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Abstract. The DPLL procedure is the basis of some of the most successful
propositional satisfiability solvers to date. Although originally devised as a proof-
procedure for first-order logic, it has been used almost exclusively for proposi-
tional logic so far because of its highly inefficient treatment of quantifiers, based
on instantiation into ground formulas. The recent FDPLL calculus by Baumgart-
ner was the first successful attempt to lift the procedure to the first-order level
without resorting to ground instantiations. FDPLL lifts to the first-order case the
core of the DPLL procedure, the splitting rule, but ignores other aspects of the
procedure that, although not necessary for completeness, are crucial for its ef-
fectiveness in practice. In this paper, we present a new calculus loosely based on
FDPLL that lifts these aspects as well. In addition to being a more faithful lifting
of the DPLL procedure, the new calculus contains a more systematic treatment
of universal literals, one of FDPLL’s optimizations, and so has the potential of
leading to much faster implementations.

1 Introduction

In propositional satisfiability the DPLL procedure, named after its authors: Davis, Put-
nam, Logemann, and Loveland [8, 7], is the dominant method for building (complete)
SAT solvers. Its popularity is due to its simplicity, its polynomial space requirements,
and the fact that, as a search procedure, it is amenable to powerful but also relatively
inexpensive heuristics for reducing the search space. Thanks to these heuristics and to
very careful engineering, the best SAT solvers today can successfully attack real-world
problems with hundreds of thousands of variables and of clauses.

Interestingly, the DPLL procedure was actually devised in origin as a proof-procedure
for first-order logic. Its treatment of quantifiers is highly inefficient, however, because
it is based on enumerating all possible ground instances of an input formula’s clause
form, and checking the propositional satisfiability of each of these ground instances
one at a time. Given the great success of DPLL-based SAT solvers today, two natural
research questions arise. One is whether the DPLL procedure can be properly lifted
to the first-order level—in the sense first-order resolution lifts propositional resolution,
say. The other is whether those powerful search heuristics that make DPLL so effective
at the propositional level can be successfully adapted to the first-order case. We answer
the first of these two questions affirmatively in this paper, providing a complete lifting
of the DPLL procedure to first-order clausal logic by means of a new sequent-style cal-
culus, theModel Evolutioncalculus, orME for short. We believe that theME calculus



can be used to answer the second question affirmatively as well, although that will be
the subject of our future work.

The recent FDPLL calculus by Baumgartner [3] was the first successful attempt
to lift the DPLL procedure to the first-order level without resorting to ground instan-
tiations. FDPLL lifts the core of the DPLL procedure, the splitting rule, but ignores
another major aspect,unit propagation[18], that although not necessary for its com-
pleteness is absolutely crucial to its effectiveness in practice. The calculus described in
this paper lifts this aspect as well. While theME calculus borrows many fundamental
ideas from FDPLL and generalizes it, it is not an extension of FDPLL proper but of
DPLL [16], a simple propositional calculus modeling the main features of the DPLL
procedure.

A very useful feature of the DPLL procedure and, by extension, of theDPLL cal-
culus is its ability to provide a (Herbrand) model of the input formula whenever that
formula is satisfiable. The procedure generates this model incrementally as it goes. The
ME calculus can be seen as lifting this model generation process to the first-order level.
Its goal is to construct a Herbrand model of a given setΦ of clauses, if any such model
exists. To do that, during a derivation the calculus maintains acontextΛ, a finite set of
(possibly non-ground) literals. The contextΛ is a finite—and compact—representation
of a Herbrand interpretationIΛ serving as a candidate model forΦ. The induced inter-
pretationIΛ might not be a model ofΦ because it does not satisfy some clauses inΦ.
The purpose of the main rules of the calculus is to detect this situation and eitherrepair
IΛ, by modifyingΛ, so that it becomes a model ofΦ, or recognize thatIΛ is unrepairable
and fail. In addition to these rules, the calculus contains a number of simplification rules
whose purpose is, again like inDPLL, to simplify the clause set and, as a consequence,
to speed up the computation.

TheME calculus starts with a default candidate model, one that satisfies no positive
literals, and “evolves it” as needed until it becomes an actual model of the input clause
setΦ, or until it is clear thatΦ has no models at all. An important by-product of this
evolution process is that all terminating derivations of a satisfiable clause setΦ produce
a context whose induced interpretation is indeed a model ofΦ. This makes the calculus
well suited for all applications in which it is important to also provide counter-examples
to invalid statements, as opposed to simply proving their invalidity.

The calculus is refutationally sound and complete: an input clause setΦ is unsatis-
fiable if and only if the calculus (finitely) fails to find a model forΦ. While the calculus
is obviously non-terminating for arbitrary input sets, it is terminating for the class of
ground clauses (of course), and for the class of clauses resulting from the translation of
conjunctions of Bernays-Schönfinkel formulas into clause form.

As mentioned, theME calculus is already a significant improvement over FDPLL
because it is a more faithful lifting of the DPLL procedure, having additional rules
for simplifying the current clause set and the current context. Another advantage over
FPDLL is that it contains a more systematic and general treatment ofuniversal literals,
one of FDPLL’s optimizations. As we will see, adding universal literals to a context im-
poses strong restrictions on future modifications of that context, with the consequence
of greatly reducing the non-determinism of the calculus.
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This paper is organized as follows. After some formal preliminaries, given below,
we describe in Section 2 theDPLL calculus, a declarative version of the DPLL pro-
cedure. We then define and discuss the Model Evolution calculus in Section 3 as a
first-order extension ofDPLL. We sketch a proof of correctness for the calculus in Sec-
tion 4.3 Then we show in Section 5 how the calculus compares to other calculi in related
work, and we conclude the paper with directions for further research.

