
Computing
Finite Models

Disproving

Finite Models

Evaluation

Computing Finite Models by Reduction to
Function-Free Clause Logic

Peter Baumgartner1

Alexander Fuchs2

Cesare Tinelli2

1National ICT Australia (NICTA)

2The University of Iowa

University of Koblenz
June 08, 2006



Computing
Finite Models

Disproving

Finite Models

Evaluation

Outline

Disproving

Finite Domain Model Finding

Evaluation



Computing
Finite Models

Disproving
Theorem Proving

Disproving

Finite Models

Evaluation

Outline

Disproving
Theorem Proving
Disproving

Finite Domain Model Finding

Evaluation



Computing
Finite Models

Disproving
Theorem Proving

Disproving

Finite Models

Evaluation

Automated Theorem Proving

◮ Solving Problems
Mathematical proofs, software and hardware
verification, . . .

◮ Formulated in Logic
Propositional logic, first-order logic, . . .
Here: first-order logic with equality

◮ Automatically
User interaction consists at best only of problem
formulation.



Computing
Finite Models

Disproving
Theorem Proving

Disproving

Finite Models

Evaluation

Example Proving - Group Theory

◮ Do the following axioms specify a group?

∀x, y, z : (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity)
∀x : e ∗ x = x (left − identity)
∀x : i(x) ∗ x = e (left − inverse)

◮ Hypothesis: Does right-identity hold?

∀x : x ∗ e = x (right − identity)

◮ Yes, it does (also right-inverse).



Computing
Finite Models

Disproving
Theorem Proving

Disproving

Finite Models

Evaluation

Outline

Disproving
Theorem Proving
Disproving

Finite Domain Model Finding

Evaluation



Computing
Finite Models

Disproving
Theorem Proving

Disproving

Finite Models

Evaluation

Disproving

◮ First-order logic is only semi-decidable.

◮ A prover might not terminate when trying to prove a
theorem that does not hold.

◮ Disproving as complementary task: Detect satisfiability
and provide a model / counterexample.



Computing
Finite Models

Disproving
Theorem Proving

Disproving

Finite Models

Evaluation

Example Disproving - Group Theory

◮ Does commutativity hold in a group?

∀x, y, z : (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity)
∀x : e ∗ x = x (left − identity)
∀x : i(x) ∗ x = e (left − inverse)

◮ Hypothesis:

∀x, y : x ∗ y = y ∗ x (commutat.)

◮ No, it does not.



Computing
Finite Models

Disproving
Theorem Proving

Disproving

Finite Models

Evaluation

Example Disproving Cont. - Group Theory

Counterexample: a group with finite domain of size 6, where
the elements 2 and 3 are not commutative:

Domain: {1, 2, 3, 4, 5, 6}

e : 1

i :
1 2 3 4 5 6
1 2 3 5 4 6

∗ :

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 4 3 6 5
3 3 5 1 6 2 4
4 4 6 2 5 1 3
5 5 3 6 1 4 2
6 6 4 5 2 3 1



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

Outline

Disproving

Finite Domain Model Finding
Approaches
FM-Darwin

Evaluation



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

Idea

◮ Assume a fixed domain size n.

◮ Use a tool to decide if there exists a model with domain
size n for a given problem.

◮ Do this starting with n = 1 with increasing n until a
model is found.

◮ Note: domain of size n will consist of {1, . . . , n}.



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

1. Approach: SEM-style

◮ Tools: SEM, Finder, Mace4

◮ Specialized constraint solvers.

◮ For a given domain generate all ground instances of
the clause.

◮ Example: For domain size 2 and clause p(a, g(x)) the
instances are p(a, g(1)) and p(a, g(2)).



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

1. Approach: SEM-style

◮ Set up multiplication tables for all symbols with the
whole domain as cell values.

◮ Example: For domain size 2 and function symbol g with
arity 1 the cells are g(1) = {1, 2} and g(2) = {1, 2}.

◮ Try to restrict each cell to exactly 1 value.

◮ The clauses are the constraints guiding the search and
propagation.

◮ Example: if the cell of a contains {1}, the clause a = b
forces the cell of b to be {1} as well.



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

2. Approach: Mace-style

◮ Tools: Mace2, Paradox

◮ For given domain size n transform first-order clause set
into equisatisfiable propositional clause set.

◮ Original problem has a model of domain size n iff the
transformed problem is satisfiable.

◮ Run SAT solver on transformed problem and translate
model back.



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

Paradox - Example

Domain: {1, 2}

Clauses: {p(a) ∨ f(x) = a}

Flattened: p(y) ∨ f(x) = y ∨ a 6= y

Instances: p(1) ∨ f(1) = 1 ∨ a 6= 1
p(2) ∨ f(1) = 1 ∨ a 6= 2
p(1) ∨ f(2) = 1 ∨ a 6= 1
p(2) ∨ f(2) = 1 ∨ a 6= 2

Totality: a = 1 ∨ a = 2
f(1) = 1 ∨ f(1) = 2
f(2) = 1 ∨ f(2) = 2

Functionality: a 6= 1 ∨ a 6= 2
f(1) 6= 1 ∨ f(1) 6= 2
f(2) 6= 1 ∨ f(2) 6= 2



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

Difficult Example

◮ Consider the clause set consisting of the
n · (n − 1)/2 + 1 unit clauses:

p(c1, . . . , cn)
¬p(x1, . . . , xi−1, x, xi+1, . . . , xj−1, x, xj+1, . . . , xn)

◮ Example for n = 3:

Clauses Model

p(c1, c2, c3) c1 = 1
¬p(x1, x1, x3) c2 = 2
¬p(x1, x2, x1) c3 = 3
¬p(x1, x2, x2) p(1, 2, 3)

◮ Guess: For which n do Mace4 and Paradox give up?



