the current clause set. It does so by computing a context unifieith non-empty
remainder for a clause with at least two literals. Once it findi$ attempts to repair the
model by selecting a remainder litetad and adding eithdto or its complement to the
context. Adding the complement bb in alternative td_o is necessary for soundness,
as the current clause set may have no models that satisf@f course, the addition

of Lo’s complement to the context will not make the selected cl@ugé valid in the
new candidate model. But it will make sure that no context undiesf CVv L hasLd’

in its remainder, forcing the calculus to select other literals to n@ake. valid. Note
that Split does not quite add the complementLaf: whenLo is parameter-free it adds

a Skolemized version dfa.® This is in accordance to our treatment of parameter-free
literals in contexts as universal sentences.

N, KE L
Subsume AKF®,LVC if K>L.
A KE®

The purpose ofubsume is the same as iDPLL: to get rid of clauses that are valid in the
current candidate model—and are guaranteed to stay so. These are exactly those clauses
containing a p-instance of a—necessarily parameter-free—litetélin the current
context. AlthoughSubsume is not needed for completeness, it is useful in practice
because it reduces the size of the current clause set.

ANKEF®, LVC |
Resove ——— if K> L.
N KE® C

The Close rule is in essence the dual 8fibsume, and like Subsume it is not needed
for completeness. Its main goal is to generate unit clauses, which can then be added to
the context byAssert as parameter-free literals.

A,
Compact —— 2
NK FO

6 WhenLao is variable-free the Skolemization step is vacuous.

The Compact rule as well is unnecessary for completeness but useful in practice. To
understand the rule’s rationale it is important to know that, the way the calculus is
defined Compact’s precondition holds only iK is a parameter-free literal. As discussed

in a previous section, parameter-free context literals stand for all their instances, with
no exception. This means that when a parameter-free likeialadded to a context,

all literals in the context that are an instancekobecome superfluous. The purpose of
Compact is to eliminate these superfluous literals.

AE® C i d£0orC#£0,
C has a context unifier againAtwith an empty remainder

Close

The idea behindClose is that when its precondition holds there is no way to repair the
current candidate model to make it sati€fyThe replacement of the current close set

by the empty clause signals that the calculus has given up on that candidate model. Note
that, because dtesolve, it is possible for the calculus to generate a sequent containing
an empty clause among other clauses. Th®e rule recognizes such sequents and
applies to them as well. To see that it is enough to observe that, for any contira

empty substitution is a context unifier @fagainst\ with an empty remainder.

A Derivation Example. We show a simple example of a derivation of an unsatisfiable
clause set. We sketch the construction of only one branch of the final derivation tree,
as the other branches are constructed similarly. Consider the following initial sequent
(where we use the usual mathematical notation for greater clarity):
(X2 Y) V(Y22 V(x>2), (x=0)V(0=x), x| >0,0> x|,
~(x=0)V(IX =x), 7(0=x) V(|x| = x), =(|¢| > ¢) v ~(|¢] = —]c])
Each unit clause in the clause set can be moved into the context by messsenf
and then removed from the set by meansafsume. This results in the sequent:
“(xZy)Va(y=2z)V(x=2), (x=0)V(0=x),
v, x| > 0,0> —[x| - ~(x>0)V (x| >X), ~(0>x)V (|x| >X),
~(lel =€) v =(le| = —|cf)

By considering the fresh p-varianig | > 0,0 > —|x2|, —v1 of context literals, the
substitutiono = {X — |x|, y+— 0, Z— —|X2|, V1 — |X1| > —|%2|} is an admissible con-
text unifier of =(x > y) vV =(y > 2) V (X > 2) with residue|x;| > —|xo|. Since neither
[x1] > —|x2| nor its complement is contradictory with the context, we can add it the
context by one application dplit. With |x;| > —|x2| in the context, we can then sim-
plify =(|c| > ¢) v =(|c| > —|c|) to =(|c| > c) with Resolve, and then moves(|c| > c)
to the context by means @ksert andSubsume, obtaining