Formal Preliminaries. Most of the notions and notation we use in this paper are the
standard ones in the field. We report here only notable differences and additions.

We will use two disjoint, infinite sets of variables: a setX of universalvariables,
which we will refer to just as variables, and another setV, which we will always refer
to asparameters. We will useu,v to denote elements ofV andx,y to denote elements
of X. We fix a signatureΣ throughout the paper and denote byΣsko the expansion
of Σ obtained by adding toΣ an infinite number of fresh (Skolem) constants. Unless
otherwise specified, when we say term we will meanΣsko-term. If t is a term we denote
by Var(t) the set oft ’s variables and byPar(t) the set oft ’s parameters. A termt is
ground iff Var(t) = Par(t) = /0. All of the above is extended to literals and clauses in
the obvious way.

A substitutionρ is arenaming on W⊆ (V ∪X) iff its restriction toW is a bijection
of W onto itself;ρ is simply arenamingif it is a renaming onV ∪X. A substitutionσ
is p-preserving(short for parameter preserving) if it is a renaming onV. If s andt are
two terms, we writes& t, iff there is a substitutionσ such thatsσ = t. We say thats is
a variant of t, and writes≈ t, iff s& t andt & sor, equivalently, iff there is a renaming
ρ such thatsρ = t. We writes� t if s& t but s 6≈ t We writes≥ t and say thatt is a p-
instance of siff there is a p-preserving substitutionσ such thatsσ = t. We say thats is a
p-variant of t, and writes' t, iff s≥ t andt ≥ s; equivalently, iff there is a p-preserving
renamingρ such thatsρ = t.We writes
 t if s≥ t but s 6' t. Again, all of the above is
extended from terms to literals in the obvious way.

We denote literals by the lettersK,L. We denote byL the complement of a literal
L, and byLsko the result of replacing each variable ofL by a fresh Skolem constant in
Σsko\Σ. We denote clauses by the lettersC andD, and the empty clause by�. We will
write L∨C to denote a clause obtained as the disjunction of a (possibly empty) clause
C and a literalL. When convenient, we will treat a clause as the set of its literals. A
(Herbrand) interpretation Iis a set of groundΣsko-literals that contains eitherL or L,
but not both, for every groundΣsko-literal L. Satisfiability/validity of literals and clauses
in a Herbrand interpretation is defined as usual.

2 The DPLL Calculus

The DPLL procedure [7] can be used to decide the satisfiability of finite sets of ground
(or propositional) clauses. Following [16], the essence of the procedure can be captured
by a sequent-style calculus, theDPLL calculus, consisting of the derivation rules given
below. The calculus manipulates sequents of the formΛ ` Φ, whereΛ, thecontextof
the sequent, is a finite set of ground literals andΦ is a finite (multi)set of ground clauses.

3 A complete and detailed proof can be found in the long version of this paper [4].
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Split
Λ ` Φ, L∨C

Λ,L ` Φ, L∨C Λ,L ` Φ, L∨C
if

{
C 6= �,

L /∈ Λ, L /∈ Λ

Assert
Λ ` Φ, L

Λ,L ` Φ, L
if

{
L /∈ Λ,

L /∈ Λ
Subsume

Λ, L ` Φ, L∨C

Λ, L ` Φ

Empty
Λ ` Φ, �

Λ `�
if Φ 6= /0 Resolve

Λ, L ` Φ, L∨C

Λ, L ` Φ, C

The intended goal of the calculus is to derive a sequent of the formΛ ` /0 from an
initial sequent/0 `Φ0, whereΦ0 is a clause set to be checked for satisfiability. If that is
possible, thenΦ0 is satisfiable; otherwise,Φ0 is unsatisfiable. Informally, the purpose
of the contextΛ is to store incrementally a set ofasserted literals, i.e., a set of literals
in Φ0 that must or can be true forΦ0 to be satisfiable. WhenΛ ` /0 is derivable from
/0 ` Φ0, the contextΛ determines a (Herbrand) model ofΦ0: one that satisfies an atom
p in Φ0 iff p occurs positively inΛ.

The context is grown by theAssert and theSplit rules. TheSplit rule corresponds to
the decomposition in smaller subproblems of the DPLL procedure. The unit propaga-
tion process of the DPLL procedure (see, e.g., [18]) is modeled by theAssert, Resolve
andSubsume rules. TheResolve rule can be used to remove from a clause all literals
whose complement has been asserted, whereas theSubsume rule can be used to remove
from a clause set all clauses containing an asserted literal.

The DPLL calculus is easily proven sound, complete and terminating. It can be
shown [16] that the calculus maintains its completeness even if theSplit rule is con-
strained to split on positive literals only. Another change that does not alter the calculus
in any fundamental way is the replacement of theEmpty rule by the more powerful rule

Close
Λ ` Φ, L1∨·· ·∨Ln

Λ `�
if

{
Φ 6= /0 or n > 0,

L1, . . . ,Ln ∈ Λ

which reduces to theEmpty rule given earlier whenn = 0 and, in turn, can be simu-
lated byn applications ofResolve followed by one application ofEmpty. The Model
Evolution calculus, described next, is a lifting of the version ofDPLL that applies the
positive-literal restriction onSplit and usesClose in place ofEmpty.

3 The Model Evolution Calculus

The Model Evolution calculus works with sequents of the formΛ ` Φ, similarly to
DPLL. This time, however,Λ is a finite set of literals possibly with variables or with
parameters, called again a context, andΦ is a set of clauses possibly with variables.
The defining feature of the calculus, modeled after FDPLL, is the wayDPLL contexts
are extended to the first-order case, and the rôle they play in driving the derivation and
the model generation process.

