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PREPRINT

Darwin is the first implementation of the Model Evolution Calculus by Baumgartner
and Tinelli. The Model Evolution Calculus lifts the DPLL procedure to first-order logic.

Darwin is meant to be a fast and clean implementation of the calculus, showing its

effectiveness and providing a base for further improvements and extensions.
Based on a brief summary of the Model Evolution Calculus, we describe in the main

part of the paper Darwin’s proof procedure and its data structures and algorithms,

discussing the main design decisions and features that influence Darwin’s performance.
We also report on practical experiments carried out with problems from the CASC-J2

system competition and parts of the TPTP Problem Library, and compare the results

with those of other state-of-the-art theorem provers.
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1. Introduction

In propositional satisfiability the DPLL procedure1,2 is the most popular and suc-
cessful method for building complete SAT solvers. Its success is due to its simplicity,
its polynomial space requirements, and the fact that, as a search procedure, it is
amenable to powerful but also relatively inexpensive heuristics and constraint prop-
agation techniques for reducing the search space. Thanks to these heuristics and to
very careful engineering, the best SAT solvers today can successfully attack real-
world problems with hundreds of thousands of variables and clauses.

Although the DPLL method is usually described procedurally, its essence can
be captured declaratively by means of a sequent-style calculus.3 The DPLL calculus
has been recently lifted to the first-order level in (Ref. 4). The result is a sound and
complete calculus, called the Model Evolution calculus, or ME calculus for short,
for the unsatisfiability of first-order clauses (without equality).a

One of the main motivations for developing the Model Evolution calculus was
the possibility of migrating to the first-order level some of those very effective search
techniques developed by the SAT community for the DPLL procedure. This paper
describes Darwin, a first implementation of the calculus designed to incorporate
these techniques—or better, their first-order equivalents. The current version of
Darwin implements a first-order version of unit propagation,6 a form of simplifica-
tion, and backjumping, a form of intelligent backtracking which seems to have been
used for the first time for a first-order theorem prover in (Ref. 7). The incorporation
of another staple technique for DPLL-based solvers, lemma learning, is planned for
the next version.

Although Darwin is not as well developed as other theorem provers for previous
calculi, it borrows many advanced techniques from the first-order theorem proving
world—such as term indexing, subterm sharing, redundancy elimination, and so on.

The overall rationale for developing this system was to get an initial sense of
the performance potential of the ME calculus, to constitute a robust code base
for further improvements on the implementation, and for future extensions of the
calculus.

This paper presents a fairly high level description of Darwin’s architecture and
implementation, usually providing more details only on those implementation as-
pects that are specific to the ME calculus—as opposed to first-order calculi in
general. The paper starts with a brief description of theME calculus in Section 2.
Darwin’s main proof procedure and how it relates to theME calculus is explained
in Section 3. Implementation issues are discussed in Section 4. Section 5 describes
our experimental evaluation of Darwin and compares its performance to that of
other state-of-the-art theorem provers. Section 6 concludes with further research
directions.

aThe ME calculus extends and significantly improves on the FDPLL calculus,5 which was the
first successful attempt to lift the DPLL calculus to the first-order level.
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2. The Model Evolution Calculus

In this section, we introduce the Model Evolution calculus and its main features,
concentrating on those aspects that are relevant to the understanding of the imple-
mentation. More details on the calculus can be found in (Ref. 4, 8).

The DPLL procedure can be described as one that attempts to find a model of
a given formula, input as a set of clauses, by starting with a default interpretation
in which all input atoms are false, and incrementally modifying it until it becomes
a model of the input formula, or all alternative modifications have been considered
with no success. TheME calculus is a lifting of this model evolution process to the
first-order level.

The goal of the calculus is to construct a Herbrand model of a given set Φ
of clauses, if any such model exists. To do that, during a derivation the calculus
maintains a context Λ, a finite set of (possibly non-ground) literals. The context Λ
is a finite—and compact—representation of a Herbrand interpretation IΛ, serving
as a candidate model for Φ. The denoted interpretation IΛ might not be a model
of Φ because it does not satisfy some instances of clauses in Φ. The purpose of
the main rules of the calculus is to detect this situation and either repair IΛ, by
modifying Λ so that it becomes a model of Φ, or recognize that IΛ is unrepairable
and fail. In addition to these rules, the calculus contains a number of simplification
rules whose purpose is, like in the DPLL procedure, to simplify the clause set and,
as a consequence, speed up the computation.

The rules of the calculus manipulate sequents of the form Λ ` Φ, where Λ is
the current context and Φ is the current clause set. The initial sequent is made of
a context standing for an initial interpretation, and of the input clause set. We use
the notation as in Λ, L ` Φ, C to stand for the sequent Λ ∪ {L} ` Φ ∪ {C}.

To describe the rules we need to introduce a few technical preliminaries first.

2.1. Technical Preliminaries

Contexts are finite sets of possibly non-ground literals built over terms as usual, how-
ever over two types of variables: universal variables—or simply variables—drawn
from an infinite set X and denoted here by x, y, z, and parametric variables—or
simply, parameters—drawn from an infinite set V disjoint with X and denoted here
by u, v, w. Context literals are either universal, that is parameter-free, or paramet-
ric, that is, variable-free. By contrast, clause literals, that is, literals occurring in
the clause set Φ of a sequent, are all parameter-free. For all purposes, the literals
of a context can be considered variable and parameter disjoint with each other—in
tableaux terms, neither parameters nor variables are rigid.

Each context can be seen as the finite specification of a certain Herbrand inter-
pretation. Roughly speaking, within a context both universal and parametric literals
stand for their ground instances. However, a universal literal stands for all of its
ground instances with no exceptions, whereas a parametric literal stands for all of
its instances that are not instances of another literal in the context with opposite
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sign.
The precise way in which context literals denote ground instances and how that

is used to associate a Herbrand model to a context is formally defined in (Ref. 4,
8). Operationally, the main difference between universal and parametric literals in
a context is that the former impose stronger restrictions on the extension of the
context with additional literals (see Ref. 4, 8 again for more details). Here we will
limit ourselves to introduce a few notions that involve parameters and are needed
to describe the rules of the calculus.

Let us consider the set of substitutions defined over the set X ∪ V . We say that a
substitution is parameter-preserving, or p-preserving for short, if its restriction to the
set V of parameters is a renaming over V in the standard sense—i.e., it is a bijection
of V onto itself. A substitution is a p-renaming if it is a p-preserving renaming. In
other words, a p-preserving substitution maps parameters only to parameters, and
in a bijective way, but can map variables to any term. A p-renaming substitution
maps parameters to parameters, variables to variables, and is bijective.

We say that a term s is a p-preserving variant of a term t, or p-variant for
short, if there is a p-renaming ρ such that sρ = t. We say that s is p-preserving
more general than t, iff there is a p-preserving substitution σ such that sσ = t. If t

is a term we denote by Var(t) the set of t’s variables and by Par(t) the set of t’s
parameters. These definitions, stated for terms, also apply to literals and clauses in
the obvious way.

We assume an infinite supply of Skolem constants disjoint with the set of con-
stants occurring in any given input clause set. We write Lsko to denote the result
of applying some substitution to the literal L that replaces each variable in L by a
fresh Skolem constant.b We write L to the denote the complement of L.

A literal L is contradictory with a context Λ iff there is a p-variant K of some
literal in Λ and a p-preserving substitution σ such that Lσ = Kσ.

Definition 2.1. (Context Unifier) Let Λ be a context and

C = L1 ∨ · · · ∨ Lm ∨ Lm+1 ∨ · · · ∨ Ln

a parameter-free clause, where 0 ≤ m ≤ n. A substitution σ is a context unifier
of C against Λ with remainder Lm+1σ ∨ · · · ∨ Lnσ iff there are fresh p-preserving
variants K1, . . . ,Kn of context literals such that

(1) σ is a most general simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},
(2) for all i = 1, . . . ,m, (Par(Ki))σ ⊆ V ,
(3) for all i = m + 1, . . . , n, (Par(Ki))σ 6⊆ V .

A context unifier σ of C against Λ with remainder Lm+1σ ∨ · · · ∨Lnσ is admissible
iff for all distinct i, j = m + 1, . . . , n, Liσ is either universal or parametric and

bNote that parameters are left untouched in Lsko.
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Var(Liσ)∩Var(Ljσ) = ∅. Each of the literals Lm+1σ, . . . , Lnσ is called a remainder
literal.

Admissible context unifiers are needed in the main derivation rule of the calculus,
the Split rule. An important property of admissible context unifiers is that they
can be always derived from non-admissible ones with the help of an appropriate
renaming.