Vv, ‘X‘ >0,0> _‘Xl ﬁ(XZ y)\/ﬁ(yz Z)\/(XZ 2)7 (XZ 0)\/(02 X)7

X1l = =Pxal, =(le] = ¢) ~(x=0) V(X =), =(0=x) V(x| = x),

Using—v and—(|c| > c¢) we can applysplit to —(x > 0) V (|x| > x) with remainder
=(|c] > 0), and then to-(0 > x) V (|x| > x) with remainder-(0 > |c|), and obtain:

=l 2 0), 202 [e) .., (x20)V(0=X), ...

At this point we can apply th€lose rule because, with the context literai§|c| > 0)
and—(0 > |c|), the substitutioro = {x+ |c|} is a context unifier ofx > 0) v (0 > x)
with an empty remainder.

-V

4 Correctness of the Calculus

In this section, we sketch a proof of soundness and completeness for the Model Evolu-
tion calculus. For that first we need a proper notion of derivation.

Derivations in the Model Evolution calculus are defined in terndesivation trees
where each node corresponds to a particular application of a derivation rule, and each
of the node’s children corresponds to one of the conclusions of the rule. More precisely,
a derivation tree in th&(€ calculus is a labeled tree inductively defined as follows.

A one-node tree is a derivation tree iff its root is labeled with a sequent of the form
A+ ®, whereA is a context andp is a clause set. A tre¥ is a derivation tree iff it is
obtained from a derivation trek by adding to a leaf nodd in T new children nodes
N1, ...,Nn so that the sequents labelig, . . ., Ny, can be derived by applying a rule of
the calculus to the sequent labeliNgIn this case, we say that is derived fronil. We
say that a derivation trek is aderivation tree of a clause sdt iff its root node tree is
labeled with—v - @.

We say that a branch in a derivation treeligsedif its leaf is labeled by a sequent
of the formA - [J; otherwise, the branch gpen A derivation tree iglosedif each of
its branches is closed, and itdpenotherwise. We say that a derivation tree (of a clause
set®) is arefutation tree (ofD) iff it is closed.

In the rest of the paper, the lettewill denote an ordinal smaller than or equal to
the first infinite ordinal.

Definition 4.1 (Derivation). A derivation (inM¢) is a possibly infinite sequence of
derivation treeqT;)i<k, such that for all i with0 < i < Kk, T; is derived fromT;_1.

We say that a derivatio® = (T;)i<« is aderivation of a clause sab iff Tg is a
one-node tree with labéhv} - ®. We say thatD is arefutation of®d iff D is finite and
ends with a refutation tree db.

We show in the next sections that for all sdtg of Z-clauses with no parameters,
&g is unsatisfiable iflbg has a refutation in the calculus.

SoundnessTo prove the calculus sound we use the fact that its derivation rules preserve
a particular notion of satisfiability which we caltsatisfiability after [3].

Let us fix a constara from the signatur&s®\ 3. Given a literalL, we denote by
L2 the result or replacing every parameteroby a. Similarly, given a contexf\, we
denote by\? the set ofunit clausesbtained from\ by removing the pseudo-literaiv
and replacing each liter&lof A with the unit clausé.2. We say that a sequeftt @ is
a-(un)satisfiableff the clause sef\® U @ is (un)satisfiable in the standard sense—that
is, has no (Herbrand) model.

Lemma 4.2. For each rule of thév(€ calculus, if the premise of the rule is a-satisfiable,
then one of its conclusions is a-satisfiable as well.

Proposition 4.3 (Soundness)or all sets®g of parameter-fre@-clauses, if®y has
a refutation tre€T, then®g is unsatisfiable.