Definition 3.1 (Context).A contextis a set of the form{¬v}∪S where v∈V and S is
a finite set of literals each of which is parameter-free or variable-free.
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WhereL is a literal andΛ a context, we writeL ∈' Λ if L is a p-variant of a literal
in Λ, and writeL ∈≥ Λ if L is a p-instance of a literal inΛ.

Definition 3.2 (Contradictory). A literal L is contradictory witha contextΛ iff Lσ =
Kσ for some K∈' Λ and some p-preserving substitutionσ. A contextΛ is contradictory
iff it contains a literal that is contradictory withΛ.

Example 3.3.Let Λ := {¬v, p(x1,y1), ¬q(v1)}. Then¬p(h(x),u), ¬p(v,u), andq(y)
are all contradictory withΛ. However,q( f (v)) and r(x), say, are not. (Recall that
x,x1,y1 are variables whilev,v1,u are parameters.)

We will work only with non-contradictory contexts. Thanks to the next two notions,
such contexts can be used as finite denotations of (certain) Herbrand interpretations.

Definition 3.4 (Most Specific Generalization).Let L be a literal andΛ a context. A
literal K is a most specific generalization (msg) ofL in Λ iff K & L and there is no
K′ ∈ Λ such that K� K′ & L.

Definition 3.5 (Productivity). Let L be a literal, C a clause, andΛ a context. A literal
K producesL in Λ iff (i) K is an msg of L inΛ, and (ii) there is no K′ ∈≥ Λ such that
K � K′ & L. The contextΛ producesL iff it contains a literal K that produces L inΛ.

Example 3.6.Let Λ := {¬v, p(v1,g(u1)), ¬p(v1,g(v1)), q(h(u),v), ¬q(u,g(v))}. The
literals¬p(v,u), p(v,g(u)), p(x,g(a)), ¬p(a,g(a)) are all produced byΛ, specifically
by ¬v, p(v1,g(u1)), p(v1,g(u1)), ¬p(v1,g(v1)), respectively. On the other hand, the
literals p(v,u), ¬p(v,g(u)), ¬p(x,g(a)), p(a,g(a)) are not produced byΛ. Note that,
however, bothq(h(u),g(v)) and¬q(h(u),g(v)) are produced byΛ.

A consequence of the presence of the pseudo-literal¬v in every contextΛ is that
Λ producesL or L for every literalL. We can use this fact to associate toΛ a unique
Herbrand interpretation.

Definition 3.7 (Induced interpretation). Let Λ be a non-contradictory context. The
interpretation induced byΛ, denoted by IΛ, is the Herbrand interpretation that satisfies
a positive ground literal L iff L is produced byΛ.

Note that since it is possible for a contextΛ to produce both a ground literalL and
its complementL, the above definition is asymmetric, becauseIΛ always chooses to
satisfyL overL if L is positive. Contrapositively, this means that ifIΛ satisfies a ground
literal L andL is positive, thenL and possibly alsoL are produced byΛ. If on the other
handL is negative, thenL but notL is produced byΛ.

It should be clear now that the purpose of the pseudo-literal¬v in a contextΛ is to
provide adefaulttruth-value to those ground literals whose value is not determined by
the rest of the context. In fact, consider a ground literalL such that neitherL nor L is
produced byΛ \ {¬v}. If L is positive, then it is false inIΛ because it is not produced
by Λ at all. If L is negative, then it is true inIΛ because it is produced by¬v.

For a given sequentΛ `Φ the interpretation induced by the contextΛ may falsify a
clause ofΦ. This situation is detectable through the computation ofcontext unifiers.
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Definition 3.8 (Context Unifier). Let Λ be a context and C= L1∨ ·· · ∨Lm∨ ·· · ∨Ln

a parameter-free clause, where0≤ m≤ n. A substitutionσ is a context unifier ofC
againstΛ with remainderLm+1σ∨·· ·∨Lnσ if there are fresh K1, . . . ,Kn ∈' Λ such that

1. σ is a most general simultaneous unifier of{K1,L1}, . . . ,{Kn,Ln},
2. (Par(Ki))σ ⊆V for i = 1, . . . ,m and(Par(Ki))σ 6⊆V for i = m+1, . . . ,n.

We say, in addition, thatσ is productiveif Ki producesLiσ in Λ for all i = 1, . . . ,n. We
say thatσ is admissible (forSplit) if for all distinct i, j = m+1, . . . ,n, Liσ is parameter-
or variable-free andVar(Liσ)∩Var(L jσ) = /0.

Note that each context unifier has a unique remainder. Ifσ is a context unifier with
remainderD we call each literal ofD a remainder literalof σ.

Example 3.9.Let Λ := {¬v, p(v1,u1), ¬p(x1,g(x1)), q(v2,g(v2))} and letC1 := r(x)∨
¬p(x,y). The substitutionsσ1 := {v 7→ r(x), v1 7→ x, u1 7→ y} andσ2 := {v 7→ r(v1), x 7→
v1, u1 7→ y} are both context unifiers ofC1 againstΛ with respective remaindersr(x)∨
¬p(x,y) andr(v1)∨¬p(v1,y). While they are both productive, neither of them is ad-
missible; the former because its remainder literals are not variable-disjoint, the latter
because its remainder contains both variables and parameters.

By contrast, the substitutionσ3 := {v 7→ r(v1), x 7→ v1, y 7→ u1} is a context unifier of
C1 againstΛ, with remainderr(v1)∨¬p(v1,u1), that is both productive and admissible.