Example 2.1. Consider the context Λ = {¬p(u, v, w), ¬q(u′, v′)} and the clause
C = p(x, y, a)∨q(x, a). The substitution σ = {u 7→ x, v 7→ y, w 7→ a, u′ 7→ x, v′ 7→ a}
is a context unifier of C against Λ. All the literals of its instance Cσ = C are
remainder literals. Now, σ is not admissible because its remainder literals p(x, y, a)
and q(x, a) are not variable disjoint. This problem can be solved by replacing both
occurrences of x by, say, u. However, the resulting remainder p(u, y, a) ∨ q(u, a)
(of the context unifier σ′ = σ · {x 7→ u}) is not admissible either, because its
literal p(u, y, a) contains both a variable and a parameter. As above, replacing the
offending variable y by a parameter, say, v will solve the problem, and the remainder
p(u, v, a) ∨ q(u, a) (of the context unifier σ′′ = σ′ · {y 7→ v}) is admissible.

The existence of a context unifier Λ between a context and a clause indicates
that the interpretation IΛ denoted by Λ may falsify the clause.c The rules of theME
calculus use context unifiers as a way to discover that the interpretation associated
with the current context falsifies one of the current clauses, and decide how to
“repair” the context.

Context unifiers are at the core of theME calculus because they are used by all
of its non-optional derivation rules. In fact, context unification is the computational
bottleneck of our current implementation as most of Darwin’s run time is spent
on computing context unifiers. Darwin’s algorithm and data structure to compute
context unifiers are described in Section 4.7.

2.2. The Derivation Rules

The derivation rules of theME calculus are described below. We describe the rules
as given in (Ref. 8), since those described in (Ref. 4) are a somewhat simplified but
less powerful version. Except for Compact, which is a simplification rule that applies
only to contexts with variables/parameters, all the other rules are direct first-order
liftings of the rules of the DPLL calculus in (Ref. 3), and reduce to those rules when
the input clause set is ground.

Split
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L Λ, (Lσ)
sko ` Φ, C ∨ L

if (∗)

cMore accurately, the clause is falsified if the context unifier is also productive (see Ref. 4). But
we can gloss over this issue here.
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where (∗) =


C 6= �, (� is the empty clause)

σ is an admissible context unifier of C ∨ L against Λ

with remainder literal Lσ,

neither Lσ nor (Lσ)
sko

is contradictory with Λ

Split is the only non-deterministic rule of the calculus. As mentioned earlier, the
existence of a context unifier σ of C∨L against Λ indicates that IΛ possibly falsifies
(C∨L)σ. The left conclusion of the rule tries to fix this potential problem by adding
to the context a literal Lσ from σ’s remainder. The alternative right conclusion—
needed for soundness in case the repair on the left turns out to be unsuccessful—adds
instead the skolemized complement of Lσ, i.e. the result of replacing all universal
variables of Lσ, if any, by fresh Skolem constants. The addition of (Lσ)

sko
prevents

later splittings on L but leaves the possibility of repairing the context by adding
another of σ’s remainder literals. When the rule is applicable, we call Lσ a split
literal.

Assert
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L
if



σ is a context unifier of C against

Λ with an empty remainder,

Lσ is universal and

non-contradictory with Λ,

there is no K ∈ Λ s. t. K is

p-preserving more general than Lσ

When Assert applies, the only way to find a model for the clause set based on
the current context or any extension of it is to satisfy every ground instance of
Lσ. The addition of Lσ makes sure that this is the case. Applications of Assert are
highly desirable in practice because (i) they strongly constrain further changes to
the context, thereby limiting the non-determinism caused by the Split rule, and (ii)
they cause more applications of the three simplification rules below. When the rule
is applicable, we call Lσ an assert literal.

Subsume
Λ, K ` Φ, L ∨ C

Λ, K ` Φ
if K is p-preserving more general than L.

Subsume removes clauses that are “permanently satisfied” by the context, that
is, satisfied by the interpretation denoted by the current context or any context
that extends the current one. Subsume is not needed for completeness but can in
principle improve the performance of an implementation by reducing the number
of clauses to be considered.
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Resolve
Λ ` Φ, L ∨ C

Λ ` Φ, C
if


there is a context unifier σ of L

against Λ with an empty remainder

such that Cσ = C

Resolve simplifies the clause set by removing literals from clauses. Like Subsume

it is not needed for completeness. Resolve is the only rule of the calculus that is not
implemented in its full generality in Darwin. In the current implementation Resolve

is only applied for the special case in which there is a K in Λ s.t. K is p-preserving
more general than L. This unification test is done once for each literal L in Φ.d

Thus, the check is more efficient than in the general case. Comparative evaluations
with an early version of Darwin indicate that the restricted version fares better in
general, despite its more limited applicability.

Compact
Λ, K, L ` Φ

Λ, K ` Φ
if K is p-preserving more general than L

In the rule’s premise the literals K and L are meant to be distinct. Compact,
which is another optimization rule, simplifies the context by removing literals that
are parameter-preserving instances of other literals. Such literals are redundant and
can be safely eliminated.

Close
Λ ` Φ, C

Λ ` �
if


Φ 6= ∅ or C 6= �,

there is a context unifier σ of C against Λ

with an empty remainder

Close detects a context which falsifies the clause set and cannot be modified in
order to satisfy it. When the rule is applicable, we call σ a closing context unifier.

2.3. Derivation Tree

Similarly to sequent calculi, derivations the ME calculus are formally defined in
terms of derivation trees.

Definition 2.2. (Derivation Tree) A derivation tree is a labeled tree inductively
defined as follows:

(1) a one-node tree is a derivation tree iff its root is labeled with a sequent of the
form Λ ` Φ, where Λ is a context and Φ is a clause set;

dSince variable names in clauses are normalized in Darwin, it is possible for the same literal to
occur in different clauses of Φ.
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(2) A tree T′ is a derivation tree iff it is obtained from a derivation tree T by adding
to a leaf node N in T new successor nodes N1, . . . , Nm so that the sequents
labeling N1, . . . , Nm can be derived by applying a rule of the calculus to the
sequent labeling N . In this case, we say that T′ is derived from T.

A branch in a derivation tree is closed if its leaf is labeled by a sequent of the
form Λ ` �; otherwise, the branch is open. A derivation tree is closed if each of its
branches is closed, and it is open otherwise.

A derivation is a possibly infinite sequence of derivation trees (Ti)i<κ, such that
for all i with 0 < i < κ, Ti is derived from Ti−1. For a given input clause set Φ,
derivations are started with the single node tree containing the sequence ¬v ` Φ.
Here, the pseudo-literal ¬v causes the interpretation denoted by the context to
falsify every atom by default.

A derivation ending with a closed derivation tree is a proof of the unsatisfiability
of Φ. An exhausted branch is a witness of the satisfiability of Φ, because it defines
a model of the initial clause set. When the branch is finite this model is simply the
interpretation induced by the context in the last node of the branch.

The formal definition of exhausted branch inME is rather technical and based
on the notion of limit tree of a derivation;e we refer the reader to (Ref. 4, 8) for it.
Intuitively, however, it states that a branch in a limit tree is exhausted whenever,
for each non-optional rule of the calculus that applies to a node N in the branch, the
intended, if not literal, effect of the rule is achieved in some node down the branch.
For instance, the intended effect of Split is that the possibility to falsify its selected
clause by means of the context literals used in the context unifier is removed in
some descendant node.

An important aspect to guarantee refutational completeness is to equip the cal-
culus with a suitable notion of fairness. ForME this simply states that a derivation
is fair it its limit tree is closed or has an exhausted branch. A proof procedure for
the calculus is fair if it generates only fair derivations. We explain how Darwin
produces fair derivations in the next section, where we present its proof procedure.

3. The Proof Procedure

The proof procedure implemented in Darwin follows the main loop described be-
low. Similarly to DPLL, Darwin’s procedure basically explores the limit tree of a
derivation in the calculus in a depth-first fashion. For fairness concerns, however, in
Darwin this exploration is bounded, and done repeatedly with increasingly larger
bounds. The present bounds are on the complexity of potential Assert or Split liter-
als, as explained in Subsection 4.4.

At any moment, the procedure stores in its data structures a (sub)branch of
the limit tree where split nodes, that is, nodes to which Split has been applied,
correspond to choice points. The procedure grows the current branch until:

eThis is obtained as the graph-theoretic union of all the trees in the derivation.
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• the branch can be closed, in which case it backtracks to a previous choice point
and regrows the branch in the alternative direction, or
• the branch cannot be grown further, which means that the branch is exhausted

and a model of the input set has been found, or
• a certain limit is reached, in which case the procedure moves on to another

branch or restarts with an increased limit, depending on the current search
strategy.f

During the computation, in addition to the current context and the set of current
clauses, the procedure maintains a set of candidate literals, literals that could be
added to the context as a consequence of the application of the Assert or Split rule.
Before entering the main loop, the candidate set is initialized with all the literals
that could be added to the initial context by an application of Assert. By definition
of Assert, these are exactly the literals occurring in unit input clauses.