Fairness. As customary, we prove the completeness of the calculus with respect to
fair derivations The specific notion of fairness that we adopt is defined formally as

10

follows. For that, it will be convenient to describe a trees the pairN, E), where
N is the set of the nodes af andE is the set of the edges @f. Each derivation
D = (Ti)ick = ((Ni, Ei))i<k in ME determines dimit tree T := (Ui« Ni, Ui« Ei). It
is easy to show that a limit tree of a derivatidnis indeed a tree. But note that it will
not be a derivation tree unlegsis finite.

Definition 4.4 (Persistency).Let T be the limit tree of some derivation, and Bt=
(Ni)i<k be a branch inT with k nodes. Let\; - ®; be the sequent labeling node, for
alli < k. We define theersistent context literalsf B asAg := Uix Ni<j<x/\j, and
thepersistent clausesf B as®p = Ui« Ni<j<x Pj-

Although, strictly speaking/\g is not a context because it may be infinite, for the
purpose of the completeness proof we treat it as one. This is possible because all relevant
definitions (Definitions 3.1 to 3.8) can be applied without changkgas well.

Fair derivations in thé/(¢ calculus are defined in terms exhausted branches

Definition 4.5 (Exhausted branch).Let T be a limit tree, and leB = (N)i<« be a
branch inT withk nodes. For all i< k, letA\; - @; be the sequent labeling node Nhe
branchB is exhaustedf for all i < k all of the following hold:

(i) ForallC € g, if Split is applicable toA; - @; with selected clause C and produc-
tive context unifiep, then there is a remainder literal L afand a j> i with j <k
such thatA\; produces L but does not produte

(ii) For all unit clauses Le ®g, if Assert is applicable toA; - ®; with selected unit
clause L, then there is a% i with j < K such that Le> Aj.

(iii) Forall C € dg, Close is not applicable to\; - ®; with selected clause C.

(iv) @ # {0}

Definition 4.6 (Fairness).A limit tree of a derivation idair iff it is a refutation tree or
it has an exhausted branch. A derivatiorfag iff its limit tree is fair.

We point out that fair derivations in the sense above exist and are computable for any set
of (parameter-freel-clauses. A proof of this fact can be given by adapting a technique
used in [3] to show the computability of fair derivations in FDPLL.

CompletenessFor the rest of this section, l€ be a set of parameter-fréeclauses
and assume tha? is a fair derivation ofp that is not a refutation. Observe thais limit
tree must have at least one exhausted branch. We denote this braBch By)i<«.
Then, byA; - @;, we will always mean the sequent labeling the nbién B, for all
i < K. (As a consequence, we will also have that= {-v} and®y = @.)

The following proposition is the main result for proving the calculus complete.

Proposition 4.7. If O ¢ &g, then |, is a model ofbg.

Proof. (Sketch) Suppose ad absurdum tthgt does not contain the empty clause, but
Ing iS not a model ofbg. This means that there is a ground insta@gef a clauseC =
LyV---VLywithn> 1 from ®g that is not satisfied by, . This is to say that the literals
Lay,...,Layare all satisfied by, . It can be shown thakg produced.,y,...,Lyy then.

11

We distinguish two complementary cases, depending on whatket orn > 1, and
show that they both lead to a contradiction.

(n= 1) C consists of the single liter&l;. Given thatA\g produced_ yy, it can be shown
that there is & € ®g andi such that for allj > i with j <k, K € Aj; andK produces
Liyin Aj. Sincely is a (unit) clause fron®g, there is ari’ such that_; € ®; for all
j’ >1’. Without loss of generality assume that i’. By Definition 4.5-(iii), Close is not
applicable to\; - @; with selected clausk;. Sincel; € @, this entails that all context
unifiers ofL; against\; have a non-empty remainder. With the result above akiatit
can be shown thatssert is applicable to\; - @; with selected unit clause;.
According to Definition 4.5-(ii) then, there is p> i with j < K and anL € A;j
such that. > L;. It is not difficult to see that with.; being parameter-fred¢, must be
parameter-free as well. From this and the fact that L1y we can then show thal;
produced_;y but notL,y, which contradicts the assertion above that for some litéral
and allj > i, K € Aj produced.,y.