Consider now the clauseC2 = ¬p(x,y)∨¬q(x,y). The substitutionσ4 := {v1 7→
v2, u1 7→ g(u2), x 7→ v2, y 7→ g(u2)} is a context unifier ofC2 againstΛ with remainder
¬p(v2,g(v2)). It is admissible, but it is not productive because the literalp(v1,u1) of Λ
chosen to unify with¬p(x,y) does not produce¬p(x,y)σ4 = p(v2,g(v2)).

Admissible context unifiers are fundamental in the Model Evolution calculus. With
a contextΛ and a clauseC, the existence of an admissible context unifier ofC againstΛ
is a sign that the induced interpretationIΛ might not be a model ofC. The discovery of
an admissible context unifierσ of C against the current contextΛ prompts the calculus
to add a literal ofCσ to Λ, with the goal of makingC valid in the newIΛ. This literal
is chosen only among the remainder literals ofσ; non-remainder literals can be ignored
with no loss of completeness. Note that while the existence of an admissible context
unifierσ of C againstΛ is necessary for the unsatisfiability ofC in IΛ, it is not sufficient
unlessσ is also productive. For completeness then, the calculus needs to consider only
remainder literals of admissible unifiers that are also productive.4

Productivity issues aside, note that although context unifiers for a given clauseC and
contextΛ are easily computable (they are just simultaneous most general unifiers), they
are not unique and may not be admissible. Nevertheless, the calculus does not need
to search for admissible context unifiers: any context unifier can be composed with
a renaming substitution, determined deterministically, such that the resulting context
unifier is admissible. The completeness of the calculus is not affected by computing
admissible contexts unifiers this way.5

4 But see [4] for a discussion on the usefulness of considering non-productive context unifiers
as well.

5 Again, see [4] for more details.
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Parameters vs. Variables.Before moving to describe the rules of the Model Evolution
calculus, it is important to clarify the respective rôles that parameters and variables play
in the calculus. Each derivation in the calculus starts with a sequent of the form¬v`Φ0,
whereΦ0 contain only standard clauses, i.e. clauses with no parameters—but possibly
with variables. Similarly, all sequents generated during a derivation contain standard
clauses only. Variables then can appear both in clauses sets and in contexts. Parameters
instead can appear only in contexts. The rôle of variables within a clause is the usual
one. In contrast, the rôle of variables and parameters within a context is to constrain, in
different ways, how a candidate model can be repaired.

Now, given a sequentΛ ` Φ, the interpretationIΛ needs repairing only if it falsifies
a clauseC in Φ. In that case there is an admissible context unifierσ of C againstΛ. If
every instance ofC falsified byIΛ is also an instance ofCσ, to makeC valid in IΛ it is
enough to modifyΛ so thatIΛ satisfiesCσ. One way to do that is to pick fromCσ a
literal Lσ that is not contradictory withΛ, andassertit by adding it toΛ. The idea is to
make the unit clauseLσ valid in IΛ, which then makesCσ valid as well. Now recall that,
sinceσ is admissible, the added literal will not contain both parameters and variables.

If Lσ is a parameter-free literal, auniversal literal in FDPLL’s terminology, the
assertion ofLσ cannot be retracted. No repairs that involve making instances ofLσ
false in the induced interpretation will be allowed from that point on.

If Lσ is variable-free instead, the assertion ofLσ expresses simply the conjecture
that there is a model ofCσ satisfying all ground instances ofLσ. This conjecture can be
partially revised later if evidence against it is found. This might happen if the calculus
later adds to the current contextΛ′ a literal Lσ′, for some context unifierσ′, andCσ′
is an instance ofCσ. After the addition, the induced interpretation satisfies only the
instances ofLσ that are not an instance ofLσ′. At that point,Cσ may not be valid
anymore because its instanceCσ′ may now be falsified. If so, the calculus will detect it
and will try to makeCσ′ valid (thereby restoring the validity ofCσ) by looking inCσ′
for a literal other thanLσ′ that can be added to the context, as explained earlier forLσ.

Derivation Rules. The Model Evolution calculus lifts theDPLL calculus to the first-
order level by providing a first-order version ofDPLL’s rules—Split with the positive
literal restriction,Assert, Subsume, Resolve andClose—and adding one new simplifi-
cation rule,Compact, specific to the first-order case.

In [4] we show that, except for the presence of the pseudo-literal¬v in its contexts,
the Model Evolution calculus reduces precisely toDPLL when the input clause set is
ground. We refer the interested reader to [4] for more details on why this is the case. In
brief, the reason is that in the ground caseCompact never applies, and the other rules
reduce exactly to their namesake inDPLL.

A definition and a brief explanation ofME’s rules follows next.

Assert
Λ ` Φ, L

Λ,L ` Φ, L
if K ≥ L for noK ∈ Λ, andL is not contradictory withΛ

As in DPLL, theAssert rule is extremely useful in reducing the non-determinism of the
calculus. Every candidate model of a clause setΦ∪{L} mustmakeL valid in order
to become a model ofΦ∪{L}. TheAssert rule achieves just that by addingL to the
context. Note that sinceL is parameter-free, its addition to the context is not retractable.
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Also note that the rule does not apply if the (permanent) validity ofL has been already
established. This is the case whenΛ contains a—necessarily parameter-free—literalK
such thatK ≥ L. The rule does not apply also ifL is contradictory withΛ. In that case,
however, the candidate model is unrepairable. TheClose rule will detect that.