The main loop of Darwin’s proof procedure consists of the following steps:

(1) Candidate Selection. If the candidate set contains no candidates suitable
for an application of Split or Assert, the procedure ends returning the current
context, which denotes a model of the input clause set.g If all applicable candi-
dates exceed the current complexity bound, the procedure abandons the current
branch and continues the search with an increased bound, as described in Sec-
tion 4.4. Otherwise, it chooses an applicable candidate from the candidate set
according to the selection heuristics described in Section 4.8. The heuristics
is based on various metrics, but it always prefers Assert candidates over Split

candidates, in order to minimize the creation of choice points.
(2) Context Evolution. If the selected literal is a Split literal, a choice point is

created—corresponding to the left part of the application of the Split rule. Then,
the literal is added to the context, the Compact rule is exhaustively applied to
the new context, and the Subsume and Resolve rules are exhaustively applied
to the current clause set using the newly added context literal.

(3) Context Unifier Computation. All possible context unifiers between current
clauses and the new context are computed which involve the new context literal.
If this leads to the computation of a closing context unifier, the current branch
is immediately closed, forcing the procedure to backtrack.

(4) Backtracking. If a closing context unifier is found in the previous step, the
current context does not satisfy the input clause set and is unrepairable. The
procedure then backtracks to a previous choice point, undoing all changes to
the context, the clause set, and the candidate set done from that choice point

fThe available strategies are described in Subsection 4.4
gNote that initially suitable candidates, i.e., candidates meeting the preconditions of Split or
Assert, might be no longer applicable after new literals have been added to the context, because

for instance they have become subsumed by or contradictory with the new extended context.

Instead of purging the candidate set of these literals, Darwin simply tests that a candidate is still
applicable at the time it is selected, discarding it and selecting another one if it is not.
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on. Since the choice point corresponds to the left part of the application of the
Split rule which added a literal L to the context, the right part of the application
is then tried. The skolemized complement of L is selected for addition to the
context and the computation continues with Step 2.
If there are no more choice points to backtrack to, the input set has been proven
unsatisfiable, and the procedure quits.

(5) Candidate Generation. If no closing context unifier is found in Step 3, the
procedure extracts from the computed context unifiers all literals suitable for
an application of Assert and from each remainder the best literal suitable for an
application of Split, adds them to the candidate set, and goes back to Step 1.

Selecting only one candidate per remainder in Step 5 above is enough for com-
pleteness. Here is the informal explanation of why—see (Ref. 9) for more details.
Recall that a remainder literal L from an instance C ′ of an input clause C needs to
be added to the current context only if C ′ is falsified by that context. Now, if L is
eventually added to the context as the current branch grows, C ′ will be satisfied,
and so no further remainder literals from it need be considered. If L is never selected
for addition, it is because at some point another remainder literal of C ′ becomes
satisfied, L becomes satisfied or L becomes contradictory with another literal K in
the current context—and stays so in every extension of that context. In the first two
cases, C ′ is again satisfied by the current context. In the third case, it is possible
to show that when adding K to the context, the system will be able to compute a
context unifier from C with a remainder that differs from the original one only for
the absence of L from it. This shorter remainder, when non-empty, will provide a
new candidate literal different from L.

A high-level pseudocode description of the proof procedure is provided in Fig-
ure 1. For simplicity, we describe a non-restarting (unfair) recursive version of the
procedure implementing näıve chronological backtracking, which does not impose
any complexity bound on candidate literals.

When it terminates, the procedure either returns a set of literals, representing
the most recent context and denoting a model of the input clause set, or raises the
exception CLOSED, to denote that the clause set is unsatisfiable. In the backjumping
version, the exception CLOSED would also carry dependency information that allows
the procedure to skip certain choice points. In principle, the computation of new
candidates and the application of the Subsume, Resolve, and Compact simplification
rules (lines 14-16 in the pseudocode) could be done in any order. We chose the given
order because, first, the computation of new candidates may trigger Close and thus
avoid the application of the simplification rules, and second, it better reflects our
implementation, which requires that new candidates are computed before Resolve

is applied.
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Darwin
1 function darwin Φ
2 // input: a clause set Φ
3 // output: either ”unsatisfiable”
4 // or a set of literals encoding a model of Φ
5 let Λ = ∅ // set of literals
6 let L = ¬v // (pseudo) literal providing default interpretation
7 let CS = set of assert literals consisting of the unit clauses in Φ
8 // the initial candidate set
9 try me( Φ, Λ, L, CS )

10 catch CLOSED-> "unsatisfiable"
11

12 function me( Φ, Λ, L, CS )
13 // L is to be added to the context
14 let CS ′ = add_new_candidates ( Φ, Λ, L, CS )
15 let Φ′ = Φ simplified by Subsume and Resolve with L

16 let Λ′ = ( Λ simplified by Compact with L) ∪ {L}
17 if there is no candidate applicable for Assert or Split ∈ CS ′ then
18 Λ′ // Λ′ encodes a model of Φ′

19 else
20 let K = select_best ( CS ′, Λ′)
21 if K is an assert literal then
22 me( Φ′, Λ′, K, CS ′ \ {K}) // assert K

23 else
24 try
25 me( Φ′, Λ′, K, CS ′ \ {K}) // left split on K

26 catch CLOSED->
27 me( Φ′, Λ′, K

sko
, CS ′ \ {K}) // right split on K

28

29 function add_new_candidates ( Φ, Λ, L, CS )
30 adds to CS all assert literals from context unifiers involving L

31 and one split literal from each remainder of a context unifier involving L

32 raises the exception CLOSEDif it finds a closing context unifier
33

34 function select_best ( CS , Λ)
35 returns the best applicable assert or split literal in CS

Fig. 1. Darwin’s proof procedure as pseudo code.
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The following example is intended to demonstrate the working of the proof
procedure.

Example 3.1. Let Φ be the following clause set.

p(x, a) ∨ s(a) (1)
q(x, y) ∨ q(y, x) (2)

r(f(x, y)) ∨ ¬p(x, y) (3)
¬p(a, a) ∨ ¬q(x, y) ∨ ¬r(f(a, y)) (4)

After initializing its variables Λ and L, the proof procedure in Figure 1 first deter-
mines an initial set of candidates CS . Because Φ contains no unit clause, CS is the
empty set and the function me is called as me(Φ, ∅,¬v, ∅).

The set of new candidates CS ′ determined then consists of the two split literals
p(x, a) and q(u, v). They respectively originate from clause 1 and from clause 2,
each paired with two disjoint variants of ¬v.

Simplification on Φ has no effect, and so Φ′ is the same as Φ. The current
context Λ′ becomes {¬v}. Because CS ′ contains applicable candidates, line 20 is
reached, and the selection heuristics chooses p(x, a) as the literal K to consider
for the next inference step—the literal p(x, a) is preferred over the other split lit-
eral, q(u, v), because it is universal, while q(u, v) is not; cf. Section 4.8 for de-
tails. Because p(x, a) is a split literal, line 25 is reached, which results in the call
me(Φ, {¬v}, p(x, a), {q(u, v)}). In this call, the new assert candidate r(f(x, a)) is
determined (from p(x, a) and clause 3) and thus added to the given candidate set,
yielding CS′ = {r(f(x, a)), q(u, v)}. This time, simplification does have an effect:
with the given literal p(x, a), which belongs to the current context as noted on line
7, clause 1 is subsumed, and the first literal of clause 4 is resolved away. The new
clause set Φ′ thus is

q(x, y) ∨ q(y, x) (2)
r(f(x, y)) ∨ ¬p(x, y) (3)
¬q(x, y) ∨ ¬r(f(a, y)) (4’)

Next, p(x, a) is moved to the current context, yielding Λ′ = {¬v, p(x, a)}. The
execution of the pseudocode reaches line 20, and among the current candidates
CS′ = {r(f(x, a)), q(u, v)} the literal r(f(x, a)) is selected by the heuristics for fur-
ther processing—see again Section 4.8. Since r(f(x, a)) is an assert literal, line 22
is reached and me(Φ, {¬v, p(x, a)}, r(f(x, a)), {q(u, v)}) is called. On execution, the
newly asserted literal r(f(x, a)) together with the clause 4’ gives rise to the new as-
sert candidate ¬q(x, a). Notice that in the underlying Assert rule application the con-
text literal r(f(x, a)) gets instantiated to r(f(a, a)).h Now, ¬q(x, a) is chosen to be
asserted, and the next call thus is me(Φ, {¬v, p(x, a), r(f(x, a))},¬q(x, a), {q(u, v)}).
Because for the context {¬v, p(x, a), r(f(x, a)),¬q(x, a)} a closing context unifier

hWith a parametric literal like r(f(u, a)) instead, ¬q(x, a) could not be derived as an assert
candidate.
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exists (using clause 2), the exception CLOSED is raised. Notice that the parametric
literal p(u, v) from the set of candidate literals was never chosen to derive this closed
branch.