(n > 1) By a suitable lifting lemma, there exist fresh p-variaKts ..., K, €~ A\g
and a substitutiow such that (i)o is a most general simultaneous unifier{éf,L; },
.oy {Kn,Ln}, (i) forall k=1,...,n, Ly = Lxo = Lyy, and (iii) for allk = 1,...,n, K¢
produced ko in Ag. By Definition 3.8,0 is a productive context unifier & against\g
with some remaindéD. It is not difficult to prove that then an admissible context unifier
of C againstAg can be obtained as' = ap, for some renaming. Letk € {1,...,n}
and observe that a literll produces a literdl in a contextA iff K produces a variant
of L in A. From the fact thakKy produced o in Ag, we have thakKy produced (o’ in
Ng as well. Similarly to the case= 1, it can be proven that there is asuch that for
allk=1,...,nand allj > i with j <k, Ky € Aj andK produced xc’. By assumption,
Cis aclause ofpg. Hence, there is B such thaC € ®; for all j’ > i’. Without loss of
generality suppose that> i’. By Definition 4.5-(iii), Close is not applicable ta\; - ®;
with selected claus€. Hence, all context unifiers & against/A\; must have a non-
empty remainder. By the abow&; produced o’ fork=1,...,n, and so, in particular,
A produces all remainder literals of. It can be shown then, thapilit is applicable to
A F @; with selected claus€ and productive context unifier'. By Definition 4.5-(i),
there is then a remainder liteiab’ of o’ and aj > i such that\; produced.o’ but not
Lo’. This contradicts the conclusion above that forka# 1,...,n, K¢ € Aj produces
Lo’ in Aj. 0

The completeness of the calculus is a consequence of Proposition 4.7. We state it
here in contrapositive form to underline the model computation abilitiéd &f

Theorem 4.8 (Completeness).et D be a fair derivation of® with limit tree T. If T
is not a refutation tree, thegp is satisfiable; more precisely, for every exhausted branch
B of T, Ing is @ model ofp.

When the brancB in Theorem 4.8 is finite/\g coincides with the contexk, say,
in B’s leaf. From a model computation perspective, this is a very important fact because
it means that a model of the original clause set—or rather, a finite representation of it,
NAn—is readily available at the end of the derivation; it does not have to be computed
from the branch, as in other model generation calculi.

12

The calculus is proof confluent [5]: any derivation of an unsatisfiable clause set ex-
tends to a refutation. In fact, because of the strong completeness result in Theorem 4.8,
the calculus satisfies an even stronger property, as illustrated by the corollary below.
In practical terms, the corollary implies that as long as a derivation strategy guarantees
fairness, the order of application of the rules of the calculus is irrelevant for proving
an input clause set unsatisfiable, giving to #é calculus the same kind of flexibility
enjoyed by thedPLL calculus at the propositional level.

Corollary 4.9 (Proof Convergence).Let ® be a a parameter-free clause set over the
signatureX. If @ is unsatisfiable, then every fair derivation®fis a refutation.

5 Conclusions

In this paper we have introduced the Model Evolutidé) calculus. TheV(E calculus
extends the propositional part of the DPLL procedure to first-order clause logic by
supplying unification-based, first-order versions of DPLL's inference rules. Compared
to its most immediate predecessor, FDPLL 8¢ is a more faithful lifting of DPLL, as

it also includes first-order versions of the unit propagation rules, which are not present
in FDPLL. Two additional improvements &€ over FDPLL, both leading to a smaller
search space, are the absence of a rule like FDRLdrsmit, and the ability ofSplit to
generate universal literals more often than in FDPLL.

Related work. Besides the FDPLL calculu3/¢ is related to the family oinstance-
based methodSProof search in instance-based methods relies on maintaining a set of
instances of input clauses and analyzing it for satisfiability until compleNofis not
an instance-based method in this sense, as clause instances are used only temporarily
within the Split inference rule and can be forgotten after the split has been carried out.