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

Difficult Example

◮ Mace4 and Paradox give up for n = 8.

◮ There are nn−1 instances of the clause
¬p(x1, . . . , xi−1, x, xi+1, . . . , xj−1, x, xj+1, . . . , xn).

◮ Memory consumption is the main bottleneck.

◮ Our approach does not have this problem.



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

Outline

Disproving

Finite Domain Model Finding
Approaches
FM-Darwin

Evaluation



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

Paradox vs. FM-Darwin

Our approach is inspired by Paradox:

FM-Darwin

Flat clause set’

Clause set

Function-free
clause set

Flattening’

Relational form
wrt. domain

Decision procedure
(Darwin)

Flat clause set

SAT solver

Clause set

Propositional
clause set

Flattening

Grounding
wrt. domain

Paradox



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

FM-Darwin - Flattening

◮ A flat literal is one of:
◮ (¬) p(x1, . . . , xm) for predicate symbol p of arity m

◮ ¬f(x1, . . . , xm) = y for function symbol f of arity m

◮ x = y or x = x

◮ Transformation into flat literals:
◮ Extract subterms:

Example: p(a) ∨ f(x) = c becomes
p(y) ∨ y 6= a ∨ f(x) = z ∨ z 6= c.

◮ Remove trivial disequations:

Example: q(x, y) ∨ x 6= y becomes q(x, x).



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

FM-Darwin - Elimination of Function Symbols

◮ After exhaustive application of flattening all literals are
flat and function symbols occur only in disequalities.

◮ Transform disequalities into a relations:
¬f(x1, . . . , xm) = y becomes rf (x1, . . . , xm, y).

◮ Example: f(x, y) = z becomes rf (x, y, z).

◮ The resulting clause sets contains no function symbols
and no disequalities.



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

FM-Darwin - Totality Axioms

◮ Need to ensure that each relation rf representing a
function is left-total, i.e. defined for all arguments.

◮ For domain size n add for each function symbol f the
axiom Rf (x1, . . . , xm, 1) ∨ . . . ∨ Rf (x1, . . . , xm, n).



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

FM-Darwin - Functionality Axioms

◮ No functionality axioms are needed.

◮ Any model can be transformed into one obeying
right-uniqueness.

◮ All positive literals over rf occur only in the totality
axiom, nowhere else.

◮ Example: Say rf (1, 1, 1) and rf (1, 1, 2) are true in a
model. After setting rf (1, 1, 2) to false the totality axiom
is still satisfied, and any other clause which was
satisfied previously is still satisfied.



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

FM-Darwin - Equality Axiomatization

◮ Add the axioms d 6= d′ and d′ 6= d for all different
domain elements.

◮ Example: For domain size 2 the axioms are 1 6= 2 and
2 6= 1.



Computing
Finite Models

Disproving

Finite Models
Approaches

FM-Darwin

Evaluation

FM-Darwin - Example

Domain: {1, 2}

Clauses: {p(a) ∨ f(x) = a}

Flattened: p(y) ∨ f(x) = y ∨ a 6= y

Relational: p(y) ∨ rf (x, y) ∨ ¬ra(y)

Totality: ra(1) ∨ ra(2)
rf (x, 1) ∨ rf (x, 2)

Equality: 1 6= 2
2 6= 1

Space Complexity

While Paradox generates exponentially many clauses, nk for
a clause containing k variables, FM-Darwin generates only
a quadratic number.



Computing
Finite Models

Disproving

Finite Models

Evaluation

Outline

Disproving

Finite Domain Model Finding

Evaluation



Computing
Finite Models

Disproving

Finite Models

Evaluation

Setup

◮ Compared the two best model finders according to the
last CASC competition (Mace4 and Paradox) with
FM-Darwin

◮ Used all satisfiable clausal TPTP 3.1.1 problems as a
benchmark.

◮ Configuration: Xeon 2.4Ghz CPU, a limit of 5 minutes
and 500MB of RAM for a process.



Computing
Finite Models

Disproving

Finite Models

Evaluation

Results

Type Total FM-Darwin Mace4 Paradox 1.3
Horn/Equ. Solv./Time Solv./Time Solv./Time

no no 400 383 2.5 272 3.8 372 1.0
no yes 154 120 6.0 63 3.9 101 0.7
yes no 65 37 8.3 37 0.2 59 2.2
yes yes 196 135 3.7 181 3.7 182 5.3

all 815 675 3.7 553 3.5 714 2.1

Type: split into Horn problems and problems containing equality.
Total: number of problems per category.
Solv.: number of problems solved by a system.
Time: average time (in s) needed for the solved problems.



Computing
Finite Models

Disproving

Finite Models

Evaluation

Observations

◮ While Mace4 and Paradox are in general noticeably
faster than FM-Darwin, the difference is not dramatic.

◮ Memory consumption limits the scalability of Mace4
and Paradox.

◮ For the 101 problems that Paradox can not solve in 5
minutes, it gives up for all but 15.

◮ FM-Darwin solves 64 resp. 54 problems on which
Mace4 resp. Paradox give up.

◮ FM-Darwin solves more problems than Mace4, and
more non-Horn problems than any other system.


	Disproving
	Theorem Proving
	Disproving

	Finite Domain Model Finding
	Approaches
	FM-Darwin

	Evaluation