The exception raised is caught by the first recursive call of me. Its execu-
tion thus reaches line 27 and tries the right alternative of that Split applica-
tion. Because the split literal was p(x, a) the corresponding call to me uses the
complement of the Skolemized version of p(x, a), say, ¬p(c, a). On the execution
of me(Φ, {¬v},¬p(c, a), {q(u, v)}), the new assert candidate s(a) is derived from
¬p(c, a) and clause (1). It will indeed be asserted, and for the next call to me only
one candidate will be available, which is the split literal q(u, v). After choosing
it and calling me again no more candidate can be determined. The execution of
me thus terminates and returns the context {¬v,¬p(c, a), s(a), p(u, v)} to indicate
satisfiability of the given clause set.

This context contains a literal with a Skolem constant: ¬p(c, a). Since c is not
part of the the input signature Σ = {p, s, q, r, f, a}, the literal ¬p(c, a) can be in fact
removed, and the resulting context {¬v, s(a), p(u, v)} will still describe a (Σ-)model
of the input clause set.i Darwin reports the latter context instead of the previous
one because it is more informative to the user.

4. Implementation

The description of the proof procedure in the previous section omits most imple-
mentation details and also leaves room for certain improvements. We provide some
of these details as implemented in Darwin next, generally focusing more on those
that are significant for its performance.

4.1. Programming Language

Darwin is implemented in OCaml,j a fast, strongly-typed functional language based
on ML. OCaml, and thus Darwin, is available for several Unix-like operating systems
including Linux and Mac OS X, and for the Windows family. OCaml has previously
been successfully used for the implementation of the theorem prover KRHyper10

at the University of Koblenz-Landau and for the solver ICS11 at SRI International,
among others.

Though the programming background of the second author, the main developer
of Darwin, was mostly in OO-style C++, he quickly enjoyed using OCaml. Among
other things OCaml’s strong-typing, garbage collection, extremely short compile
times, and informative news group made up for the paradigm shift. At the cur-
rent stage of development we find that the higher level of abstraction provided

iIt follows from the way an interpretation is associated to a context4 that the truth value of a
Σ-literal is independent from the non-Σ-literals in a context, which are precisely those containing

Skolem constants.
jSee http://caml.inria.fr/.



March 20, 2005 16:33 WSPC/INSTRUCTION FILE paper

14 Baumgartner, Fuchs, Tinelli

by OCaml constructs—and thus the better readability and maintainability of the
code, compared to, e.g., C—amply compensate for possible performance losses when
compared to implementations in lower level languages such as C.

4.2. Term Database

During the derivation tens of thousands of terms might exist at the same time, easily
consuming hundreds of megabytes of memory. The same term or subterm might be
used in many places, occurring for instance in different context unifiers or candidate
literals. Many of these terms are dropped soon after creation, e.g., in backtracking
or when a newly computed remainder is detected to be non-productive, causing a
lot of garbage collection. To reduce the high memory consumption Darwin uses a
database technique similar to the ones used for instance in Otter12, Vampire13, and
E14.

This technique ensures that each (sub)term physically exists at most once in the
system, i.e., all occurrences of the same term are references to the same physical
instance, leading to perfect (sub)term sharing.

Terms are represented as tree-like data-structures. Building a term is done by
creating a tree where the root node consists of a function or predicate symbol and its
children nodes consist of subterms. Terms are managed by the term database. Term
creation is done solely inside the database, all other parts of the system request terms
from the database (by passing the function/predicate symbol and the subterms),
but never directly create them. If a requested term is already contained in the
database (a reference to) it is simply returned. Otherwise, the term is transparently
created and then returned.k

Compared to a näıve representation of terms, this allows for vastly reduced
memory consumption because of the perfect sharing of the common subterms. Terms
are stored in a normalized manner in the database. This leads, for instance, to a
unique representation of remainder literals. The significance of this property lies in
the fact that remainder literals are the only kind of literals created by the system
during proof search.

Internally, the terms are stored in a set of weak references. Weak references are
ignored by the garbage collector. Thus, as long as a term is used and referenced
anywhere in the system from outside the database it is kept alive. But as soon as
the only remaining references to the term are from inside the database the term
becomes automatically available for garbage collection, as it is considered to be
unreferenced and thus disposable.l

The consultation of the database for each term creation and the management of
the weak set introduces noticeable overhead. However, the retrieval of a term from
the database is done by means of an efficient hashing on the terms, we gain the

kThis technique is sometimes called hash consing in the literature.
lWe are thankful to one of the reviewers of an earlier version of this paper15 who suggested the
use of OCaml’s weak references to us.
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reduction of the term equality test to a constant-time pointer equality test, and we
save in garbage collection. Thus, besides the memory savings, the term database
even leads on average to a slight performance improvement.

Our tests have shown that as a percentage of the total, the space required to
store the clause sets along the current branch, which is essentially constant during
the computation, is insignificant. Also small is the space needed for contexts, which
rarely grow to more than a few thousand literals. The data structures most respon-
sible for the memory consumption are the set of partial context unifiers, described
later, and the set of candidate literals. Candidate literals consistently take most of
the space. In contrast, partial context unifiers can take from almost no memory to
as much memory as the candidate set.

4.3. Backjumping and Dynamic Backtracking

The simplest backtracking strategy for a search procedure is (näıve) chronological
backtracking, which backtracks to the most recent choice point in the current branch
of the search tree. A more effective form of chronological backtracking, implemented
instead in Darwin, is backjumping, which takes into account dependencies between
choice points. The idea of backjumping is best explained in terms of the calculus:
suppose the derivation subtree below a left node introduced by a Split rule applica-
tion is closed and the literal added on the left conclusion by that application is not
needed to establish that the subtree is closed. Then, the Split rule application can
be viewed as not being carried out at all. The proof procedure thus may neglect the
corresponding choice point on backtracking and proceed to the previous one.

Backjumping is well known to be one of the most effective improvements for
propositional SAT solvers. Its implementation is not too difficult and is based on
keeping track of which context literals and clauses are involved in particular in Assert

and Close rule applications. Backjumping is an example of a successful propositional
technique that directly lifts to the proof procedure of Darwin.

A smarter technique than backjumping has been proposed under the name of
dynamic backtracking by Ginsberg.16 It can be adapted to our proof procedure and is
currently implemented in Darwin as an alternative to backjumping. The idea is that
a choice point not involved in establishing that a branch is closed is not discarded as
in backjumping, but it is kept if it does not depend on any discarded choice points.
Conceptually, the choice points are no longer seen as nodes in a tree but as nodes
of a dependency graph. Discarding a choice point does not automatically invalidate
all later choice points in a branch, only those dependent on it. Thus dropping and
possibly recomputing a still valid and potentially useful part of the derivation is
avoided.

A disadvantage of dynamic backtracking versus backjumping is that its imple-
mentation is more involved and requires a more complex type of dependency analy-
sis. Furthermore, some implementation optimizations based on the assumption that
on backtracking only the most recently added context literals are retracted are not
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possible anymore. This causes non-negligible runtime overhead, leading in general
to worse performance than backjumping despite the fact that dynamic backtracking
sometimes produces shorter derivations.

4.4. Iterative Deepening over Term Depth

Since the ME calculus is refutationally complete only for fair derivations, a proof
procedure for it is complete only if it gives rise to fair derivations. The completeness
of Darwin’s proof procedure is ensured by performing a sort of iterative deepening
search. In contrast to standard iterative deepening, however, Darwin’s iterative
deepening is not on the depth of the search tree but of the term depth of the
candidate literals.m

Specifically, the proof procedure never adds to the context a literal whose term
depth exceeds a current term depth bound. Note that by the design of the inference
rules, it is impossible for a context to contain two or more p-variants of the same
literal. This implies the termination of any exhaustive sequence of inference rule
applications under the term depth bound. Thus, when all inference rules have been
applied exhaustively with respect to the current bound without closing the current
branch, the proof procedure has to check if the current branch is incomplete, that is,
if during the generation of the branch a candidate literal has been ignored because
it exceeded the current depth bound. If the current path is not incomplete, a model
of the input set has been found and is reported. Otherwise, the procedure behaves
according to one of the following strategies, as initially selected by the user.

(1) Eager Restart. Any candidate literals that exceed the depth bound are
dropped immediately. After producing an incomplete branch, the procedure
simply restarts from scratch, but with an increased depth bound.