Split
Λ ` Φ, C∨L

Λ, Lσ ` Φ, C∨L Λ, (Lσ)sko` Φ, C∨L
if



C 6= �,

σ is an admissible context

unifier ofC∨L againstΛ
with remainder literalLσ,

neitherLσ nor (Lσ)sko is

contradictory withΛ

As in DPLL, Split is the only (don’t-know) non-deterministic rule of the calculus.Split
is the rule that discovers when the current candidate model falsifies one of the clauses
in the current clause set. It does so by computing a context unifierσ with non-empty
remainder for a clause with at least two literals. Once it findsσ, it attempts to repair the
model by selecting a remainder literalLσ and adding eitherLσ or its complement to the
context. Adding the complement ofLσ in alternative toLσ is necessary for soundness,
as the current clause set may have no models that satisfyLσ. Of course, the addition
of Lσ’s complement to the context will not make the selected clauseC∨L valid in the
new candidate model. But it will make sure that no context unifierσ′ of C∨L hasLσ′
in its remainder, forcing the calculus to select other literals to makeC∨L valid. Note
thatSplit does not quite add the complement ofLσ: whenLσ is parameter-free it adds
a Skolemized version ofLσ.6 This is in accordance to our treatment of parameter-free
literals in contexts as universal sentences.

Subsume
Λ, K ` Φ, L∨C

Λ, K ` Φ
if K ≥ L.

The purpose ofSubsume is the same as inDPLL: to get rid of clauses that are valid in the
current candidate model—and are guaranteed to stay so. These are exactly those clauses
containing a p-instanceL of a—necessarily parameter-free—literalK in the current
context. AlthoughSubsume is not needed for completeness, it is useful in practice
because it reduces the size of the current clause set.

Resolve
Λ, K ` Φ, L∨C

Λ, K ` Φ, C
if K ≥ L.

The Close rule is in essence the dual ofSubsume, and likeSubsume it is not needed
for completeness. Its main goal is to generate unit clauses, which can then be added to
the context byAssert as parameter-free literals.

Compact
Λ, K, L ` Φ
Λ, K ` Φ

if K ≥ L

6 WhenLσ is variable-free the Skolemization step is vacuous.
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The Compact rule as well is unnecessary for completeness but useful in practice. To
understand the rule’s rationale it is important to know that, the way the calculus is
defined,Compact’s precondition holds only ifK is a parameter-free literal. As discussed
in a previous section, parameter-free context literals stand for all their instances, with
no exception. This means that when a parameter-free literalK is added to a context,
all literals in the context that are an instance ofK become superfluous. The purpose of
Compact is to eliminate these superfluous literals.

Close
Λ ` Φ, C

Λ `�
if

{
Φ 6= /0 or C 6= �,

C has a context unifier againstΛ with an empty remainder

The idea behindClose is that when its precondition holds there is no way to repair the
current candidate model to make it satisfyC. The replacement of the current close set
by the empty clause signals that the calculus has given up on that candidate model. Note
that, because ofResolve, it is possible for the calculus to generate a sequent containing
an empty clause among other clauses. TheClose rule recognizes such sequents and
applies to them as well. To see that it is enough to observe that, for any contextΛ, the
empty substitution is a context unifier of� againstΛ with an empty remainder.

A Derivation Example. We show a simple example of a derivation of an unsatisfiable
clause set. We sketch the construction of only one branch of the final derivation tree,
as the other branches are constructed similarly. Consider the following initial sequent
(where we use the usual mathematical notation for greater clarity):

¬v ` ¬(x≥ y)∨¬(y≥ z)∨ (x≥ z), (x≥ 0)∨ (0≥ x), |x| ≥ 0, 0≥−|x|,
¬(x≥ 0)∨ (|x| ≥ x), ¬(0≥ x)∨ (|x| ≥ x), ¬(|c| ≥ c)∨¬(|c| ≥ −|c|)

Each unit clause in the clause set can be moved into the context by means ofAssert,
and then removed from the set by means ofSubsume. This results in the sequent:

¬v, |x| ≥ 0, 0≥−|x| `
¬(x≥ y)∨¬(y≥ z)∨ (x≥ z), (x≥ 0)∨ (0≥ x),
¬(x≥ 0)∨ (|x| ≥ x), ¬(0≥ x)∨ (|x| ≥ x),
¬(|c| ≥ c)∨¬(|c| ≥ −|c|)

By considering the fresh p-variants|x1| ≥ 0,0≥ −|x2|,¬v1 of context literals, the
substitutionσ = {x 7→ |x1|, y 7→ 0, z 7→ −|x2|, v1 7→ |x1| ≥ −|x2|} is an admissible con-
text unifier of¬(x≥ y)∨¬(y≥ z)∨ (x≥ z) with residue|x1| ≥ −|x2|. Since neither
|x1| ≥ −|x2| nor its complement is contradictory with the context, we can add it the
context by one application ofSplit. With |x1| ≥ −|x2| in the context, we can then sim-
plify ¬(|c| ≥ c)∨¬(|c| ≥ −|c|) to ¬(|c| ≥ c) with Resolve, and then move¬(|c| ≥ c)
to the context by means ofAssert andSubsume, obtaining

¬v, |x| ≥ 0, 0≥−|x|
|x1| ≥ −|x2|, ¬(|c| ≥ c) `

¬(x≥ y)∨¬(y≥ z)∨ (x≥ z), (x≥ 0)∨ (0≥ x),
¬(x≥ 0)∨ (|x| ≥ x), ¬(0≥ x)∨ (|x| ≥ x),

Using¬v and¬(|c| ≥ c) we can applySplit to ¬(x≥ 0)∨ (|x| ≥ x) with remainder
¬(|c| ≥ 0), and then to¬(0≥ x)∨ (|x| ≥ x) with remainder¬(0≥ |c|), and obtain:

. . . , ¬(|c| ≥ 0), ¬(0≥ |c|) ` . . . , (x≥ 0)∨ (0≥ x), . . .