The contemporary stream of research on instance-based methods was initiated with
the Hyperlinking calculus [11], whose current successor is Ordered Semantic Hyper-
linking (OSHL) [14]. OSHL has many interesting features not presetith In the
intersection withM &, OSHL can be described as a calculus that grows a set of ground
clauses, based on the detection of input clause instances falsified by a current interpre-
tation and a repair operation roughly comparabl@®, however at the ground level.

Some instance-based calculi have been formulated within the (clausal) tableau frame-
work. The initial work in this direction is Billon’s disconnection method [6]. The calcu-
lus described in [2] relates to the disconnection method much like the hyper resolution
calculus relates to the resolution calculus. The disconnection method has been picked
up by Letz and Stenz for further improvements, which include a dedicated inference
rule for deriving unit clauses [13]. Compared}te, tableau calculi branch on subfor-
mulas (or, the literals of a clause in the clausal logic case), as opposed to complementary
literals like ME does. For the propositional case it is easy to see that branching on com-
plementary literals is more general than branching on clauses. In fact, each branching
on a clause with literals can be simulated hy splits with complementary literals.

7 The detailed discussion in [3] on FDPLL's related work extend¥® as well. The points
made there will not be repeated here in detail. However, see the long version of the present
paper [4] for an extended section on this related work.

13

Furthermore, some improvements like factoring (see [12])aatematicallyrealized
by the branching on complementary literals approach. A systematic investigation on
how this fact exactly carries over to the first-order case—H€. vs. certain clausal
tableau calculi—is left for future work.

Two variants of an instance-based method are described by Heblk{10]. One
of them, the “Primal Approach” seems to be very similar to the disconnection method
(see above) although, unfortunately, the relation with this method is not made explicitin
[10]. The other variant, the “Dual Approach”, differs from the former by the presence of
auxiliary clauses of the forrK — L generated during the proof search, whig¢el) is a
connection of literals occurring in the current clause set. No simplification mechanisms
have been described, like for instance those based on unit propagation rules. Finally, a
rather abstract framework for instance-based calculi which also admits simplification
techniques is described in [9].

A significant difference between the instance based methods we are aware of and
theME calculus is that the former maintain a growing set of instances of tlpuses
while M & does maintain a growing set of instances of injtatals: the current context.
Since contexts grow more slowly than sets of clause instances, this may lead to an
(at least) exponential advantage € regarding space consumption. As a drastic
example, consider a claugeof the formPyi(x;1) V - -- V Py(Xn) @and assume a signature
that includesn constants. There are clearly more thdhdifferent instances o, and
there seems to be no principled way to avoid including that many of them in the set
of instances of input clauses (by nature of instance-based methods, clause subsumption
cannot be used). IME in contrast, since contexts never contain p-variants of the same
literal, the number of instances Bfliterals is at most @8- (m+2).

Further Work. Our immediate goal is to implement tiéE calculus and evaluate its
potential in practice. In addition to that, various directions for further work are conceiv-
able. We list some below, referring the interested reader to [4] for more details.

The inference rules of tHe(€ calculus make sure that only literals that are parameter-
free or variable-free are inserted into contexts. “Mixed” literals with parameters and
variables presently occur ivE only temporarily, during the computation of branch
unifiers. A possible improvement would involve admitting mixed literals in contexts,
allowing then individual variables to be singled out as universal, as opposed to entire
literals as it is now.

The ME calculus is proof convergent (cf. Corollary 4.9), and so the order of rule
applications does not matter. Thien't-carenondeterminism can be exploited to have
the calculus stepwise simulate certain other calculi such as, e.g., the propositional logic
oriented OSHT calculus [17] or the Hyper Tableaux calculus in [2].

The most significant search heuristics for improving the performance of DPLL-
based solvers arearning (i.e. the addition of dynamically generated lemmas to the
input clause set) andtelligent backtrackingf split choices. While the latter is straight-
forward to achieve withitv(E, the former is not. In particular, a number of alternatives
seem possible which need further theorical investigation and experimental evaluation.