(2) Deferred Restart. As with the previous strategy, none of the candidate lit-
erals that exceed the depth bound are kept around. However, this time the
procedure does not immediately restart on discovering an incomplete branch.
Instead, it treats the branch as if it was closed and backtracks to the most re-
cent choice point up to which no candidates had been dropped due to the depth
limit, and continues the exploration of the remaining search space from there. If
the procedure then generates an exhausted branch which is neither closed nor
incomplete, it simply ends, reporting a model for the input clause set. Other-
wise, it continues as before until it has explored the whole search space. Only
at that point, when all remaining branches have been found to be either closed
or incomplete, does the procedure restart, with an increased depth bound.

(3) Reluctant Restart. This strategy stresses the search for models even more
by not immediately dropping candidates exceeding the depth bound, but in-
stead saving them until the current branch is determined to be incomplete.
Then, these candidates are tested against the context for applicability, as they

mBy term depth we mean the depth of a literal when seen as a tree.
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might well be not applicable anymore—because for instance they are now be-
ing subsumed by the shallower context literals. If none of them is applicable
anymore, the branch can be considered complete and so a model is reported.
Otherwise, the procedure considers those candidates that are still applicable,
and backtracks to the most recent choice point where one of these still applicable
candidates had been computed. Then it continues as in Strategy 2.

By eagerly dropping candidates exceeding the depth bound, Strategy 1 and 2
significantly decrease the memory requirements for a range of problems which have
a refutation or a model using only comparatively shallow terms, but have lots of
candidates with deeper terms.

Strategy 2 is less suited for unsatisfiable problems, as the futile search for a
model is prolonged even further by deferring the restart. This may pay off instead
for satisfiable problems, as the search for a model within a low depth limit is pursued
more intensely, possibly avoiding unnecessary restarts.

Considering only the still applicable candidates often allows Strategy 3 to de-
termine a more recent choice point than Strategy 2 would—the information on
whether candidates are still applicable once a branch is complete is simply not
available to Strategy 2. Compared with Strategy 2, Strategy 3 loses the memory
savings achieved by eagerly dropping candidates, and suffers the overhead of repeat-
edly checking exceeding candidates for applicability. On the other hand, it further
increases the likelihood of finding a model within a low depth limit.n Since in the
current implementation Strategy 3 has a considerably worse performance than the
previous two strategies, its use seems sensible only if finding shallow models is a top
priority.

Another considerable advantage of Strategy 2 and Strategy 3 is that they poten-
tially diverge less often on satisfiable problems. Strategy 3 can be further modified
to consider as non-applicable any candidates that are satisfied by the context. Thus,
by exploring all possible branches within the term depth bound (modulo pruning
due to intelligent backtracking), the proof procedure is guaranteed to find a finite
exhausted branch, if one exists, and to return the corresponding model. With the
previous strategies on the other hand, the procedure can diverge even in the pres-
ence of a finite exhausted branch because it can end up (incrementally) expanding
the same infinite branch. However, experiments showed that this variation merely
adds significant computational overhead, but does not produce better derivations.

All the three restart strategies above can be formally shown to generate fair
derivations. Intuitively, the idea is simply that (i) all applicable candidate literals
within the current depth bound are guaranteed to be added to the context, and (ii)
for each candidate literal whose depth exceeds the current bound, there is a later
iteration of the proof procedure in which either a model is found or the candidate’s

nAnother potential advantage of the strategy is that keeping discarded literals for a branch some-
times allows the proof procedure to close the branch earlier. See Section 4.10 for details.



March 20, 2005 16:33 WSPC/INSTRUCTION FILE paper

18 Baumgartner, Fuchs, Tinelli

depth is within the current bound.
Currently, no information from a previous round is kept after a restart. A valu-

able improvement of Darwin, with any of the three restart strategies we described,
might be to compute permanent lemma clauses as a side effect of derivations, as
commonly done in SAT solvers, and keep them across restarts. As in the proposi-
tional case, the idea is that the kept lemmas would help cutting the search space
by preventing later repetitions of certain sets of (Split) choices that are guaranteed
to lead to a closed branch.

Another potential improvement would be to use Strategy 1, but to avoid restart-
ing altogether and instead keep growing the current branch under an increased term
depth bound. Unfortunately, due to the way context unifiers are now computed (See
Sec. 4.7) there is no easy way to recompute only the dropped candidates. Thus, ei-
ther all candidates have to be kept until needed, even if they exceed the depth bound,
or all candidates have to be recomputed after an increase of the depth bound. A gen-
eral drawback of this approach compared to Strategy 1 is that it tends to produce
significantly longer derivations because the candidate selection heuristics cannot
consider from the beginning the candidates that become available only after the
increase in the depth bound. Thus, although at first glance saving on computation
by reusing the existing derivation seems worthwhile, in our experience with Darwin
this helps only very rarely in practice. In most cases simply dropping candidates,
restarting, and applying the heuristics to all candidates during the whole derivation
leads to considerably better performance. This conforms to what can be expected
from an iterative deepening approach.

Alternative measures of literal complexity than the term depth could be con-
sidered as well. For instance, the hyper tableau prover KRHyper10 uses iterative
deepening over term weights, computed as the number of symbols in a term. The
resolution prover Otter12 offers sophisticated control facilities to weigh a term. Dar-
win supports iterative deepening over fixed term weights as an alternative to the
term depth approach. As we show in Section 5 however, using the term depth bound
is usually better.

Some other provers limit the derivation tree length, i.e. the maximum length
of a derivation branch. We have not tried this strategy in Darwin yet. So there is
considerable room for further experimentation.

4.5. Initial Default Interpretation

As mentioned in Section 2.3, the pseudo-literal ¬v that constitutes the initial context
assigns by default false to all ground atoms. Instead of ¬v, the pseudo-literal v may
be used, assigning true to all ground atoms. It is indeed often plausible to take v,
given that many theorem proving benchmarks consist of an “axiom part”, and a
“theorem part” which quite often consists of one or more negative clauses. These
theorem clauses are falsified in the interpretation associated with the pseudo-literal
v. Now, the calculus considers for Split rule applications only clause instances that
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are falsified in the current interpretation. This means that then theorems are used
early in the derivation, de-emphasizing, in particular, the use of positive clauses
from the axiom part. This way, the calculus becomes more goal-oriented than it
would be with {¬v} as the initial context.

Nevertheless, using v has several drawbacks. First, problems are often specified
in a rule-like way, i.e. a0, . . . , an ← b0, . . . , bm where in general n < m. As ¬v unifies
with each ai, whereas v unifies with each bi, v yields considerably more partial and
complete context unifiers (see Section 4.7). Thus, significantly more time is spent
in context unifier computation, and many more candidates are computed, leading
to a (sometimes vast) increase in memory usage. Secondly, ¬v is more suited for
developing models that can be described with a relatively small set of atoms, whereas
v is more suited for models that satisfy most of the ground atoms. The former case
seems to be more common for the problems tested so far.

All in all, the performance and memory consumption on TPTP problems is in
general much better with ¬v than with v.15

4.6. Unification

Unification operations in theorem provers often require that the participating literals
have no variables in common. For Darwin this is in particular the case when context
unifiers are computed, i.e. when a clause is unified with fresh variants of context
literals. Renaming variables by physically creating a new term is expensive in terms
of memory and performance. There are several methods in use to avoid this.

For instance, SPASS does not explicitly rename common variables, but instead
uses a modified unification algorithm and computes different substitutions for each
participating clause or literal.17 Otter and KRHyper use so called contexts—not to
be confused with contexts in the sense ofME and Darwin. A compile time limit is
imposed on the number of variables per term, e.g. 64 variables per term in the case
of KRHyper. A variable is represented by a number lower than the limit. A context
defines a multiplier, a number unique to this context. For the purpose of unification
each literal, resp. clause, is associated with its own context. During unification a
variable is identified by its effective id which is computed as the limit multiplied by
the associated context multiplier, plus the variable’s id.o

Darwin extends this idea avoiding the compile time limitation.p Again, a variable
is represented by a number, and for unification each literal is associated with a
second number, here called offset instead of context multiplier. Now, the effective
id of a variable is not computed as a number but is simply the pair of the offset
and the variable’s id. For example, if the clause p(x) ∨ p(f(x)) is unified with two
variants of the context literal ¬p(u), the offset 0 may be associated with the clause,
and the offsets 1 resp. 2 with the two occurrences of the context literal. Then the

oFor details see unify.c of Otter’s source, resp. term.ml of KRHyper’s source.
pLike similar compile time limitations this is a serious problem when working with a closed source
application and still an inconvenience with an open source one.
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pairs 0:p(x) and 1:¬p(u) are unified, and the pairs 0:p(f(x)) and 2:¬p(u) are unified,
yielding the unifier {0:x 7→ 1:u, 2:u 7→ 0:f(1:u)} where 1:u and 2:u are in fact two
different variables.