At this point we can apply theClose rule because, with the context literals¬(|c| ≥ 0)
and¬(0≥ |c|), the substitutionσ = {x 7→ |c|} is a context unifier of(x≥ 0)∨ (0≥ x)
with an empty remainder.
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4 Correctness of the Calculus

In this section, we sketch a proof of soundness and completeness for the Model Evolu-
tion calculus. For that first we need a proper notion of derivation.

Derivations in the Model Evolution calculus are defined in terms ofderivation trees,
where each node corresponds to a particular application of a derivation rule, and each
of the node’s children corresponds to one of the conclusions of the rule. More precisely,
a derivation tree in theME calculus is a labeled tree inductively defined as follows.

A one-node tree is a derivation tree iff its root is labeled with a sequent of the form
Λ ` Φ, whereΛ is a context andΦ is a clause set. A treeT′ is a derivation tree iff it is
obtained from a derivation treeT by adding to a leaf nodeN in T new children nodes
N1, . . . ,Nm so that the sequents labelingN1, . . . ,Nm can be derived by applying a rule of
the calculus to the sequent labelingN. In this case, we say thatT′ is derived fromT. We
say that a derivation treeT is aderivation tree of a clause setΦ iff its root node tree is
labeled with¬v` Φ.

We say that a branch in a derivation tree isclosedif its leaf is labeled by a sequent
of the formΛ `�; otherwise, the branch isopen. A derivation tree isclosedif each of
its branches is closed, and it isopenotherwise. We say that a derivation tree (of a clause
setΦ) is arefutation tree (ofΦ) iff it is closed.

In the rest of the paper, the letterκ will denote an ordinal smaller than or equal to
the first infinite ordinal.

Definition 4.1 (Derivation). A derivation (inME) is a possibly infinite sequence of
derivation trees(T i)i<κ, such that for all i with0 < i < κ, T i is derived fromT i−1.

We say that a derivationD = (T i)i<κ is a derivation of a clause setΦ iff T0 is a
one-node tree with label{¬v} `Φ. We say thatD is arefutation ofΦ iff D is finite and
ends with a refutation tree ofΦ.

We show in the next sections that for all setsΦ0 of Σ-clauses with no parameters,
Φ0 is unsatisfiable iffΦ0 has a refutation in the calculus.

Soundness.To prove the calculus sound we use the fact that its derivation rules preserve
a particular notion of satisfiability which we calla-satisfiability, after [3].

Let us fix a constanta from the signatureΣsko\Σ. Given a literalL, we denote by
La the result or replacing every parameter ofL by a. Similarly, given a contextΛ, we
denote byΛa the set ofunit clausesobtained fromΛ by removing the pseudo-literal¬v
and replacing each literalL of Λ with the unit clauseLa. We say that a sequentΛ `Φ is
a-(un)satisfiableiff the clause setΛa∪Φ is (un)satisfiable in the standard sense—that
is, has no (Herbrand) model.

Lemma 4.2. For each rule of theME calculus, if the premise of the rule is a-satisfiable,
then one of its conclusions is a-satisfiable as well.

Proposition 4.3 (Soundness).For all setsΦ0 of parameter-freeΣ-clauses, ifΦ0 has
a refutation treeT, thenΦ0 is unsatisfiable.

Fairness. As customary, we prove the completeness of the calculus with respect to
fair derivations. The specific notion of fairness that we adopt is defined formally as
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follows. For that, it will be convenient to describe a treeT as the pair(N,E), where
N is the set of the nodes ofT and E is the set of the edges ofT. Each derivation
D = (T i)i<κ = ((Ni ,Ei))i<κ in ME determines alimit tree T := (

S
i<κ Ni ,

S
i<κ Ei). It

is easy to show that a limit tree of a derivationD is indeed a tree. But note that it will
not be a derivation tree unlessD is finite.

Definition 4.4 (Persistency).Let T be the limit tree of some derivation, and letB =
(Ni)i<κ be a branch inT with κ nodes. LetΛi `Φi be the sequent labeling node Ni , for
all i < κ. We define thepersistent context literalsof B as ΛB :=

S
i<κ

T
i≤ j<κ Λ j , and

thepersistent clausesof B asΦB :=
S

i<κ
T

i≤ j<κ Φ j .

Although, strictly speaking,ΛB is not a context because it may be infinite, for the
purpose of the completeness proof we treat it as one. This is possible because all relevant
definitions (Definitions 3.1 to 3.8) can be applied without change toΛB as well.

Fair derivations in theME calculus are defined in terms ofexhausted branches.

Definition 4.5 (Exhausted branch).Let T be a limit tree, and letB = (Ni)i<κ be a
branch inT with κ nodes. For all i< κ, let Λi `Φi be the sequent labeling node Ni . The
branchB is exhaustediff for all i < κ all of the following hold:

(i) For all C ∈ ΦB, if Split is applicable toΛi ` Φi with selected clause C and produc-
tive context unifierσ, then there is a remainder literal L ofσ and a j≥ i with j < κ
such thatΛ j produces L but does not produceL.

(ii) For all unit clauses L∈ ΦB, if Assert is applicable toΛi ` Φi with selected unit
clause L, then there is a j≥ i with j < κ such that L∈≥ Λ j .

(iii) For all C ∈ ΦB, Close is not applicable toΛi ` Φi with selected clause C.
(iv) Φi 6= {�}.

Definition 4.6 (Fairness).A limit tree of a derivation isfair iff it is a refutation tree or
it has an exhausted branch. A derivation isfair iff its limit tree is fair.

We point out that fair derivations in the sense above exist and are computable for any set
of (parameter-free)Σ-clauses. A proof of this fact can be given by adapting a technique
used in [3] to show the computability of fair derivations in FDPLL.