As presented here, the calculus always starts with an interpretation that assigns false
to all ground atoms. By simply replacing the pseudo-literalby v, it is possible to
have the calculus start instead with a complementary initial interpretation. The kind of

14

semantic guidance achieved in OSHL [14] by means of a user-defined initial interpre-
tation, is trivially achievable ilM € when this interpretation is denotable by a context:
one simply starts the derivation with that context. More work is needed to aléw

to start with arbitrary interpretations, in particular, ones that cannot be encoded into a
(finite) context.

In many theorem proving applications, a proper treatment of equational theories or
equality is mandatory. In principle, there seems to be nothing against a modern treat-
ment of equality i€ by means of a superposition-style inference rule and of simpli-
fication rules based on rewriting [1].

References

1. L. Bachmair and H. Ganzinger. Chapter 11: Equational Reasoning in Saturation-Based The-
orem Proving. In W. Bibel and P. H. Schmitt, editofsjtomated Deduction. A Basis for
Applications volume I. Kluwer, 1998.

2. P. Baumgartner. Hyper Tableaux—The Next Generation. In H. de Swaart, &ddor,of
TABLEAUX'98 volume 1397 oL NAI, pages 60-76. Springer, 1998.

3. P. Baumgartner. FDPLL—A First-Order Davis-Putnam-Logeman-Loveland Procedure. In
D. McAllester, editorProc. of CADE-17volume 1831 oL NAI, Springer, 2000.

4. P. Baumgartner and C. Tinelli. The Model Evolution Calculus. Fachberichte Informatik
1-2003, Universit Koblenz-Landau, 2003.

5. W. Bibel. Automated Theorem Provin¥ieweg, 1982.

6. J.-P. Billon. The Disconnection Method. In P. Miglioli et al., editétgyc of TABLEAUX'96
volume 1071 oL NAI, pages 110-126. Springer, 1996.

7. M Davis, G. Logemann, and D. Loveland. A machine program for theorem pro@iom-
munications of the ACMb(7):394-397, July 1962.

8. M. Davis and H. Putnam. A computing procedure for quantification thelwyrnal of the
ACM, 7(3):201-215, July 1960.

9. Harald Ganzinger and Konstantin Korovin. New directions in instance-based theorem prov-
ing. InLICS - Logics in Computer Scienc03. To appear.

10. J. N. Hooker, G. Rago, V. Chandru, and A. Shrivastava. Partial Instantiation Methods for
Inference in First Order LogicJournal of Automated Reasonir28:371-396, 2002.

11. S.-J. Lee and D. Plaisted. Eliminating Duplicates with the Hyper-Linking Strafegynal
of Automated Reasoning:25—-42, 1992.

12. R. Letz, K. Mayr, and C. Goller. Controlled Integrations of the Cut Rule into Connection
Tableau CalculiJournal of Automated Reasonint3, 1994.

13. R. Letz and G. Stenz. Proof and Model Generation with Disconnection Tableaux. In
R. Nieuwenhuis and A. Voronkov, editor®roc. of LPAR'01 volume 2250 ofLNAI.
Springer, 2001.

14. D. A. Plaisted and Y. Zhu. Ordered Semantic Hyper Linkilmurnal of Automated Reason-
ing, 25(3):167-217, 2000.

15. G. Stenz. DCTP 1.2 - System Abstract. In U. Egly and C. G. Bkem editors,Proc. of
TABLEAUX'02 volume 2381 of. NAI, pages 335—-340. Springer, 2002.

16. C. Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In G. lanni and
S. Flesca, editor®roc. of JELIA'02 volume 2424 of NAI. Springer, 2002.

17. A. Yahya and D. A. Plaisted. Ordered Semantic Hyper-Tabledoxirnal of Automated
Reasoning29(1):17-57, 2002.

18. H. Zhang and M. E. Stickel. An efficient algorithm for unit propagation.Piac. of Al-
MATH’96, 1996.

15