4.7. Context Unifiers

Recall that Step 3 of Darwin’s proof procedure computes all possible context uni-
fiers involving the context literal just added. To be precise, the system computes
context unifiers of input clauses in order to identify literals that can be added to the
context by the Split rule, and computes context unifiers of subsets of input clauses
in order to identify literals that can be added by the Assert rule. To speed up this
computation, context unifiers are partially precomputed and cached as described
below. For simplicity, we start by describing the computation of context unifier for
Split only. Figure 2 illustrates this process and its embedding in the proof procedure.

θ1
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Remainder
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Fig. 2. Computation of context unifiers and its embedding in the proof procedure.

Each input literal—i.e., a literal in the input clause set—has an associated list
of partial context unifiers. A partial context unifier is merely a unifier between
the input literal and a literal from the current context. According to the unification
mechanism described in Subsection 4.6, the literals of a clause are numbered starting
with 1. During unification, the offset 0 is assigned to the clause and thus the input
literal, while the input literal’s number in the clause is used as the offset of the
context literal. This makes it easy to merge several partial context unifiers between
different literals of a clause and the same context literal. Note that the computation
of partial context unifiers does not happen per clause but per input literal, thus if a
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literal occurs at the same position in several clauses its partial context unifier will
be computed and stored only once for all occurrences.

The bindings of the stored partial context unifiers are kept in a database similar
to the term database. Especially for Bernays-Schönfinkel and some Horn problems,
where mostly very similar terms are computed, the unifiers tend to share most
bindings. Using the database leads to significant memory savings.

When a new literal K is selected for addition to the context (Step (1) in the proof
procedure, Step ① in Figure 2), the system computes all partial context unifiers
between (a fresh variant of) K and each literal in the current clause set. Then
it stores each computed unifier, when it exists, in the list of the corresponding
input literal. This is depicted in Figure 2 as Step ②, however for only one input
literal. After that, for each literal L that unifies with K and for each input clause C

containing L, the system attempts to find all possible context unifiers of C against
the current context. This is done as follows.

Assume that C is of the form L ∨ L1 ∨ · · · ∨ Ln, θ is the partial context unifier
between L and K, and Si is the set of partial context unifiers stored in Li’s list for i =
1, . . . , n. Then the system considers each tuple of partial unifiers in {θ}×S1×· · ·×Sn

and attempts to merge the elements of that tuple into a single unifier (Step ③ in
Figure 2). When the merge succeeds, the resulting substitution is a context unifier
of C against the current context.q

To minimize recomputation, the merged unifiers are computed incrementally by
traversing the partial context unifier lists for the clause C in a depth-first fashion.
The root node of the depth-first traversal is θ, its children are all the partial context
unifiers of L1, the children of each of the root’s children are all the partial context
unifiers of L2, and so on. Partial context unifiers are merged incrementally as they
are visited along a path of this search tree, and the merged unifier computed along
a path is reused for all the extensions of that path. Clearly, less work is done if
the tree is slim at the root, as less merge operations are then necessary. To achieve
this the lists associated with the literals L1, . . . , Ln in C are actually first ordered
by increasing length before starting the traversal. This is indicated in Figure 2 by
boxes of growing length for S1 to Sn in this order.

Each newly computed context unifier determines a remainder (Step ④ in Fig-
ure 2), and every such (non-empty) remainder provides one new candidate literal,
selected as explained in Section 4.8, that gets added to the candidate set in Step 5
of the proof procedurer (Step ⑤ in Figure 2, where the new candidate literal is
denoted as K ′).

For each candidate literal L, the system maintains a reference to the input clause
and the context literals used to compute the context unifier and the remainder

qThe context unifier is converted into an admissible context unifier afterwards. The underlying
algorithm is illustrated in Example 2.1 and explained in detail in (Ref. 9). But we can ignore this
issue here.
rRecall from Section 3 that it is enough to consider only one Split literal per remainder without
affecting the calculus’ completeness.
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that contained L. This allows it to quickly recompute the context unifier and the
remainder later, if needed.s

The computation of Assert candidates is done in a similar way thanks to the
following expedient. Recall that to apply Assert to a clause L∨C it is necessary to
compute a context unifier for the subclause C only. To do that we use a fictitious
context literal, let us call it Assert here, that unifies with any input literal but can
be used only once in the computation of each context unifier.t After the context
unifier has been computed, the result of applying that unifier to the clause literal
that had been paired with Assert is a possible Assert candidate. This way, Assert

and Split candidates can be computed at the same time using the very same incre-
mental algorithm described earlier for merging partial context unifiers. This leads
in practice to significant performance gains with respect to computing Assert and
Split candidates separately.

At times, it is convenient not to interleave the computation of Assert and Split

candidates. In fact, since Assert candidates are always preferred to Split candidates
by the selection heuristics, it makes sense to delay the computation of Split candi-
dates as long as Assert candidates exist. Such delaying pays off when a derivation
branch can be closed by a sequence of Assert applications, and in particular when
a problem can be proven unsatisfiable by means of Assert alone, which is the case
for instance for Horn input sets. Thus, the current version of Darwin starts by
computing only Assert candidates until a Split is really needed. From that point on
Split and Assert candidates are computed together, as described above. This simple
combination yields in general a better performance than either computing Split and
Assert candidates separately or interleaving their computation from the beginning.

It is interesting to point out hat contrary to what is done in Darwin, the ME
calculus does not require the computation of all the possible context unifiers in-
volving a given context literal: the Split inference rule (and similarly Assert) admits
implementations that compute remainders only locally, during the Split rule appli-
cation, and discard them afterwards. Thus, for a given context, the possible context
unifiers of a clause could be computed, say, one after the other until an admissible
one is found. At this point Split could be applied using that unifier and the unifier
could then be immediately discarded. Memory consumption under such a scheme
would be obviously greatly reduced.

Nevertheless, the approach used in Darwin has a big advantage: because at
any point in the derivation all the theoretically necessary context unifiers and their
remainders are known, they are available for inspection and comparison. Given that
both the choice of a remainder from the set of all possible (admissible) remainders,

sIn an earlier version of Darwin, described in (Ref. 15), more information was kept for the “best”

candidates, called active candidates, such as for example the complete remainder. The separation
into active and passive candidates has been dropped as it merely increased the complexity of the
system without improving its performance.
tSo, for instance, with the clause L∨C above, if paired with L, Assert cannot be paired with any
literal in C.
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and the choice of a literal from it to split with are don’t-care nondeterministic
choices, arbitrary heuristics can be employed for their computation. Furthermore,
for each pairing of an input literal L with a context literal, the computation of
the context unifier for the clause containing L is attempted in Darwin exactly once
in the current derivation tree branch. This avoids the recomputation of the same
context unifier that would happen in the more näıve scheme indicated above.

These considerations are the main rationale for the data structures and algo-
rithms described above. Computing context unifiers incrementally and non-locally
is clearly memory intensive, as all possible partial unifiers are kept in memory.
However, all of our experiments so far indicate that the current levels of memory
consumption does not impair the performance of the system. But more experimental
results explicitly monitoring memory consumption are probably needed.

4.8. Selection Heuristics

As explained in the previous section, all theoretically necessary remainders are at
any point in the derivation available for inspection. This supports the effortless
implementation of heuristics to select a literal to split with. The heuristics for se-
lecting a literal from the candidate set to be added to the context is based on the
following criteria. The overall heuristics is determined by the induced lexicographic
ordering over these criteria, with Universality being the most significant criterion,
and Generation the least significant one. Assert is always preferred over Split in
order to emphasize redundancy elimination.

(1) Universality. Universal Split literals (which includes ground literals as well) are
preferred to parametric Split literals as the addition of universal literals impose
stronger constraints on the current context, generally leading to context unifiers
with smaller remainders and to fewer applicable Split candidates later.

(2) Remainder Size. Recall that candidate literals for Split are drawn from the
remainder of some context unifier. Now, if the problem is satisfiable, at least one
remainder literal of every remainder must be satisfied by the context. Because
of this, candidate literals originating from smaller remainders are preferred over
literals from larger remainders. The rationale is that backtracking is minimized
this way. For an extreme case, note that for Split literals coming from a singleton
remainder applying the right side of Split is pointless because it immediately
produces a closed branch. In fact, Darwin does not even generate a choice point
when it adds such literals to the context.

(3) Term Weight. The number of symbols in a literal has shown to be useful infor-
mation that should be exploited. This emphasizes the use of “lighter” literals.
Because variables are excluded from counting, additional preference is given
to literals with variables instead of parameters or other terms at the variable
positions.

(4) Generation. This is a measure of how close in the derivation the candidate is
to the original clause set. The generation of a context literal is −1 for ¬v, and
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the generation of the corresponding candidate otherwise. The generation of a
candidate is the maximum of the generations of the context literals used in its
context unifier incremented by one. That is, candidates whose context unifier
is solely based on ¬v are of generation 0.
Candidates with a smaller generation are preferred. The intention is to keep
the derivation close to the problem set, similar to bidirectional search. For some
problems this is the key to their solutions; on average it is a slight improvement.