Completeness.For the rest of this section, letΦ be a set of parameter-freeΣ-clauses
and assume thatD is a fair derivation ofΦ that is not a refutation. Observe thatD ’s limit
tree must have at least one exhausted branch. We denote this branch byB = (Ni)i<κ.
Then, byΛi ` Φi , we will always mean the sequent labeling the nodeNi in B, for all
i < κ. (As a consequence, we will also have thatΛ0 = {¬v} andΦ0 = Φ.)

The following proposition is the main result for proving the calculus complete.

Proposition 4.7. If � /∈ ΦB, then IΛB is a model ofΦB.

Proof. (Sketch) Suppose ad absurdum thatΦB does not contain the empty clause, but
IΛB is not a model ofΦB. This means that there is a ground instanceCγ of a clauseC =
L1∨·· ·∨Ln with n≥ 1 fromΦB that is not satisfied byIΛB . This is to say that the literals
L1γ, . . . ,Lnγ are all satisfied byIΛB . It can be shown thatΛB producesL1γ, . . . ,Lnγ then.
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We distinguish two complementary cases, depending on whethern = 1 or n > 1, and
show that they both lead to a contradiction.

(n = 1) C consists of the single literalL1. Given thatΛB producesL1γ, it can be shown
that there is aK ∈ ΦB andi such that for allj ≥ i with j < κ, K ∈ Λ j andK produces
L1γ in Λ j . SinceL1 is a (unit) clause fromΦB, there is ani′ such thatL1 ∈ Φ j ′ for all
j ′ ≥ i′. Without loss of generality assume thati ≥ i′. By Definition 4.5-(iii),Close is not
applicable toΛi `Φi with selected clauseL1. SinceL1 ∈Φi , this entails that all context
unifiers ofL1 againstΛi have a non-empty remainder. With the result above aboutK it
can be shown thatAssert is applicable toΛi ` Φi with selected unit clauseL1.

According to Definition 4.5-(ii) then, there is aj ≥ i with j < κ and anL ∈ Λ j

such thatL ≥ L1. It is not difficult to see that withL1 being parameter-free,L must be
parameter-free as well. From this and the fact thatL ≥ L1γ we can then show thatΛ j

producesL1γ but notL1γ, which contradicts the assertion above that for some literalK
and all j ≥ i, K ∈ Λ j producesL1γ.

(n > 1) By a suitable lifting lemma, there exist fresh p-variantsK1, . . . , Kn ∈' ΛB
and a substitutionσ such that (i)σ is a most general simultaneous unifier of{K1,L1},
. . . , {Kn,Ln}, (ii) for all k = 1, . . . ,n, Lk & Lkσ & Lkγ, and (iii) for all k = 1, . . . ,n, Kk

producesLkσ in ΛB. By Definition 3.8,σ is a productive context unifier ofC againstΛB
with some remainderD. It is not difficult to prove that then an admissible context unifier
of C againstΛB can be obtained asσ′ = σρ, for some renamingρ. Let k ∈ {1, . . . ,n}
and observe that a literalK produces a literalL in a contextΛ iff K produces a variant
of L in Λ. From the fact thatKk producesLkσ in ΛB, we have thatKk producesLkσ′ in
ΛB as well. Similarly to the casen = 1, it can be proven that there is ani such that for
all k = 1, . . . ,n and all j ≥ i with j < κ, Kk ∈ Λ j andKk producesLkσ′. By assumption,
C is a clause ofΦB. Hence, there is ai′ such thatC∈Φ j ′ for all j ′ ≥ i′. Without loss of
generality suppose thati ≥ i′. By Definition 4.5-(iii),Close is not applicable toΛi ` Φi

with selected clauseC. Hence, all context unifiers ofC againstΛi must have a non-
empty remainder. By the above,Λi producesLkσ′ for k = 1, . . . ,n, and so, in particular,
Λi produces all remainder literals ofσ′. It can be shown then, thatSplit is applicable to
Λi ` Φi with selected clauseC and productive context unifierσ′. By Definition 4.5-(i),
there is then a remainder literalLσ′ of σ′ and a j ≥ i such thatΛ j producesLσ′ but not
Lσ′. This contradicts the conclusion above that for allk = 1, . . . ,n, Kk ∈ Λ j produces
Lkσ′ in Λ j . ut

The completeness of the calculus is a consequence of Proposition 4.7. We state it
here in contrapositive form to underline the model computation abilities ofME.

Theorem 4.8 (Completeness).Let D be a fair derivation ofΦ with limit treeT. If T
is not a refutation tree, thenΦ is satisfiable; more precisely, for every exhausted branch
B of T, IΛB is a model ofΦ.

When the branchB in Theorem 4.8 is finite,ΛB coincides with the contextΛn, say,
in B’s leaf. From a model computation perspective, this is a very important fact because
it means that a model of the original clause set—or rather, a finite representation of it,
Λn—is readily available at the end of the derivation; it does not have to be computed
from the branch, as in other model generation calculi.
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The calculus is proof confluent [5]: any derivation of an unsatisfiable clause set ex-
tends to a refutation. In fact, because of the strong completeness result in Theorem 4.8,
the calculus satisfies an even stronger property, as illustrated by the corollary below.
In practical terms, the corollary implies that as long as a derivation strategy guarantees
fairness, the order of application of the rules of the calculus is irrelevant for proving
an input clause set unsatisfiable, giving to theME calculus the same kind of flexibility
enjoyed by theDPLL calculus at the propositional level.

Corollary 4.9 (Proof Convergence).Let Φ be a a parameter-free clause set over the
signatureΣ. If Φ is unsatisfiable, then every fair derivation ofΦ is a refutation.