Recall that the term depth is not needed as part of the heuristics as it is implicitly
imposed by the depth bound (see Section 4.4).

The lexicographic ordering on candidate literals induced by the criteria above
is not total. To simplify debugging and the comparison of different data structures,
we make it total by using as last ordering criterion an arbitrary, but fixed, total
ordering on the candidates based on an enumeration of the input clauses and of the
context literals.

Criteria 1 and 3 above are also applied in Step 5 of the proof procedure when
choosing a literal from a remainder as the candidate literal for that remainder.

4.9. Term Indexing

The current context is basically a set of literals. The preconditions of Split, Assert,
and Subsume require, in essence, to search the context for literals that unify with,
subsume, or are subsumed by a given literal. Some of these queries are applied to
every computed candidate at least once in order to immediately drop invalid, e.g.
subsumed, candidates. In order to avoid a linear scan of the context to perform
each of these checks, Darwin uses by default term indexing for the context based
on substitution trees.18

Substitution trees index terms by abstracting over identical subterms. For ex-
ample, the terms f(g(a)) and f(g(b)) are represented by a node containing f(g(x))
and two children containing the substitutions {x 7→ a} and {x 7→ b}. Thus, for
the term f(h(a)) the non-unifiability is detected at the node f(g(x)) for both chil-
dren. In general, substitution trees seem to be best suited for deep terms containing
variables. For shallow ground terms, e.g., for clause sets stemming from Bernays-
Schönfinkel problems, using the current implementation of substitution trees makes
Darwin actually slower than using no term indexing at all.

For comparison, an alternative indexing scheme based on imperfect discrimi-
nation trees19 has been implemented. Discrimination trees index on common term
prefixes, where a term is seen as a sequence of symbols given by its pre-order traver-
sal, and for imperfect discrimination trees all variables are represented by the same
special constant. In the current implementation, their performance is quite close
to that of substitution trees for non-Horn problems and slightly superior for Horn
problems. As the crucial productivity check (Ref. 8) is currently only implemented
for substitution trees, those are still the preferred choice for non-Horn problems.
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4.10. Close Look-ahead

A branch is detected as unsatisfiable as soon as Close applies, which happens when
a context unifier with an empty remainder is computed for a clause in the current
clause set. It is easy to see however that when in the current branch of the derivation
two contradictory Assert candidates are computed, asserting one of them would
immediately close the branch. Now, due to the fact that candidate literals wait
for their turn in the candidate set, in unlucky cases two contradictory candidates
might be ignored for a long time. To avoid this problem, Assert candidates and Split

candidates from remainders containing only one literal are stored in a term index
(Section 4.9). Each new candidate is checked against the index for a contradiction.
As soon as this check succeeds Close can be triggered by adding the new candidate
to the context.

If all candidates were stored in the look-ahead index the introduced overhead
of maintenance and contradiction checks would in general far outweigh the benefits
of a shortened derivation. Empirically, an index size of about 10,000 for candidates
obeying the current term depth bound has turned out to introduce only moderate
overhead while making problems solvable which were previously out of reach. It is
not clear yet if including the candidates exceeding the depth bound in the look-ahead
mechanism as well is worthwhile. This adds such significant overhead in general that
some problems are no longer solved in a reasonable amount of time.u On the other
hand, some previously unsolvable problems become instead solvable.

4.11. Horn Problems

The ME calculus allows for several optimizations for the important class of Horn
problems. First,ME is complete for Horn problems without the Split rule, i.e., ex-
tending the context by means of Assert alone is sufficient.9 Therefore, with Horn
clause sets, Darwin does not compute any Split context unifiers. Second, negative
Assert literals can also be ignored without losing completeness if the default inter-
pretation is {¬v}. Thus, the current context is only extended by asserting positive
literals. For many problems this saves time, by avoiding the fruitless assertion of
negative literals, which are satisfied by the context {¬v} anyway, and the sub-
sequent possible computation of further unnecessary Assert candidates. Note that
while never asserted, negative Assert candidates do still play a role as they are used
for the Close look-ahead (See Section 4.10).

5. Performance Evaluation

We evaluated the performance of Darwin against the TPTP problem library version
2.7.v Since Darwin’s input language covers only clause logic, and Darwin does not

uThe overhead is caused mostly by index maintenance operations, as candidate literals are removed

from the index when selected or during backtracking.
vSee http://www.tptp.org/.
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(yet) have dedicated inference rules for equality, we concentrated on the clausal
problems without equality. In order to compare Darwin with other current provers
we list the results for a subset of the last CASC competition, CASC-J2,w and we
evaluated those provers over a subset of the TPTP. All tests were run on a Pentium
IV 2.4Ghz computer with 512MB of RAM. The imposed time limit was 300 seconds
for the tests on the clausal problems of the TPTP without equality, and 500 seconds
for the CASC tests; the memory limit was 500 MB in both cases. Experiments
showed that this is comparable to the setup of the CASC-J2 competition, where
AMD Athlon XP 2200+, 1.8Ghz computers with 512MB of RAM where used with
a time limit of 600 seconds.

Table 1. Several Darwin configurations over the TPTPv2.7

Name # Default Eager Reluctant Exceeding Weight

Problems Restart Restart Look-ahead Limit

HNE - SAT 63 24/0.1 – 24/0.1 24/0.1 24/0.1

HNE - UNSAT 680 602/4.9 – 597/6.5 592/4.9 602/7.8

HNE - Total 758 626/4.8 – 621/6.3 616/4.7 627/7.6

NNE - SAT 400 345/2.4 333/1.7 346/2.4 346/2.4 330/3.3

NNE - UNSAT 654 552/7.1 552/6.3 537/6.8 560/7.2 491/5.4

NNE - Total 1172 897/5.3 885/4.6 883/5.1 906/5.3 821/4.6

Note: The problem classes consist of clausal problems without equality and are divided in

Horn problems (“HNE”) and non-Horn problems (“NNE”), and in satisfiable (“SAT”) and
unsatisfiable (“UNSAT”) problems. Note that some problems are classified as unknown or

open instead of satisfiable or unsatisfiable, so the total numbers of problems is higher than
the sum of satisfiable and unsatisfiable problems. “#Problems” gives the number of problems
in a class, table entries are of the form “Number of problems solved”/“average CPU time”.

See text for an explanation of the different Darwin configurations; for an evaluation of older
features see (Ref. 15) and (Ref. 9).

Table 1 summarizes the results for several configurations of Darwin. “Default”
represents the default configuration, in which all derivation rules are used, back-
jumping is used for backtracking, the initial context is {¬v}, iterative deepening is
over the term depth, the initial term depth bound is 2, Close look-ahead is performed
only for candidates within the depth bound, and restarting follows the non-eager
Strategy 2 described in Section 4.4.

All other configurations differ by exactly one option. Specifically, “Eager
Restart” uses the restart strategy 1, “Reluctant Restart” uses the restart strat-
egy 3, “Exceeding Look-ahead” includes candidates exceeding the depth bound in
the Close look-ahead, and “Weight Limit” does iterative deepening over the term
weight. Notice that for Horn problems eager restarting and the default strategy are
identical, as the derivation tree degenerates to a branch (see Section 4.11), and so
backtracking to another branch is not possible.

As expected, “Eager Restart” is faster for unsatisfiable problems but solves less

wSee http://www.tptp.org/CASC/J2/
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satisfiable problems than the default strategy. The “Reluctant Restart” strategy is
worst. Disappointingly, it solves only one more satisfiable problem than the default
strategy. “Exceeding Look-ahead” adds a significant overhead, so that even a num-
ber of problems solved with the default configuration are lost. On the other hand, a
larger number of problems which are too hard for the default configuration can be
solved almost instantly, so some measure of when to apply the look-ahead is needed.
For NNE problems, iterative deepening over the term weight is clearly inferior to
iterative deepening over the term depth. For Horn problems, it is still much slower
but it solves the same number of problems. More interestingly, the two methods
differ in the actually solved problems. For example, the Horn problem PUZ050-1
is solved in less than 70 seconds with term weight, but not at all with term depth,
with 73260 applications of Asserts, while computing 194762 Assert candidates. It
has a rating of 1.0 and the classification “unknown”, denoting that the problem is
very hard for most provers.x This problem is also the reason that the number of
satisfiable and unsatisfiable problems do not sum up to the total number of solved
problems in Table 1. Combined, the two approaches solve 650 problems. All in all,
the default configuration seems to be a reasonable choice, unless specific information
about the problem at hand indicates another configuration.

Table 2. Several provers over the TPTPv2.7

Name # Darwin DCTP DCTP Vampire E Spass
Problems 1.1 1.31 10.21p 7.0 0.82 2.1

HNE - SAT 63 24/0.1 34/0.0 35/1.0 30/19.0 32/0.1 29/0.1

HNE - UNSAT 680 602/4.9 538/5.1 599/7.7 662/14.4 644/2.9 539/9.9

HNE - Total 758 626/4.8 572/4.8 634/7.4 693/14.7 676/2.8 568/9.4

NNE - SAT 400 345/2.4 290/6.2 342/10.0 176/25.4 234/6.8 220/14.4
NNE - UNSAT 654 552/7.1 510/7.3 589/7.1 635/7.5 604/6.4 521/10.5

NNE - Total 1172 897/5.3 800/6.9 931/8.2 812/11.6 838/6.5 741/11.7

Note: The structure of the table is analog to Table 1. Darwin was run in the default configuration,
while the other provers were run with the same settings as in the CASC-J2 competition, i.e. DCTP
10.21p with the time limit set to 300. DCTP 1.31 with “-negpref -complexity -fullrewrite -alternate
-resisol”, Vampire 7.0 with “–mode casc-j2 -t 300”, E 0.82 with “-s -xAuto -tAuto”, and Spass 2.1

with “-PProblem=0 -PGiven=0 -PStatistic=0 -Auto”.

In Table 2 Darwin is compared with state-of-the-art first-order theorem provers.
Of the selected provers, DCTP implements the disconnection tableaux calculus,20

where DCTP 1.31 uses a single strategy, while DCTP 10.21p employs several strate-
gies and restarting. The other provers are based on saturation methods such as res-
olution and superposition. Regarding the total number of problems solved, Darwin
performs in the mid range for Horn problems without equality, and is second only
to the multi-strategy version of DCTP for non-Horn problems without equality,
which we consider to be a very good result. Regarding the average time spent on

xIt is solved by Vampire 7.0 as well, though.
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the problems solved, the differences among the provers are not that significant.
We must mention though that about 300 of the NNE problems belong to the

Bernays-Schönfinkel class, a class for which Darwin and DCTP are decision proce-
dures, while the other provers are not. Interestingly, Darwin is the weakest prover
for satisfiable Horn problems, but fares best for satisfiable non-Horn problems. In
general, Darwin and DCTP seem to be much stronger for satisfiable non-Horn prob-
lems than the saturation provers Vampire and E, but much weaker for unsatisfiable
problems. For example, Darwin basically instantly solves a number of hard (rating
0.86) satisfiable problems, which are too hard for Vampire, E, and DCTP 10.21p,
or take a few minutes to be solved by DCTP 10.21p. One of these, SYN803-1, is
found to be satisfiable within a term depth of 2 in 0.0 seconds, with 2 applications
of Assert, 1 of Split, and 2 of Subsume, producing a final context consisting of merely
three literals. For most unsatisfiable problems Vampire or E are faster, but for ex-
ample FLD052-4 is solved in 2.3 seconds by Darwin, in 33.7 seconds by Vampire,
and not at all by E and DCTP. It it is proven unsatisfiable by means of Assert (932
applications) alone. Unsatisfiable Bernays-Schönfinkel problems like GRP128-2.006
(8 Close, 428 Assert, 7 Split) and GRP128-3.005 are almost immediately solved by
Darwin and DCTP, and not at all or using significantly more resources by Vampire
and E.

In these comparisons one should take into consideration that Darwin uses only
one strategy, whereas DCTP-10.21p, Vampire, and E use different strategies based
on the specific problem, which helps to increase the number of problems solved.

Table 3. Some problem divisions of the CASC-J2 competition

Name #Problems Darwin DCTP DCTP Vampire E Otter
1.1 1.31 10.21p 7.0 0.82 3.3

HNE 35 18 19 27 35 31 13
HEQ 35 2 3 8 31 31 3
EPS 40 40 37 40 9 – –

EPT 40 38 35 39 37 – –
NNE 35 17 12 22 34 32 3

SNE 50 19 19 25 – – –

Note: Problem names: HNE – (unsat.) Horn with No Equality; HEQ – (unsat.)

Horn with some (but not pure) Equality; EPS – (sat.) Effectively Propositional
non-theorems); EPT – (unsat.) Effectively Propositional Theorems; NNE – (unsat.)
Non-Horn with No Equality; SNE - SAT with No Equality. “#Problems” gives the
number of problems in a class, table entries are of the form “Number of problems

solved”. Darwin was run in the default configuration; the results of the other provers
are taken from the CASC-J2 web page, “–” means that a prover did not participate

in this class.

Finally, In Table 3 Darwin is evaluated on some of the divisions of the CASC-J2
competition restricted to clausal problems. The actual problems used in the compe-
tition are randomly selected from so-called eligible TPTP problems. A problem is
eligible, if additionally to meeting its division’s requirements its rating classifies it
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as neither trivial nor too hard. Furthermore, each division must contain some pre-
viously unseen problems and must not include an excessive number of very similar
problems.y

As expected, Darwin fares extremely well in the divisions EPS and EPT, which
consist of satisfiable and unsatisfiable clause sets with a finite Herbrand universe,
i.e., essentially the Bernays-Schönfinkel class. The only competitive prover for these
problems is DCTP, especially in its multi-strategy version. As could also be expected
from CASC’s bias towards unsatisfiable problems, Darwin turns out to be very
weak for Horn problems with equality, and also comparatively weak for Horn and
non-Horn problems without equality, though significantly better than Otter. Note
that while Darwin performs quite well for SNE problems when compared with the
other provers listed, systems specialized in satisfiable problems such as Paradox and
Gandalf are clearly superior, solving almost all SNE problems.

Updates of experimental results and more detailed information, including Dar-
win’s time and memory consumption individually for each problem, can be found
on Darwin’s web page.z

6. Conclusions and Future Work

The purpose of this paper was to describe the design of the Darwin theorem prover,
its proof procedure, data structures and algorithms. One of the main motivations
for developing Darwin’s calculus, Model Evolution, was the possibility of migrat-
ing to the first-order level some of those very effective techniques developed by the
SAT community for the DPLL procedure. This goal has been achieved to a certain
degree: the current version of Darwin implements a first-order version of unit propa-
gation, a form of simplification, and backjumping, a form of intelligent backtracking.
These features, which are considered absolutely critical for the good performance of
propositional DPLL-based SAT solvers, where the most immediately implementable
given that the Model Evolution calculus itself 4,8 was already designed with them
in mind.

Yet, much remains to be done. Various alternatives and modifications to Dar-
win’s data structures and algorithms have been identified in Section 4. Among
these, perhaps the most significant one concerns the selection heuristics explained
in Section 4.8.

We plan to to adapt to Darwin a few more of the heuristics that have proven
useful with the propositional DPLL procedure. For instance, we are considering im-
plementing a literal selection heuristics that prefers candidates from recent conflict
sets, i.e., literals recently responsible for the closure of a previous branch.21 Since
conflict sets are already computed in Darwin as they are used for backtracking (see
Section 4.3), this heuristics should be quite easy to incorporate. The incorporation

ySee http://www.tptp.org/CASC/J2/Design.html#Problems .
zCurrently at http://goedel.cs.uiowa.edu/Darwin/ .
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of another staple technique for DPLL-based solvers, lemma learning, is planned for
the next version. Adding lemmas, however, will require some more theoretical work
at the calculus level first.

As another extension we are currently investigating ways to equip the calculus
with dedicated inference rules for (efficient) equality reasoning. When implemented,
this will address the issue that Darwin generally performs poorly in domains with
equality.

Fairness of derivations is currently achieved through iterative deepening over
term depth or term weight. It would be interesting to experiment with alternatives
like iterative deepening over derivation length. Different iterative deepening strate-
gies are known to have a drastic impact on the search space exploration of model
elimination provers,22 and it is reasonable to expect the same for Darwin.

We also reported on practical experiments carried out with problems from the
CADE-J2 system competition, as well as on results on parts of the TPTP problem
library. When assessing the performance of Darwin compared to other provers, we
believe one should take into account that the Model Evolution calculus is a very
recent development. A great deal of know-how has been developed over the last
decades for the implementation in particular of resolution and model elimination
based systems. Although the techniques employed there can be partially exploited
(and we tried so for Darwin), new algorithms and data structure tailored for the
Model Evolution calculus, such as those used in Darwin for computing context
unifiers, are probably needed. Similarly, more work is necessary to identify successful
proof strategies and heuristics for the calculus. The same applies to other instance-
based methods such as, e.g., the disconnection tableau calculus,20 which presently
seems to be the only calculus of this kind for which a competitive prover exists.23

Despite a lack of established know-how, we find our first experimental results very
encouraging. In particular, Darwin performs very well on clause sets stemming from
Bernays-Schönfinkel problems. It is among the best provers for the EPS and EPT
divisions of the TPTP library. More generally, it is also among the best provers over
the non-equational divisions of TPTP.
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