5 Conclusions

In this paper we have introduced the Model Evolution (ME) calculus. TheME calculus
extends the propositional part of the DPLL procedure to first-order clause logic by
supplying unification-based, first-order versions of DPLL’s inference rules. Compared
to its most immediate predecessor, FDPLL [3],ME is a more faithful lifting of DPLL, as
it also includes first-order versions of the unit propagation rules, which are not present
in FDPLL. Two additional improvements ofME over FDPLL, both leading to a smaller
search space, are the absence of a rule like FDPLL’sCommit, and the ability ofSplit to
generate universal literals more often than in FDPLL.

Related work. Besides the FDPLL calculus,ME is related to the family ofinstance-
based methods.7 Proof search in instance-based methods relies on maintaining a set of
instances of input clauses and analyzing it for satisfiability until completion.ME is not
an instance-based method in this sense, as clause instances are used only temporarily
within theSplit inference rule and can be forgotten after the split has been carried out.

The contemporary stream of research on instance-based methods was initiated with
the Hyperlinking calculus [11], whose current successor is Ordered Semantic Hyper-
linking (OSHL) [14]. OSHL has many interesting features not present inME. In the
intersection withME, OSHL can be described as a calculus that grows a set of ground
clauses, based on the detection of input clause instances falsified by a current interpre-
tation and a repair operation roughly comparable toME, however at the ground level.

Some instance-based calculi have been formulated within the (clausal) tableau frame-
work. The initial work in this direction is Billon’s disconnection method [6]. The calcu-
lus described in [2] relates to the disconnection method much like the hyper resolution
calculus relates to the resolution calculus. The disconnection method has been picked
up by Letz and Stenz for further improvements, which include a dedicated inference
rule for deriving unit clauses [13]. Compared toME, tableau calculi branch on subfor-
mulas (or, the literals of a clause in the clausal logic case), as opposed to complementary
literals likeME does. For the propositional case it is easy to see that branching on com-
plementary literals is more general than branching on clauses. In fact, each branching
on a clause withn literals can be simulated byn splits with complementary literals.

7 The detailed discussion in [3] on FDPLL’s related work extends toME as well. The points
made there will not be repeated here in detail. However, see the long version of the present
paper [4] for an extended section on this related work.
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Furthermore, some improvements like factoring (see [12]) areautomaticallyrealized
by the branching on complementary literals approach. A systematic investigation on
how this fact exactly carries over to the first-order case—i.e.ME vs. certain clausal
tableau calculi—is left for future work.

Two variants of an instance-based method are described by Hookeret al. [10]. One
of them, the “Primal Approach” seems to be very similar to the disconnection method
(see above) although, unfortunately, the relation with this method is not made explicit in
[10]. The other variant, the “Dual Approach”, differs from the former by the presence of
auxiliary clauses of the formK → L generated during the proof search, where(K,L) is a
connection of literals occurring in the current clause set. No simplification mechanisms
have been described, like for instance those based on unit propagation rules. Finally, a
rather abstract framework for instance-based calculi which also admits simplification
techniques is described in [9].

A significant difference between the instance based methods we are aware of and
theME calculus is that the former maintain a growing set of instances of inputclauses,
while ME does maintain a growing set of instances of inputliterals: the current context.
Since contexts grow more slowly than sets of clause instances, this may lead to an
(at least) exponential advantage forME regarding space consumption. As a drastic
example, consider a clauseC of the formP1(x1)∨ ·· · ∨Pn(xn) and assume a signature
that includesm constants. There are clearly more thanmn different instances ofC, and
there seems to be no principled way to avoid including that many of them in the set
of instances of input clauses (by nature of instance-based methods, clause subsumption
cannot be used). InME in contrast, since contexts never contain p-variants of the same
literal, the number of instances ofPi-literals is at most 2n· (m+2).

Further Work. Our immediate goal is to implement theME calculus and evaluate its
potential in practice. In addition to that, various directions for further work are conceiv-
able. We list some below, referring the interested reader to [4] for more details.

The inference rules of theME calculus make sure that only literals that are parameter-
free or variable-free are inserted into contexts. “Mixed” literals with parameters and
variables presently occur inME only temporarily, during the computation of branch
unifiers. A possible improvement would involve admitting mixed literals in contexts,
allowing then individual variables to be singled out as universal, as opposed to entire
literals as it is now.

The ME calculus is proof convergent (cf. Corollary 4.9), and so the order of rule
applications does not matter. Thisdon’t-carenondeterminism can be exploited to have
the calculus stepwise simulate certain other calculi such as, e.g., the propositional logic
oriented OSHT calculus [17] or the Hyper Tableaux calculus in [2].

The most significant search heuristics for improving the performance of DPLL-
based solvers arelearning (i.e. the addition of dynamically generated lemmas to the
input clause set) andintelligent backtrackingof split choices. While the latter is straight-
forward to achieve withinME, the former is not. In particular, a number of alternatives
seem possible which need further theorical investigation and experimental evaluation.

As presented here, the calculus always starts with an interpretation that assigns false
to all ground atoms. By simply replacing the pseudo-literal¬v by v, it is possible to
have the calculus start instead with a complementary initial interpretation. The kind of
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semantic guidance achieved in OSHL [14] by means of a user-defined initial interpre-
tation, is trivially achievable inME when this interpretation is denotable by a context:
one simply starts the derivation with that context. More work is needed to allowME

to start with arbitrary interpretations, in particular, ones that cannot be encoded into a
(finite) context.

In many theorem proving applications, a proper treatment of equational theories or
equality is mandatory. In principle, there seems to be nothing against a modern treat-
ment of equality inME by means of a superposition-style inference rule and of simpli-
fication rules based on rewriting [1].
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